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1. Introduction

Black holes (BHs) in Einstein-Maxwell theory are characterized by three parameters [1]: mass
M, electric chargeQ and angular momentumJ≡ aM 6 M2. BHs are thought to be abundant objects
in the Universe. Their mass is estimated to vary between 3M⊙ and 109.5M⊙ or higher [2], their
electrical charge is negligible because of the effect of surrounding plasma [3] and their angular
momentum is expected to be close to the extremal limit because of accretion and merger events [4].
A non-comprehensive list of some astrophysical BH candidates [2, 5, 6, 7] is shown in Table 1.

Table 1: Mass,M, radius,R, angular momentum,J, and compactness,µ = M/R, for some BH candidates
(from [2, 5, 6, 7])

Candidate Mass(M⊙) Radius (R⊙) J/M2 Compactnessµ = M/R

GRO J1655-40 6.3 (1.6−2.6)×10−5 0.65−0.80 0.47−0.83
XTE J1550-564 10 (2.1−8.4)×10−5 0.90−1.00 0.25−0.99
GRS 1915+105 14 (2.9−9.7)×10−5 0.98−1.00 0.30−0.99

SGR A* 4×106 . 27 0.50−1.00 & 0.31

Despite the wealth of circumstantial evidence, there is no definite observational proof of the
existence of astrophysical BHs due to the difficulty to detect an event horizon in astrophysical BH
candidates [2, 8]. Thus astrophysical objects without event horizon, yet observationally indistin-
guishable from BHs, cannot be excluded a priori. Some of the most viable alternative models
describing an ultra-compact astrophysical object includegravastars, boson stars, wormholes and
superspinars.
Dark energy stars orgravastarsare compact objects with de Sitter interior and Schwarzschild ex-
terior [9]. These two regions are glued together by a model-dependent intermediate region. In
the original model [9] the intermediate region is an ultra-stiff thin shell. Models without shells or
discontinuities have also been investigated [10, 11].
Boson starsare macroscopic quantum states which are prevented from undergoing complete grav-
itational collapse by Heisenberg uncertainty principle [12]. Their models differ in the scalar self-
interaction potential which also set the allowed maximum compactness for a boson star.
An exhaustive description ofwormholescan be found in the monograph [13] (see also Ref. [14]).
In this work we shall consider particular wormholes which are infinitesimal variations of BH space-
times. These wormholes may be indistinguishable from ordinary BHs [15].
Superspinarsare solutions of the gravitational field equations that violate the Kerr bound. These
geometries could be created by high energy corrections to Einstein gravity such as those present in
string-inspired models [16].

The objects described above can be almost as compact as a BH and thus they are virtually
indistinguishable from BHs in the Newtonian regime, hence the name “BH mimickers”. Although
exotic these objects provide viable alternatives to astrophysical BHs. BH mimickers being hori-
zonless, no information loss paradox [17] arises in these spacetimes. Moreover they can be regular
at the origin, avoiding the problem of singularities. By Birkhoff’s theorem, the vacuum exterior
of a spherically symmetric object is described by the Schwarzschild spacetime. Thus the motion
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of orbiting objects both around a static BH and around a static ultra-compact object is the same
and it makes virtually impossible to discern between a Schwarzschild BH and a static neutral BH
mimicker. Instead for rotating objects deviations in the properties of orbiting objects occur. Since
BH mimickers are very compact these deviations occur close to the horizon and are not easily
detectable electromagnetically. To ascertain the true nature of ultra-compact objects it is thus im-
portant to devise observational tests to distinguish rotating BH mimickers from ordinary Kerr BHs.
The traditional way to distinguish a BH from a neutron star isto measure its mass. If the latter
is larger than the Chandrasekhar limit, the object is believed to be a BH. However, this method
cannot be used for the BH mimickers discussed above, becauseof their broad mass spectrum. The
main difference between a BH and a BH mimicker is the presenceof an event horizon in the for-
mer. Some indirect experimental methods to detect the eventhorizon has been proposed [18, 19].
Another very promising observational method to probe the structure of ultra-compact objects is
gravitational wave astronomy. From the gravitational waveform it is expected to detect the pres-
ence of an event horizon in the source [20]. Some other BH mimickers (for example electrically
charged quasi-BHs [21]) are already ruled out by experiments. Moreover there are evidences that
some model for BH mimickers is plagued by a singular behaviorin the near-horizon limit [22].

