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1. Quantum shells.

In series of papers [1] a quantum mechanics for spherically symmetric thin dust shells has
been developed. Here we write out only some necessary results. It was shown that the Wheeler-
DeWitt equation is reduced in this case to the following stationary Schroedinger equation in finite
differences:

Ψ(m,min,S+ iζ )+ Ψ(m,min,S− iζ ) =
Fin +Fout− M2

4m2S√
Fin

√
Fout

Ψ(m,min,S), (1.1)

wherem= mout = mtot - the total mass of the system,min - the Schwarzschild mass inside,M is

the bare mass of the shell,S= R2

4G2m2 (R - radius,G - gravitational constant),F = 1− 2Gm
R , ζ =

m2
Pl

2m2

(mPl =
√

h̄c
G is the Planckian mass and we use units withh̄ = c = k = 1, h̄ - Planck constant,c

- speed of light,k - Bolzmann constant). By investigation of wave functions inthe vicinity of
singular points (infinities and singularities) and around the branching points (apparent horizons)
the following discrete mass spectrum for bound states was found(∆m= mout−min):

2(∆m)2−M2
√

M2− (∆m)2
=

2m2
Pl

∆m+min
n,

M2− (∆m)2 = 2(1+2p)m2
Pl , (1.2)

wheren andp≥ 0 are integers. The appearance of two quantum numbers instead of one in conven-
tional quantum mechanics is due to the nontrivial causal structure of the complete Schwarzschild
manifold.

The above spectrum is not universal in the sense that the corresponding wave functions form
a two-parameter familyΨn,p. But for the quantum Schwarzschild black hole we expect a one-
parameter family of solutions, because quantum black holesshould not have "no hairs", otherwise
there will be no smooth classical limit. This means that our spectrum is not a quantum black hole
spectrum, and corresponding quantum shells do not collapse(like an electron in hydrogen atom).
Physically, it is quite understandable, because the radiation was not included into consideration.
The energy of radiation is also quantized, but, and this is crucial, the energies of quanta are not equal
to the level splitting in the shell discrete spectrum, Eqn.(1.2). As a result, the quantum gravitational
collapse proceeds via production new shells, thus increasing the inner massmin inside the primary
shell. Such a process can go in many different ways, so, it is the quantum collapse that appears
to be the origin of the black hole nonzero entropy. But how could quantum collapse be stopped?
The natural limit is the transition from a black hole-like shell to a wormhole-like shell by crossing
an Einstein-Rosen bridge, since such a transition requires(at least in a quasi-classical regime)
insertion of infinitely large volume, which probability is,of course, zero. Computer simulations
show that the process of quantum gravitational process stops when the principal quantum number
becomes zero,n = 0.

The pointn = 0 in our spectrum is very special. In this state the shell doesnot "feel" not only
the outer region (what is natural for the spherically symmetric configuration), but it does not know
anything about what is going on inside. It "feels" only itself. Such a situation reminds the "no hair"
property of a classical black hole. Finally, when all the shells (both the primary one and newly
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produced) are in the corresponding statesni = 0, the whole system does not "remember" its own
history. And it is this "no memory" state that can be called "the quantum black hole". Note, that
the total masses of all the shells obey the relation

∆mi =
1√
2

Mi. (1.3)

The subsequent quantum Hawking’s evaporation can proceed via some collective excitations and
formation, e.g., of a long chain of microscopic semi-closedworlds.

2. Classical analog of quantum black hole.

The final state of quantum gravitational collapse, the quantum black hole, can be viewed as
some stationary matter distribution. Therefore, we may hope that for massive enough quantum
black hole such a distribution is described approximately by a classical static spherically symmetric
perfect fluid with energy densityε and pressurepobeying classical Einstein equations. This is what
we call a classical analog of a quantum black hole. Of course,in such a case the corresponding
classical distribution has to be very specific. To study its main features let us consider the situation
in more details.

