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1. Quantum shells.

In series of papers [1] a quantum mechanics for sphericghynsetric thin dust shells has
been developed. Here we write out only some necessarysesulvas shown that the Wheeler-
DeWitt equation is reduced in this case to the followingistatry Schroedinger equation in finite
differences:
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wherem = mgy: = Myt - the total mass of the systemm, - the Schwarzschild mass insidd, is
the bare mass of the shell= % (R- radius,G - gravitational constantf; = 1— ZGT’“, (= %

w(maMn>S+|Z)+w(mamn>S_|Z) = (mymﬂas)a (11)

(mp) = \/% is the Planckian mass and we use units viith c = k = 1, h - Planck constantg

- speed of lightk - Bolzmann constant). By investigation of wave functionghe vicinity of
singular points (infinities and singularities) and arouhd branching points (apparent horizons)
the following discrete mass spectrum for bound states wasdf@Am = myy; — My ):

200m32—-M2  2mg
MZ—(Am)2Z  Am+my,
M? — (Am)? = 2(14-2p)mpy, (1.2)

wheren andp > 0 are integers. The appearance of two quantum numbersdrateae in conven-
tional quantum mechanics is due to the nontrivial causatsire of the complete Schwarzschild
manifold.

The above spectrum is not universal in the sense that thespamding wave functions form
a two-parameter family,, ,. But for the quantum Schwarzschild black hole we expect a one
parameter family of solutions, because quantum black rstleald not have "no hairs”, otherwise
there will be no smooth classical limit. This means that qaacsrum is not a quantum black hole
spectrum, and corresponding quantum shells do not collgigsean electron in hydrogen atom).
Physically, it is quite understandable, because the iadiatas not included into consideration.
The energy of radiation is also quantized, but, and thislsial, the energies of quanta are not equal
to the level splitting in the shell discrete spectrum, Ebi2). As a result, the quantum gravitational
collapse proceeds via production new shells, thus inargahie inner massy, inside the primary
shell. Such a process can go in many different ways, so, itdggiantum collapse that appears
to be the origin of the black hole nonzero entropy. But howid@uantum collapse be stopped?
The natural limit is the transition from a black hole-likeefiiio a wormhole-like shell by crossing
an Einstein-Rosen bridge, since such a transition req@aekeast in a quasi-classical regime)
insertion of infinitely large volume, which probability isf course, zero. Computer simulations
show that the process of quantum gravitational process stben the principal quantum number
becomes zera) = 0.

The pointn = 0 in our spectrum is very special. In this state the shell da¢sfeel” not only
the outer region (what is natural for the spherically symioebnfiguration), but it does not know
anything about what is going on inside. It "feels" only ifs&uch a situation reminds the "no hair"
property of a classical black hole. Finally, when all thellshéboth the primary one and newly
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produced) are in the corresponding states 0, the whole system does not "remember” its own
history. And it is this "no memory" state that can be calldte"quantum black hole". Note, that
the total masses of all the shells obey the relation

1
Am = —M;. 1.3
\/é | ( )
The subsequent quantum Hawking’s evaporation can prodaesbine collective excitations and
formation, e.g., of a long chain of microscopic semi-clogeulds.

2. Classical analog of quantum black hole.

The final state of quantum gravitational collapse, the quarlack hole, can be viewed as
some stationary matter distribution. Therefore, we mayehibyat for massive enough quantum
black hole such a distribution is described approximatglg blassical static spherically symmetric
perfect fluid with energy densityand pressur@ obeying classical Einstein equations. This is what
we call a classical analog of a quantum black hole. Of courssych a case the corresponding
classical distribution has to be very specific. To study igsmfieatures let us consider the situation
in more details.

Any static spherically symmetric metric can be written ie fbrm

ds? = €’dt? — e dr? — r2(d6? + sir? 6d¢?). (2.1)

Herer is the radius of a sphere with the af®a 47, v = v(r),A = A(r). The Einstein equations
are (prime denotes differentiation tijt
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We see that there are three equations for four unknown fumedf one variable, namely(r), A (r),
g(r) and p(r). But, even we would know an equation of state for our perfedt flp = p(¢), the
closed (formally) system of equations would have too marytems. We need, therefore, some
selection rules in order to single out the classical anafoguantum black hole. Surely, the "no
hair" feature should be the main criterium. Thus, we havedjost our previous definition of the
"no memory" state to the case of a continuum matter distabutor this, let us integrate the first
of Eqns.(2.2):

et =1- m (2.3)

where .
m(r) = 41t /stdF (2.4)

0
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is the mass function that must be identified witlh. Now, the "no memory" principle is readily
formulated as the requirement, tmatr) = ar? [2], i.e.,

e =1-2Ga= const (2.5)