Here, we describe a method originally proposed in [23, 24] for discriminating rotating BH
mimickers from ordinary BHs. This method uses the fact that compact rotating objects without
event horizon are unstable when an ergoregion is present. This ergoregion instabilityappears in
any system with ergoregions and no horizons [25]. The originof this instability can be traced back
to superradiant scattering. In a scattering process, superradiance occurs when scattered waves have
amplitudes larger than incident waves. This leads to extraction of energy from the scattering body
[26, 27, 28]. Instability may arise whenever this process isallowed to repeat itself ad infinitum.
This happens, for example, when a BH is surrounded by a “mirror” that scatters the superradiant
wave back to the horizon, amplifying it at each scattering, as in theBH bombprocess [29, 30]. If
the mirror is inside the ergoregion, superradiance may leadto an inverted BH bomb. Some super-
radiant waves escape to infinity carrying positive energy, causing the energy inside the ergoregion
to decrease and eventually generating an instability. Thismay occur for any rotating star with an
ergoregion: the mirror can be either its surface or, for a star made of matter non-interacting with
the wave, its center. On the other hand BHs could be stable dueto the absorption by the event hori-
zon being larger than superradiant amplification. Indeed Kerr BHs are stable aganist small scalar,
electromagnetic and gravitational perturbations [31].

Rapidly rotating stars do possess an ergoregion and thus they are unstable. However typi-
cal instability timescales are shown to be larger than the Hubble time [32]. Thus the ergoregion
instability is too weak to produce any effect on the evolution of stars. This conclusion changes
drastically for BH mimickers due to their compactness [23, 24]. For some of the rotating BH mim-
ickers described above, instability timescales range between∼ 10−5s and∼ weeks depending on
the object, its mass and its angular momentum.

This paper is organized as follows. In Section 2 we deal with gravastars and boson stars.
We describe rotating models for these objects and discuss their instability timescale. In Section
3 a toy model for both rotating wormholes and superspinars ispresented. Section 4 contains a
brief discussion of the results and concludes the paper. Throughout the paper geometrized units
(G = c = 1) are used, except during the discussion of results for rotating boson stars when we set
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the Newton constant to beG = 0.05/(4π) as in Ref. [33].

2. Gravastars and boson stars

This section discusses the main properties of gravastars and boson stars as well as the method
to compute the ergoregion instability for these objects. For a more detailed discussion see [23].

2.1 Nonrotating Gravastars

Although exact solutions for spinning gravastars are not known, they can be studied in the
limit of slow rotation by perturbing the nonrotating solutions [34]. This procedure was used in
Ref. [35] to study the existence of ergoregions for ordinaryrotating stars with uniform density. In
the following, we omit the discussion for the original thin-shell model by Mazur and Mottola [9]
and we focus on the anisotropic fluid model by Chirenti and Rezzolla [10, 11].

The model assumes a thick shell with continuous profile of anisotropic pressure to avoid the
introduction of an infinitesimally thin shell. The stress-energy tensor isTµ

ν = diag[−ρ , pr , pt , pt ],
where pr and pt are the radial and tangential pressures, respectively. Thespherical symmetric
metric is

ds2 = − f (r)dt2 +B(r)dr2 + r2dΩ2
2 (2.1)

and it consists of three regions: an interior (r < r1) described by a de Sitter metric, an exterior
(r > r2) described by the Schwarzschild metric and a model-dependent intermediate (r1 < r < r2)
region. In the following we shall indicate withδ = r2− r1 the thickness of the intermediate region
and withµ = M/r2 the compactness of the gravastar. In the model by Chirenti and Rezzolla the
density function is

ρ(r) =











ρ0 , 0≤ r ≤ r1 interior
ar3 +br2 +cr +d , r1 < r < r2 intermediate
0, r2 ≤ r exterior

wherea, b, c andd are found imposing continuity conditionsρ(0) = ρ(r1) = ρ0, ρ(r2) = ρ ′(r1) =

ρ ′(r2) = 0 andρ0 is found fixing the total mass, M. The metric coefficients are

f =

(

1− 2M
r2

)

eΓ(r)−Γ(r2) ,
1
B

= 1− 2m(r)
r

, (2.2)

where

m(r) =

∫ r

0
4πr2ρdr , Γ(r) =

∫ r

0

2m(r)+8πr3pr

r(r −2m(r))
dr . (2.3)

The above equations and some closure relation,pr = pr(ρ), completely determine the structure of
the gravastar [10]. The behaviors of the metric coefficientsfor a typical gravastar are shown in
Fig. 1.
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Figure 1: Metric coefficients for the anisotropic pressure model (r2 = 2.2, r1 = 1.8 andM = 1).