Any static spherically symmetric metric can be written in the form

ds2 = eνdt2−eλ dr2− r2(dθ2 +sin2θdϕ2). (2.1)

Herer is the radius of a sphere with the areaS= 4πr2,ν = ν(r),λ = λ (r). The Einstein equations
are (prime denotes differentiation inr):

−e−λ
(

1
r2 −

λ ′

r

)

+
1
r2 = 8πGε ,

−e−λ
(

1
r2 +

ν ′

r

)

+
1
r2 = −8πGp,

−1
2

(

ν ′′ +
ν ′2

2
+

ν ′−λ ′

r
− ν ′λ ′

2

)

= −8πGp. (2.2)

We see that there are three equations for four unknown functions of one variable, namely,ν(r),λ (r),
ε(r) and p(r). But, even we would know an equation of state for our perfect fluid, p = p(ε), the
closed (formally) system of equations would have too many solutions. We need, therefore, some
selection rules in order to single out the classical analog of quantum black hole. Surely, the "no
hair" feature should be the main criterium. Thus, we have to adjust our previous definition of the
"no memory" state to the case of a continuum matter distribution. For this, let us integrate the first
of Eqns.(2.2):

e−λ = 1− 2Gm(r)
r

, (2.3)

where

m(r) = 4π
r
∫

0

ε r̃2dr̃ (2.4)
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is the mass function that must be identified withmin. Now, the "no memory" principle is readily
formulated as the requirement, thatm(r) = ar2 [2], i.e.,

e−λ = 1−2Ga= const. (2.5)

Note, that in static case, the inverse metric coefficiente−λ is an invariant which in the general
spherically symmetric space-time reads as∆ =−e−λ = gikR,iR,k and is nothing more but a squared
normal vector to the surface of constant radiusR(xi) = R(t,q) = const. We can also introduce a bare
mass functionM(r) (the mass of the system inside a sphere of radiusr without the gravitational
mass defect).

M(r) = 4π
r
∫

0

ε(r̃)e
λ
2 (r̃)r̃2dr̃ =

ar√
1−2Ga

. (2.6)

The remaining two equations (2.2) can now be solved forp(r) andeν(r). The general solution is
rather complex, but the correct non-relativistic limit forthe pressurep(r) (we are to reproduce the
famous equation for hydrostatic equilibrium) has only the following one-parameter family:

p(r) =
b

4πr2 , (2.7)

where
b =

1
G

(

1−3Ga−
√

1−2Ga
√

1−4Ga
)

. (2.8)

We see that the solution exists only fora≤ 1
4G, thenb≤ a. The physical meaning of these inequal-

ities is that the speed of sound cannot exceed the speed of light, v2
sound= b

a ≤ 1 = c2, the equality
being reached just fora = b = 1

4G. Finally, for the temporal metric coefficientg00 = eν we get:

eν = C0r
4b

a+b = C0r2G a+b
1−2Ga . (2.9)

Thus, demanding the "no memory" feature and existence of thecorrect non-relativistic limit, we
obtained the two-parameter family of static solutions. Butwe need a one-parameter family, so we
have to continue our search. Let us investigate the obtainedspace-time manifolds more thoroughly,
especially in the vicinity of the apparently singular pointr = 0, and calculate the corresponding
curvature (Riemann’s) tensorRµ

νλσ . The nonzero components are

R0
101 = 2

b(a−b)

(a+b)2

1
r2 ; R0

202 = 2
b

a+b
(1−2Ga) ; R0

303 = R0
202sin2θ ;

R1
010 = 2C2

0
b(b−a)

(a+b)2 (1−2Ga)r
2(b−a)

a+b ;

R2
020 = 2C2

0
b

a+b
(1−2Ga)r

2(b−a)
a+b ; R2

323 = 2Gasin2θ ;

R3
030 = 2C2

0
b

a+b
(1−2Ga)r

2(b−a)
a+b ; R3

232 = 2Ga. (2.10)

Evidently, forb < a the Riemann tensor (2.10) is divergent atr = 0, so, the corresponding space-
times have the real singularity. But, ifa = b = 1

4G we are witnessing a miracle, the (before) diver-
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gent components become zero, and the remaining nonzero onesequal

R0
202 = −(1−2Ga) = −1

2
,

(

R2
020 =

1
2

C2
0

)

;

R0
303 = −(1−2Ga) = −1

2
,

(

R0
030 =

1
2

C2
0

)

;

R2
323 = 2Gasin2θ =

1
2

sin2θ ,

(

R3
232 =

1
2

)

, (2.11)

and the only nonzero component of the Ricci tensorRµν(= Rα
µαν) equals to

R00 = C2
0. (2.12)