Note, that in static case, the inverse metric coefficierit is an invariant which in the general
spherically symmetric space-time readg\as —e* = g*R; Rk and is nothing more but a squared
normal vector to the surface of constant radi(s ) = R(t, q) = const We can also introduce a bare
mass functiorM(r) (the mass of the system inside a sphere of radiwithout the gravitational
mass defect).

r
" A ar
M(r :4n/£r“e?FF2dF:7. 2.6
() =an | Mt OF = = (2.6)
The remaining two equations (2.2) can now be solvedofoy ande”(r). The general solution is
rather complex, but the correct non-relativistic limit tbe pressure(r) (we are to reproduce the
famous equation for hydrostatic equilibrium) has only tbkofving one-parameter family:

b

p(r) = T (2.7)

where

1
b= (1— 3Ga— I ZGa\/l—4Ga> . (2.8)
We see that the solution exists only oK %, thenb < a. The physical meaning of these inequal-
ities is that the speed of sound cannot exceed the speedhgfg,, = 2 < 1= c?, the equality
being reached just fa=b = %. Finally, for the temporal metric coefficiegsy = €’ we get:

atb

e’ = Coraifﬁ = Cor?®r=a . (2.9)

Thus, demanding the "no memory" feature and existence ofdhect non-relativistic limit, we

obtained the two-parameter family of static solutions. Batneed a one-parameter family, so we
have to continue our search. Let us investigate the obtaipack-time manifolds more thoroughly,
especially in the vicinity of the apparently singular point 0, and calculate the corresponding

curvature (Riemann’s) tensa\‘/‘/\a. The nonzero components are

Rio1 = 2%%; R0z = 2%3(1-2@51); R80s = RoozSin* 6;
b(b—a 2b-a)
Ro10 = chﬁ(l—ZGa)r &b

b 2b-a) .
R3,0 = ZCSm)(l—ZGa)r ab ;. RS,5=2Gasin’0;

b -a
%30 — ZCgm(l— ZGa)r%b_) , Rg32: 2Ga (210)

Evidently, forb < a the Riemann tensor (2.10) is divergent at 0, so, the corresponding space-
times have the real singularity. But,af=b = % we are witnessing a miracle, the (before) diver-
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gent components become zero, and the remaining nonzerequak
1 1
Rooz = —(1-2Ga) = 5 (R(z)zoz §C§> ;
RO 1 15\,
303 = —(1—2(351):—57 R83o:§Co ’
. 1. 1
and the only nonzero component of the Ricci terRgy(= Ri;,) equals to

Roo = C§. (2.12)

Thus, demanding, in addition to the previous two very naneguirements, the third one (also nat-
ural), namely, the absence of the real singularity -at0, we arrive at the following one-parameter
family to the Einstein equations (2.2):

Qoo = €’ =C§r?,
g = —€ =2,
B 1

- 167mGr2’

So, the equation of state of our perfect fluid is the stiffestgible one. The constant of integration
Co can be determined by matching the interior and exterioriosefit some boundary radius= rq.

Let us suppose that far> ro the space-time is empty, so, the interior should be matahelet
Schwarzschild metric, labeled by the mass paranratédf course, to compensate the jump in the
pressureAp (= p(ro) = po) we must include in our model some surface tensiont is easy to
check, that

£—p (2.13)
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Note, that the bare mass = /2m, the relation is exactly the same as for the shell "no memory"
state (1.3), andy = 4Gmy, so, the size of our analog of quantum black hole is twice asdh
classical black hole. But how about the special point in @luat®n, r = 0? It is not a trivial

coordinate singularity, like in a three-dimensional sptadly symmetric case, because
ds’(r=0) = 0. (2.15)

This looks rather like an event horizon. To clear the pointoaasider the radial geodesic motion
in the space-time with the metric

4 = % <rL> dt? — 2dr? — r(d6? + sir? 6d$?). (2.16)
0
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The calculations are very simple, the falling bounded gsizdeare described by the following
functionr(t), orr (1) for the proper time parameter:

1
r(r) = —=\/2r2—1%
( ) \/z 1
t
= V2ritanh—;
T = /2rtan e
r
t) = ——— 2.17

where we putr =1y <rg for T=t =0 (J5(r1) = 3 (r1) = 0). We see that the surface= 0,
indeed, behaves like an event horizon (and, at the same &irKdling horizon). Investigation
of non-radial geodesics shows an infinite spiralling whepragching zero radius surface, thus
confirming its horizon nature. Moreover, the two-dimensiqgueart of the metric (2.16), i.e(t —r)-

surface, is locally flat, what can easily be proven by makimgfollowing coordinate transformation
(t,r) = (n,x): .