2.1.1 Slowly rotating gravastars and ergoregions

Slowly rotating solutions can be obtained using the method developed in Ref. [34]. A rota-
tion of orderΩ gives corrections of orderΩ2 in the diagonal coefficients of the metric (2.1) and
introduces a non-diagonal term of orderΩ, gtφ ≡−ωgφφ , whereφ is the azimuthal coordinate and
ω = ω(r) is the angular velocity of frame dragging. The full metric is

ds2 = − f (r)dt2 +B(r)dr2 + r2dθ2 + r2sin2θ (dφ −ω(r)dt)2 . (2.4)

If the gravastar rotates rigidly, i.e.Ω = constant, from the(t,φ) component of Einstein equations
we find a differential equation forω(r) [23]

ω ′′ + ω ′
(

4
r

+
j ′

j

)

= 16πB(r)(ω −Ω)(ρ + pt) , (2.5)

where j ≡ ( f B)−1/2 is evaluated at zeroth order andρ , pt are given in terms of the nonrotating
geometry. The above equation reduces to the corresponding equation for isotropic fluids [34].
Solutions of Eq. (2.5) describe rotating gravastars to firstorder inΩ.

The ergoregion can be found by computing the surface on whichgtt vanishes [35]. An approx-
imated relation for the location of the ergoregion in very compact gravastars is

0 = − f (r)+ ω2r2 sin2θ . (2.6)

The existence and the boundaries of the ergoregions can be computed from the above equations.
We integrate equation (2.5) from the origin with initial conditions (Ω − ω)′ = 0 and (Ω − ω)

finite. The exterior solution satisfiesω = 2J/r3, whereJ is the angular momentum of the gravastar.
Demanding the continuity of both(Ω−ω)′ and(Ω−ω), Ω andJ are uniquely determined. The
rotation parameterΩ depends on the initial condition at the origin. Figure 2 shows the results the
gravastar model described in the previous sections. The ergoregion can be located by drawing an
horizontal line at the desired value ofJ/M2. The minimum of the curve is the minimum values of
J/M2 which are required for the existence of the ergoregion. Comparison with the results for stars

5



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
2
7

Ergoregion instability of black hole mimickers Paolo Pani

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

 

r/r2

J/M2

5M

Figure 2: J/M2 and angular frequencyΩ for the anisotropic pressure model withr2 = 2.2, r1 = 1.8 and
M = 1.

of uniform density [35], shows that ergoregions form more easily around gravastars due to their
higher compactness. The slow-rotation approximation is considered valid forΩ/ΩK < 1 where
MΩK = µ3/2 is the Keplerian frequency.
Depending on the compactness,µ , the angular momentum,J, and the thickness,δ , a spinning
gravastar does or does not develop an ergoregion. The formation of an ergoregion for rotating
gravastar is exhaustively discussed in the whole parameters space in Ref. [36]. A delicate issue
is the strong dependence on the thickness,δ , which cannot be directly measured by experiments.
Figure 3 shows how the ergoregion width is sensitive toδ .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

∆�M

Figure 3: Ergoregion width (in units of M) as function of the thickness, δ = r2− r1, for r2 = 2.3,M = 1 and
for differentJ values. From top to bottom:J/M2 = 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65 and 0.60. The
ergoregion width decreases asδ → 0.
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2.2 Rotating boson stars

A example of rotating boson star is the model by Kleihaus, Kunz, List and Schaffer (KKLS)
[33]. The KKLS solution is based on the Lagrangian for a self-interacting complex scalar field

LKKLS = −1
2

gµν (

Φ∗
,µ Φ,ν + Φ∗

,ν Φ,µ
)

−U(|Φ|) , (2.7)

whereU(|Φ|) = λ |Φ|2(|Φ|4 − a|Φ|2 + b). The mass of the boson is given bymB =
√

λb. The
ansatz for the axisymmetric spacetime is

ds2 = − f dt2 +
k
f

[

g
(

dr2 + r2 dθ2)+ r2 sin2θ (dϕ −ζ (r)dt)2
]