Thus, demanding, in addition to the previous two very natural requirements, the third one (also nat-
ural), namely, the absence of the real singularity atr = 0, we arrive at the following one-parameter
family to the Einstein equations (2.2):

g00 = eν = C2
0r2

,

g11 = −eλ = −
√

2,

ε = p =
1

16πGr2 . (2.13)

So, the equation of state of our perfect fluid is the stiffest possible one. The constant of integration
C0 can be determined by matching the interior and exterior metrics at some boundary radiusr = r0.
Let us suppose that forr > r0 the space-time is empty, so, the interior should be matched to the
Schwarzschild metric, labeled by the mass parameterm. Of course, to compensate the jump in the
pressure∆p(= p(r0) = p0) we must include in our model some surface tensionΣ. It is easy to
check, that

C2
0 =

1

2r2
0

; ∆p =
2Σ√
2r0

;

eν =
1
2

(

r
r0

)2

; p0 = ε0 =
1

16πGr2
0

;

m = m0 =
r0

4G
. (2.14)

Note, that the bare massM =
√

2m, the relation is exactly the same as for the shell "no memory"
state (1.3), andr0 = 4Gm0, so, the size of our analog of quantum black hole is twice as that of
classical black hole. But how about the special point in our solution, r = 0? It is not a trivial
coordinate singularity, like in a three-dimensional spherically symmetric case, because

ds2(r = 0) = 0. (2.15)

This looks rather like an event horizon. To clear the point weconsider the radial geodesic motion
in the space-time with the metric

ds2 =
1
2

(

r
r0

)

dt2−2dr2− r2(dθ2 +sin2θdϕ2). (2.16)

5
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The calculations are very simple, the falling bounded geodesics are described by the following
function r(t), or r(τ) for the proper time parameterτ :

r(τ) =
1√
2

√

2r2
1 − τ2;

τ =
√

2r1 tanh
t

2r0
;

r(t) =
r1

cosh t
2r0

, (2.17)

where we putr = r1 < r0 for τ = t = 0 (dr
dτ (r1) = dr

dt (r1) = 0). We see that the surfacer = 0,
indeed, behaves like an event horizon (and, at the same time,a Killing horizon). Investigation
of non-radial geodesics shows an infinite spiralling when approaching zero radius surface, thus
confirming its horizon nature. Moreover, the two-dimensional part of the metric (2.16), i.e.,(t− r)-
surface, is locally flat, what can easily be proven by making the following coordinate transformation
(t, r) → (η ,x):

η =
√

2r sinh
t

2r0
, x =

√
2r cosh

t
2r)

. (2.18)

This resembles the Rindler’s transformation in two-dimensional flat Minkowski space-time.

3. Rindler space-time.

The Rindler space-time is obtained by transforming the two-dimensional Minkowski space-
time from the ordinary coordinates(η ,x) and metricds2 = dη2−dx2 related to the set of inertial
observers, to the so-called Rindler coordinates and metric

η =
1
a

eaξ sinhaη , x = ±1
a

eaξ coshaη (x≥ 0),

−∞ < t < ∞, −∞ < ξ < ∞,

ds2 = e2aξ (dt2−dξ 2). (3.1)

Thus, the Rindler space-time is static and locally flat but differs from the two-dimensional Minkowski
space-time globally, because it covers only one half of the latter and, in addition, possesses the
event horizons atη = ±x (t = ±∞, ξ = const). The Rindler observersξ = constundergo nonzero
constant acceleration. The norm of the acceleration vectoraµ equals

α =
√

|aµ aµ | = ae−aξ
. (3.2)

Existence of the horizons has a very important consequence.W.G.Unruh showed [3] that the quan-
tum theory of scalar field in the Rindler space-time is, in fact, the finite temperature quantum field
theory, and the value of the Unruh’s temperature is

TU =
a

2π
. (3.3)

We see, that this temperature is proportional to the acceleration of the Rindler observer sitting
at ξ = 0 with g00 = 1. But, all these observers are equivalent (we can always shift the spatial

6
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coordinateξ → ξ − ξ0). The temperature value is not an invariant but it is a temporal component
of a heat vector. This means that each observer measures the Unruh temperature when using its
proper timeτ (ds= dτ). If the same observer uses the local clocks that show the local time
t (ds=

√
g00dt), the local temperature measured by him equals

Tloc =
TU√
g00

=
a

2π
e−aξ =

α
2π

. (3.4)