2
This resembles the Rindler’s transformation in two-diniemal flat Minkowski space-time.

n=vr sinh%, X = v/2r cosh (2.18)
0

3. Rindler space-time.

The Rindler space-time is obtained by transforming the dimoensional Minkowski space-
time from the ordinary coordinaté#),x) and metricds® = dn? — dx? related to the set of inertial
observers, to the so-called Rindler coordinates and metric

n = ée""f sinhan , x:ige""‘t coshan (x> 0),
—00<t<°°, _oo<E<00,

ds? = &3 (dt? — d&?). (3.1)

Thus, the Rindler space-time is static and locally flat bifieds from the two-dimensional Minkowski
space-time globally, because it covers only one half of @teed and, in addition, possesses the
event horizons aff = £x (t = +0, £ = cons. The Rindler observer§ = constundergo nonzero
constant acceleration. The norm of the acceleration ve¢tequals

a=./|ata,| =ae . (3.2)

Existence of the horizons has a very important consequétice.Unruh showed [3] that the quan-
tum theory of scalar field in the Rindler space-time is, irt,fée finite temperature quantum field
theory, and the value of the Unruh’s temperature is

a

Ty =—.
V7 on

(3.3)

We see, that this temperature is proportional to the acu@er of the Rindler observer sitting
at &€ = 0 with goo = 1. But, all these observers are equivalent (we can always thli spatial
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coordinateé — & — &p). The temperature value is not an invariant but it is a te@jpowmponent
of a heat vector. This means that each observer measuresthé témperature when using its
proper timet (ds= dt). If the same observer uses the local clocks that show thé tmca

t (ds= ,/Goodt), the local temperature measured by him equals

Tu a _ a
Tioc = =¥ 3.4
o VO 21 2m (34)

We know from the university course of thermodynamics (s, £]) that the condition for thermal
equilibrium in static space-times T,¢./Goo = const We can introduce an "apparent temperature”
TappWhich is the local temperature of an observer sitting até,, "seen” by an observer at= ¢;:

goo(2)
Qoo(1)

Then the condition for thermal equilibrium can be formutbéesTioc(&1) = Tapp(€2) for all values

& = &,. Thus, the Rindler observers are in thermal equilibriumhveidch other. And the question
arises: is the Rindler space-time unique in this sense? Jwanit, consider some general two-
dimensional static space-time with a metric

Tapp(f& El) = TIoc(EZ)- (3-5)

ds’ = e'dt?> — dp? = e’dt? — ' df. (3.6)
Note, that in the Rindler case = a%Ieaf,e" = 2—22 = goo. The static observer in the metric (3.6)
undergoes a constant acceleration with the invanaﬁt%]g—;\ = %]3—‘& e %, and the (local) Rindler
parameter(p), which is now called "the surface graviky', equals

dv

dq

1

2

v 1ldv
2

= - |2 |ez
2|dp

e (3.7)

The thermal equilibrium condition requires= const therefore,gog = Cp?, and this proves that
the Rindler space-time is the only one which static obseraes in the mutual thermal equilibrium.

4. Topological temperature.

The fact that an accelerated observer "sees" particleewdving in the empty (vacuum)
Minkowski space-time, was known long ago to quantum fieldtists. The physical reason for
this phenomenon is obvious: particle creation is causedhépame forces that cause the particle
detector’s acceleration. From the quantum field theorytafimiew, the vacuum of an accelerated
observer (=detector) is different from that of an inertiberver. And the empty space of the latter
appeared filled with particles to the first one. Due to Unraliggovery we know that the observer
moving with constant acceleration detects particles widnékian spectrum at the temperature
proportional to the value of this acceleration. But, let aasider the following Gedankenexperi-
ment. Two observers sitting in the rockets and bringingigartietectors with them, are moving
inertially in the two-dimensional Minkowski space-time.t some definite moment they switch
on the engines and start to move with equal constant actielesa Surely, their detectors start to
register particles. Because an amount of fuel in the rodkefisite, our observers will eventu-
ally become inertial again, and let the durations of the@eterated motion are different. Then,
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the number of detected particles will also be different andei Suppose, our observers are well
educated and know about the Unruh effect, so, they are aldenipare the Planckian spectrum
with that obtained by them. Evidently, they will find the detons from the thermal spectrum,
and the longer their accelerations, the smaller will bedtesviations. Thus, the appearance of the
temperature in the Rindler space-time is a global effeat aitteleration should last infinitely both
in the past and in the future.

Thermodynamically this can be understood as follows. Th&texce of the event horizons in
the Rindler space-time prevents receiving any informafiom the remaining part of a manifold.
And the observers can explain this loss of information byibasg a nonzero entropy to the unseen
part of a geodesically complete space-time. And the vergammce of the entropy and the static
character of the Rindler space-time lead us to the notioherial equilibrium and, thus, to the
notion of temperature. Therefore, we see that it is the elierizon that causes the spectrum
of particles detected by the constantly accelerated obsdovbe the Planckian one. And the
global character of the notion of event horizon is reflectethe global character of the Unruh’s
temperature.