(2.8)

andΦ = φ eiωst+inϕ , where the metric components and the real functionφ depend only onr and
θ . The requirement thatΦ is single-valued impliesn = 0,±1,±2, . . . . The solution has spherical
symmetry forn= 0 and axial symmetry otherwise. Since the Lagrangian density is invariant under
a globalU(1) transformation, the current,jµ = −iΦ∗∂ µΦ+c.c., is conserved and it is associated
to a chargeQ, satisfying the quantization condition with the angular momentumJ = nQ [37]. The
numerical procedure to extract the metric and the scalar field is described in Ref. [33]. Throughout
the paper we will consider solutions withn = 2, b = 1.1, λ = 1.0, a = 2.0 and different values
of (J ,M) corresponding toJ/(GM2) ∼ 0.566, 0.731 and 0.858. In Fig. 4 the metric functions
for a boson star along the equatorial plane are shown. By computing the coefficientgtt one can
prove that boson stars develop ergoregions deeply inside the star. For this particular choice of
parameters, the ergoregion extends fromr/(GM) ∼ 0.0471 to 0.770. A more complete discussion
on the ergoregions of rotating boson stars can be found in Ref. [33].

0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

 

 

r/(GM)

g(r)

l(r)

f(r) (r)

0.01 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0
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r/(GM)

f/f

g/g

l/l

/

Figure 4: Left panel: Metric coefficients for a rotating boson star along the equatorial plane, with parameters
n = 2, b = 1.1, λ = 1.0, a = 2.0, J/(GM2) ∼ 0.566. Right panel: Fractional difference of the metric
potentials betweenθ = π/2 andθ = π/4 for the same star.
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2.3 Ergoregion instability for rotating gravastars and boson stars

The stability of gravastars and boson stars can be studied perturbatively by considering small devi-
ations around equilibrium. Due to the difficulty of handlinggravitational perturbations for rotating
objects, the calculations below are mostly restricted to scalar perturbations. However the equation
for axial gravitational perturbations of gravastars is identical to the equation for scalar perturba-
tions in the largel = m limit [23]. There are also generic arguments suggesting that the timescale
of gravitational perturbations is smaller than the timescale of scalar perturbations for lowm [38].
Thus, scalar perturbations should provide a lower bound on the strength of the instability.

2.3.1 Scalar field instability for slowly rotating gravastars: WKB approach

Consider now a minimally coupled scalar field in the background of a gravastar. The metric of
gravastars is given by Eq. (2.4). In the largel = m limit, which is appropriate for a WKB analysis
[32, 39], the scalar field can be expanded as

Φ = ∑
lm

χ̄lm(r)exp

[

−1
2

∫

(

2
r

+
f ′

2 f
+

B′

2B

)

dr

]

e−iωtYlm(θ ,φ) . (2.9)

The functionsχ̄lm are determined by the Klein-Gordon equation which, dropping terms of order
O

(

1/m2
)

, yields
χ̄ ′′

lm +m2T(r ,Σ)χ̄lm = 0, (2.10)

whereΣ ≡−ω/m and

T =
B(r)
f (r)

(Σ−V+) (Σ−V−) , V± = −ω ±
√

f (r)

r
. (2.11)

Equation (2.10) can be shown to be identical for the axial gravitational perturbations of perfect
fluid stars [24].

The WKB method [32] for computing the eigenfrequencies of Eq. (2.10) is in excellent agree-
ment with full numerical results [39]. The quasi-bound unstable modes are determined by

m
∫ rb

ra

√

T(r)dr =
π
2

+nπ , n = 0,1,2, . . . (2.12)

and have an instability timescale

τ = 4exp

[

2m
∫ rc

rb

√

|T|dr

]

∫ rb

ra

d
dΣ

√
Tdr, (2.13)

wherera, rb are solutions ofV+ = Σ andrc is determined by the conditionV− = Σ.
Table 2 shows the WKB results for the anisotropic pressure model for different values of

J/M2. Although the WKB approximation breaks down at lowm values, these results still provide
reliable estimates [32]. This claim has be verified with a full numerical integration of the Klein-
Gordon equation. The results show that the instability timescale decreases as the star becomes
more compact. Larger values ofJ/M2 make the star more unstable. The maximum growth time
of the instability can be of the order of a few thousandM, but it crucially depends onJ, µ andδ
[36]. For a large range of parameters this instability is crucial for the star evolution. Gravitational