We know from the university course of thermodynamics (se, e.g., [3]) that the condition for thermal
equilibrium in static space-times isTloc

√
g00 = const. We can introduce an "apparent temperature"

Tapp which is the local temperature of an observer sitting atξ = ξ2, "seen" by an observer atξ = ξ1:

Tapp(ξ2,ξ1) =

√

g00(2)
√

g00(1)
Tloc(ξ2). (3.5)

Then the condition for thermal equilibrium can be formulated asTloc(ξ1) = Tapp(ξ2) for all values
ξ = ξ2. Thus, the Rindler observers are in thermal equilibrium with each other. And the question
arises: is the Rindler space-time unique in this sense? To answer it, consider some general two-
dimensional static space-time with a metric

ds2 = eνdt2−dρ2 = eνdt2−eλ dq2
. (3.6)

Note, that in the Rindler caseρ = 1
aeaξ ,eν = ρ2

a2 = g00. The static observer in the metric (3.6)

undergoes a constant acceleration with the invariantα = 1
2|dν

dρ |= 1
2|dν

dq|e−
λ
2 , and the (local) Rindler

parametera(ρ), which is now called "the surface gravityκ", equals

κ =
1
2

∣

∣

∣

∣

dν
dq

∣

∣

∣

∣

e
ν−λ

2 =
1
2

∣

∣

∣

∣

dν
dρ

∣

∣

∣

∣

e
ν
2 . (3.7)

The thermal equilibrium condition requiresκ = const, therefore,g00 = Cρ2, and this proves that
the Rindler space-time is the only one which static observers are in the mutual thermal equilibrium.

4. Topological temperature.

The fact that an accelerated observer "sees" particles while moving in the empty (vacuum)
Minkowski space-time, was known long ago to quantum field theorists. The physical reason for
this phenomenon is obvious: particle creation is caused by the same forces that cause the particle
detector’s acceleration. From the quantum field theory point of view, the vacuum of an accelerated
observer (=detector) is different from that of an inertial observer. And the empty space of the latter
appeared filled with particles to the first one. Due to Unruh’sdiscovery we know that the observer
moving with constant acceleration detects particles with Planckian spectrum at the temperature
proportional to the value of this acceleration. But, let us consider the following Gedankenexperi-
ment. Two observers sitting in the rockets and bringing particle detectors with them, are moving
inertially in the two-dimensional Minkowski space-time. At some definite moment they switch
on the engines and start to move with equal constant accelerations. Surely, their detectors start to
register particles. Because an amount of fuel in the rocketsis finite, our observers will eventu-
ally become inertial again, and let the durations of their accelerated motion are different. Then,

7
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the number of detected particles will also be different and finite. Suppose, our observers are well
educated and know about the Unruh effect, so, they are able tocompare the Planckian spectrum
with that obtained by them. Evidently, they will find the deviations from the thermal spectrum,
and the longer their accelerations, the smaller will be these deviations. Thus, the appearance of the
temperature in the Rindler space-time is a global effect - the acceleration should last infinitely both
in the past and in the future.

Thermodynamically this can be understood as follows. The existence of the event horizons in
the Rindler space-time prevents receiving any informationfrom the remaining part of a manifold.
And the observers can explain this loss of information by ascribing a nonzero entropy to the unseen
part of a geodesically complete space-time. And the very appearance of the entropy and the static
character of the Rindler space-time lead us to the notion of thermal equilibrium and, thus, to the
notion of temperature. Therefore, we see that it is the eventhorizon that causes the spectrum
of particles detected by the constantly accelerated observer to be the Planckian one. And the
global character of the notion of event horizon is reflected in the global character of the Unruh’s
temperature.

It is amazing, but the Rindler temperature can be calculatedwithout a thorough investigation
of quantum field theory. For this we should make a Whick rotation to the imaginary Rindler time
τ = it , then the Euclidean Rindler metric

dl2 = a2ρ2dτ2 +dρ2 (4.1)

can be interpreted as that of a locally flat two-dimensional surface in polar coordinates (the polar an-
gle is proportional toτ) provided the imaginary time is periodic, the latter requirement is quite nat-
ural because in terms of Minkowskian timeη such a transition reads asη = ρ

a sinh(iat) = i ρ
a sinτ .