It is amazing, but the Rindler temperature can be calcubaidtbut a thorough investigation
of quantum field theory. For this we should make a Whick rotatb the imaginary Rindler time
T = it, then the Euclidean Rindler metric

dI? = a?p?dt? + dp? (4.1)

can be interpreted as that of a locally flat two-dimensiongbge in polar coordinates (the polar an-
gle is proportional ta) provided the imaginary time is periodic, the latter reqmient is quite nat-
ural because in terms of Minkowskian timesuch a transition reads gs= gsinh(iat) = igsinr.
The metric (4.1) describes, in general, the geometry of a eombedded into the three-dimensional
flat space with a conical singularity at= 0. But, if the period ist = %’T the singularity disap-
pears and we obtain the whole plane. In the finite temperdielc theories the temperature is
introduced as the inverse period of the imaginary time, aadee that in our case it is exactly the
Unruh temperature (3.3)! We can call the temperature foaridis way "the topological tempera-
ture", because the geometry in the vicinity of a single (mgwlar) point, determines the properties
of the whole manifold.

5. Black hole temperature with and without black holes.

By the Einstein equivalence principle we can extend all veerled studying Rindler space-
times, to the static gravitational fields, especially to #hatic spherically symmetric manifolds,
because after fixing spherical angsnd ¢ they become, in fact, the two-dimensional surfaces.
Of course, in general these surfaces are curved, the egnoglprinciple holds only locally and,
therefore, static observers sitting at different valuesadfus will "feel" not only different temper-
atures, but by no means they will be in thermal equilibriunthveiach other. Such a temperature is
observer dependent and cannot be considered as an inpnogierty of a given space-time. But,
we saw that the Rindler space-time possesses the evenbmm®mzhat is crucial for ascribing and
entropy and temperature to the manifold itself (or to itd)ypar
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So, we are looking for some examples of spherically symmstdtic manifolds which pos-
sess the event horizons. And, of course, these are the n@h+k Schwarzschild and Reissner-
Nordstrom space-times outside the corresponding bladgksholn both cases the metric can be
written in the form

g — th2—idrz—rz(d82+sin279d¢2),

F_l—ZGTerC?—f (1—%) (1—%), (5.1)

wherem is the massg is the electric charge of Reissner-Nordstrom black hole= Gm=+
VG2m? — G€? are, respectively, positions of the event and Cauchy hesizand fore = 0 the
above relations become the parameters of a Schwarzschit hble. After the Whick rotation to
the imaginary timea the Euclidean two-dimensional surface in the vicinity af #tvent horizom .
is described by the metric

rp—r_)?
d|2 = (Z-T)pzdtz‘i‘dpz,
+
p= \/ﬁw/ur, LTI (5.2)

Thus, the topological temperature of the Reissner-Nardstolack hole is

ry—r_

_ . 5.3
42 (5-3)

Ttop =
This value equal;%, wherekgy is the surface gravity calculated at the black hole everizbor
that enters the first law of thermodynamics for black holg¢$db And the topological temperature
Tiop in the case of Schwarzschild black hole is exactly the fanttawking temperature
1
Ty=—— 5.4
H 8T[Gm7 ( )
obtained by explicit construction of the massless scalantyum field theory on the Schwarzschild
curved background with specific boundary conditions at thenehorizon [7]. The temperature
Ty is the temperature of the Schwarzschild black hole seendgittiant static observer (at spatial
infinity) for whomggp = 1. Other static observers sitting at the radipsee the black hole apparent

temperaturelapp = gT—H(r) This apparent temperature does not coincide with theal IRindler
00

temperaturéelge = 271\(/_ what indicates that the static black hole is not in thermailildagium
with the surrounding vacuum space-time (i.e., there is ra bath) and, in fact, evaporates.

At last, let us turn to our model, the classical analog of quarblack hole. The metric (2.16)
for the internal part of the model K rq, 8, ¢ = cons) is already in the Rindler form, if we put
p =+/2r. So, all static observers are in thermal equilibrium, anduation of the topological
temperature is straightforward. But there is one subtleimpdrtant point, in our case the horizon
is at zero radiust = 0, which is at the same time the coordinate singularity ofvitvele four-
dimensional space-time, therefore, we are not allowed néirn® ourselves to the two-dimensional

(t —r)-section. And after the Whick rotation we have to considerftur-dimensional Euclidean
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space-time where, in addition to the periodic timethere are two spherical angle@,and ¢.
The regularity condition requires the period Br only one of the angles, all other should have
the periodrt. Since the period 2 is already reserved for the azimuthal anglethe topological

temperature in our model equals
1

o (5.5)

Ttop =
Remembering now thay = 4Gy, we get for the classical analog of quantum black hole

1

Toy =
BH 8Gmy

(5.6)

and this is exactly the Hawking temperature!
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