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1. Introduction

The Robinson-Trautman (RT) metrics [1]
r2 _
g:Zle(Hdqudr)—ZEdEdE (1.1)

were proposed in order to describe gravitational radiatiom bounded sources. Heter,& ,E_
are coordinates and = P(u, &, &) is an unknown function. For RT metrics the vacuum Einstein
equations reduce to the definitiontdfin terms ofP

H = P(InP) ;¢ —r(InP),— (1.2)
’ r
and the RT equation for the functidh
Kez—3m(P?),=0. (1.3)

Herem =const and
K =2P%(InP) ;7

is the Gauss curvature of the surfaces const,r = 1.

Global structure, trapped surfaces and asymptotic behaw@oRT spacetimes were success-
fully studied by Penrose [2], Foster and Newman [3], Lukdsjes, Porter and Sebestyen [4],
Schmidt [5], Rendall [6], Tod [7], Singleton [8], Chgaiel [9, 10], Chrdciel and Singleton [11],
Chow and Lun [12] and others. In this communication we sunwaavur results [13] on trapped
surfaces and quasi-local horizons in RT spacetimes. Thesmeirical objects play an important
role in modern theory of black (or white) holes (see e.g. @] references therein).

A nontrivial solution of the RT equation is given by

1 —
P=1+ EEE .
It defines the Schwarzschild metric in the Eddington-Fistedh coordinates
g=du((1— 2—m)du+2dr) — rzﬁ ,
r (1+ 255)2

& being the complex stereographic coordinate of the 2-dilnaakspheres,;. These coordinates
cover the shaded half of the Penrose conformal diagraml(Fig.
Let us consider RT metrics with sections= const r = const diffeomorphic t&. Then

P
1+38¢
is a smooth and positive function &. By virtue of the RT equation we can set

B

i / P2dE AdE = 471 (1.4)
)

Then the surface area of the sectionsis% Form> 0 these metrics can be developed from an
initial surfaceu = up to cover a manifold shown in Fig.2 [10].

Whenu — o they tend to the Schwarzschild metric. Thus, the future ekierizon is given
by u=co, r = 2mand is similar to that in the Schwarzschild spacetime.
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Figure 1. Conformal diagram of the Schwarzschild metric
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Figure2: Conformal diagram of the RT metric witih > 0 [10]

2. Past trapped surfaces and horizons

The question arises whether crossections f2m with u = const< « form the past event
horizon as in the Schwarzschild spacetime. In general,ib&er is 'no’ since solving condition

H = 0 together with the RT equation shows that (see [13] for ttai

e Surface r=2m is null for u< « < g is Schwarzschild.

Let.# be a 2-dimensional spacelike surface given by
u=const r= R(E,E_) .
The ingoing and outgoing null vectors normal # read
k - C?r
P2 P2
| =0, — <H — I'_2|R’£| > o + r—z(Rfaf + Rga‘f_) .

Expansion ok andl on.¥ are, respectively,

and

(2.1)
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Hence, the surface” is trapped iff

K m
—P%(INR) ;7+—-——=0. 2.2
(INR) g+ — & (2.2)

According to Tod [7] equation (2.2) admits unique (for eagbkolution which defines an outermost
marginally trapped surface’.
Integrating equation (2.2) ove¥ and using the Gauss-Bonnet theorem yields

"~ /2m
——1)do=0
A&<R ) o=

where & = iP~2dé AdE_is the surface 2-form. Hence, we obtain the following proper

e The trapped surface” intersects the surface=£ 2m.

By varing u in (2.1) and (2.2) one can define a hypersurfa¢éfoliated by the marginally
trapped surfaces”. Chow and Lun [12] showed tha#’ is a non-timelike surface (dynamical
horizon). From the point of view of a theory of black holessitiinportant to know whethes?’
can be null (nonexpanding horizon). Note that#f is null then the expansion-free null vector
is tangent ta77. It is also shear-free due to the Raychaudhuri equatioreganddly of topological
assumptions on intersections g with u=const we obtain the following result (see [13] for a
proof)

e The only vacuum Robinson-Trautman metrics admitting a paséxpanding horizon is the
Schwarzschild solution and the C-metric.

In the case of the C-metric coordinateandé can be chosen in such a way that

_ 12m
- %

K =K(x+u), P
wherex = Reé. The functionK undergoes the equation
1.3
6MKy = —§K +bK+c
and the nonexpanding horizo# is given by
r=6mK+a)t.

Herea, b andc are constants constrained by the condition

a3
— —ab =0.
3 —ante

Note that in this casgZ does not admit regular spherical sections.
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