8
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perturbations are expected to be more unstable. Moreover itis worth to notice that the slowly rotat-
ing approximation allows only forµ < 0.5, while for rotating BHs 0.5 < µ < 1 (see Table 1). The
ergoregion instability being monotonically increasing with µ , we expect that instability timescales
for realistic gravastars should be much shorter than the ones computed. For most of the BH mim-
ickers models to be viable we requireJ/M2 ∼ 1 andµ ∼ 1. It would be interesting to study whether
the ergoregion instability is or is not always effective in this case. Possible future developments
include: (i) a full rotating gravastar model, which allows for µ > 0.5; (ii) the stability analysis
against gravitational perturbations for rotating gravastars; (iii) a gravavastar model which is not
strongly dependent on the thickness,δ .

The ergoregion instability of a rotating boson star is straightforwardly computed following the
method described above for spinning gravastars. We refer the reader to [23] and we only summarize
the results in Table 3. The maximum growth time for this bosonstar model is of the order of 106M
for J/GM2 = 0.857658. Thus the instability seems to be truly effective forrotating boson stars.

Table 2: WKB results for the instability of rotating gravastars withr2 = 2.2, r1 = 1.8 andM = 1.

τ/M

J/M2 = 0.40 J/M2 = 0.60 J/M2 = 0.80 J/M2 = 0.90 J/M2 = 1.0
m Ω/ΩK = 0.33 Ω/ΩK = 0.49 Ω/ΩK = 0.65 Ω/ΩK = 0.74 Ω/ΩK = 0.82
1 1.33×107 2.78×104 5.99×103 3.58×103 2.34×103

2 8.25×107 1.14×106 1.11×105 4.81×104 2.33×104

3 1.31×1010 5.65×107 2.25×106 6.82×105 2.45×105

4 2.50×1012 2.95×109 4.81×107 1.02×107 2.73×106

5 5.06×1014 1.59×1011 1.02×109 1.52×108 3.07×107

Table 3: Instability for rotating boson stars with parametersn = 2, b = 1.1, λ = 1.0, a = 2.0 and different
values ofJ (from [23]). The Newton constant is defined as 4πG= 0.05.

τ/(GM)

m J/GM2 = 0.566139 J/GM2 = 0.730677 J/GM2 = 0.857658
1 8.847×102 6.303×103 −
2 7.057×103 5.839×104 1.478×106

3 6.274×104 9.274.×105 2.815×108

4 5.824×105 1.603×107 2.815×1010

5 5.554×106 2.915×108 1.717×1012

3. A toy model for Kerr-like objects

This section discusses Kerr-like objects such as particular solutions of rotating wormholes and su-
perspinars. A rigorous analysis of the ergoregion instability for these models is a non-trivial task.

9
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Indeed known wormhole solutions are special non-vacuum solutions of the gravitational field equa-
tions, thus their investigation requires a case-by-case analysis of the stress-energy tensor. Moreover
exact solutions of four-dimensional superspinars are not known. To overcome these difficulties, the
following analysis will focus on a simple model which captures the essential features of most Kerr-
like horizonless ultra-compact objects. Superspinars androtating wormholes will be modeled by
the exterior Kerr metric down to their surface, where mirror-like boundary conditions are imposed.
This problem is very similar to Press and Teukolsky’s “BH bomb” [29, 30], i.e. a rotating BH sur-
rounded by a perfectly reflecting mirror with its horizon replaced by a reflecting surface. For a
more detailed discussion see [24].

3.0.2 Superspinars and Kerr-like wormholes

A superspinar of massM and angular momentumJ = aM can be modeled by the Kerr geom-
etry [16]

ds2
Kerr =−

(

1− 2Mr
Σ

)

dt2+
Σ
∆

dr2+

[

(r2 +a2)

sin2 θ
+

2Mr
Σ

a2
]

sin4θdφ2− 4Mr
Σ

asin2θdφdt+Σdθ2 ,

(3.1)
whereΣ = r2+a2cos2θ and∆ = r2+a2−2Mr. Unlike Kerr BHs, superspinars havea> M and no
horizon. Since the domain of interest is−∞ < r < +∞, the space-time possesses naked singularities
and closed timelike curves in regions wheregφφ < 0 [40]. High energy modifications (i.e. stringy
corrections) in the vicinity of the singularity are also expected.