The metric (4.1) describes, in general, the geometry of a cone embedded into the three-dimensional
flat space with a conical singularity atρ = 0. But, if the period isτ = 2π

a , the singularity disap-
pears and we obtain the whole plane. In the finite temperaturefield theories the temperature is
introduced as the inverse period of the imaginary time, and we see that in our case it is exactly the
Unruh temperature (3.3)! We can call the temperature found in this way "the topological tempera-
ture", because the geometry in the vicinity of a single (but singular) point, determines the properties
of the whole manifold.

5. Black hole temperature with and without black holes.

By the Einstein equivalence principle we can extend all we learned studying Rindler space-
times, to the static gravitational fields, especially to thestatic spherically symmetric manifolds,
because after fixing spherical anglesθ andϕ they become, in fact, the two-dimensional surfaces.
Of course, in general these surfaces are curved, the equivalence principle holds only locally and,
therefore, static observers sitting at different values ofradius will "feel" not only different temper-
atures, but by no means they will be in thermal equilibrium with each other. Such a temperature is
observer dependent and cannot be considered as an intrinsicproperty of a given space-time. But,
we saw that the Rindler space-time possesses the event horizons what is crucial for ascribing and
entropy and temperature to the manifold itself (or to its part).

8
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So, we are looking for some examples of spherically symmetric static manifolds which pos-
sess the event horizons. And, of course, these are the well-known Schwarzschild and Reissner-
Nordstrom space-times outside the corresponding black holes. In both cases the metric can be
written in the form

ds2 = Fdt2− 1
F

dr2− r2(dϑ2 +sin2ϑdϕ2),

F = 1− 2Gm
r

+
Ge2

r2 =
(

1− r+

r

)(

1− r−
r

)

, (5.1)

where m is the mass,e is the electric charge of Reissner-Nordstrom black hole,r± = Gm±√
G2m2−Ge2 are, respectively, positions of the event and Cauchy horizons, and fore = 0 the

above relations become the parameters of a Schwarzschild black hole. After the Whick rotation to
the imaginary timeτ the Euclidean two-dimensional surface in the vicinity of the event horizonr+

is described by the metric

dl2 =
(r+ − r−)2

4r2
+

ρ2dt2 +dρ2
,

ρ =
2r+√

r+ − r−

√
r+r− ≪ r+. (5.2)

Thus, the topological temperature of the Reissner-Nordstrom black hole is

Ttop =
r+ − r−
4πr2

+

. (5.3)

This value equalsκBH
2π , whereκBH is the surface gravity calculated at the black hole event horizon

that enters the first law of thermodynamics for black holes [5] [6]. And the topological temperature
Ttop in the case of Schwarzschild black hole is exactly the famousHawking temperature

TH =
1

8πGm
, (5.4)

obtained by explicit construction of the massless scalar quantum field theory on the Schwarzschild
curved background with specific boundary conditions at the event horizon [7]. The temperature
TH is the temperature of the Schwarzschild black hole seen by the distant static observer (at spatial
infinity) for whomg00 = 1. Other static observers sitting at the radiusr, see the black hole apparent
temperatureTapp = TH√

g00(r)
. This apparent temperature does not coincide with their local Rindler

temperatureTloc = κ(r)
2π√g00

what indicates that the static black hole is not in thermal equilibrium
with the surrounding vacuum space-time (i.e., there is no heat bath) and, in fact, evaporates.

At last, let us turn to our model, the classical analog of quantum black hole. The metric (2.16)
for the internal part of the model (r ≤ r0, θ ,φ = const) is already in the Rindler form, if we put
ρ =

√
2r. So, all static observers are in thermal equilibrium, and calculation of the topological

temperature is straightforward. But there is one subtle andimportant point, in our case the horizon
is at zero radius,r = 0, which is at the same time the coordinate singularity of thewhole four-
dimensional space-time, therefore, we are not allowed to confine ourselves to the two-dimensional
(t − r)-section. And after the Whick rotation we have to consider the four-dimensional Euclidean

9
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space-time where, in addition to the periodic timeτ , there are two spherical angles,θ and φ .
The regularity condition requires the period 2π for only one of the angles, all other should have
the periodπ. Since the period 2π is already reserved for the azimuthal angleφ , the topological
temperature in our model equals

Ttop =
1

2πr0
. (5.5)

Remembering now thatr0 = 4Gm0, we get for the classical analog of quantum black hole

TBH =
1

8πGm0
(5.6)

and this is exactly the Hawking temperature!
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