Kerr-like wormholes are described by metrics of the form

ds2
wormhole= ds2

Kerr + δgabdxadxb , (3.2)

whereδgab is infinitesimal. In general, Eq. (3.2) describes an horizonless object with a excision
at some small distance of orderε from the would-be horizon [15]. Wormholes require exotic
matter and/or divergent stress tensors, thus some ultra-stiff matter is assumed close to the would-be
horizon. In the following, both superspinars and wormholeswill be modeled by the Kerr metric
with a rigid “wall” at finite Boyer-Lindquist radiusr0, which excludes the pathological region.

3.1 Instability analysis

If the background geometry of superspinars and wormholes issufficiently close to the Kerr
geometry, its perturbations is determined by the equationsof perturbed Kerr BHs [24]. Thus the
instability of superspinars and wormholes is studied by considering Kerr geometries with arbitrary
rotation parametera and a “mirror” at some Boyer-Lindquist radiusr0. Using the Kinnersley tetrad
and Boyer-Lindquist coordinates, it is possible to separate the angular variables from the radial
ones, decoupling all quantities. Small perturbations of a spin-s field are reduced to the radial and
angular master equations [41]

∆−s d
dr

(

∆s+1dRlm

dr

)

+

[

K2−2is(r −M)K
∆

+4isωr −λ
]

Rlm = 0, (3.3)

[

(1−x2)sSlm,x
]

,x +

[

(aωx)2−2aωsx+s+ sAlm− (m+sx)2

1−x2

]

sSlm = 0, (3.4)
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wherex≡ cosθ , ∆ = r2−2Mr + a2 andK = (r2 + a2)ω −am. Scalar, electromagnetic and grav-
itational perturbations correspond tos= 0, ±1, ±2 respectively. The separation constantsλ and

sAlm are related byλ ≡ sAlm +a2ω2−2amω .

3.1.1 Analytic results
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(

)
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l=m=4

0.0002 0.0004 0.0006 0.0008 0.0010
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0.07

 

 

 R
e(

)-m
/m
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l=m=3

l=m=4

a=0.998M, s=2

Figure 5: Imaginary and real parts of the characteristic gravitational frequencies for an object witha =

0.998M, according to the analytic calculation for rapidly-spinning objects. The mirror location is atr0 =

(1+ε)r+. The real part is approximately constant and close tomΩ, in agreement with the assumptions used
in the analytic approach.

Following Starobinsky [27], equations (3.3)-(3.4) can be analytically solved in the slowly-
rotating and low-frequency regime,ωM ≪ 1, and in the rapidly-spinning regime, wherer+ ∼ r−
andω ∼ mΩh, whereΩh ≡ a/(2Mr+) is the angular velocity at the horizon. The details of the
analytic approximation are described in Ref. [24]. Analytic solutions for a star witha = 0.998M
are shown in Fig. 5 where gravitational perturbations are considered. The instability timescale for
gravitational perturbations is about five orders of magnitude smaller than the instability timescale
for scalar perturbations.

3.2 Instability analysis: numerical results

The oscillation frequencies of the modes can be found from the canonical form of Eq. (3.3)

d2Y
dr2∗

+VY = 0, (3.5)

where

Y = ∆s/2(r2 +a2)1/2R, V =
K2−2is(r −M)K + ∆(4irωs−λ )

(r2 +a2)2 −G2− dG
dr∗

, (3.6)

andK = (r2 + a2)ω −am, G = s(r −M)/(r2 + a2)+ r∆(r2 + a2)−2. The separation constantλ is
related to the eigenvalues of the angular equation byλ ≡ sAlm + a2ω2−2amω . The eigenvalues

sAlm are expanded in power series ofaω as [42]

sAlm = ∑
k=0

f (k)
slm(aω)k . (3.7)
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Terms up to order(aω)2 are included in the calculation. Absence of ingoing waves atinfinity
implies

Y ∼ r−seiωr∗ . (3.8)

Numerical results are obtained by integrating Eq. (3.5) inward from a large distancer∞. The inte-
gration is performed with the Runge-Kutta method with fixedω starting atMr∞ = 400, where the
asymptotic behavior (3.8) is imposed. (Choosing a different initial point does not affect the final
results.) The numerical integration is stopped at the radius of the mirrorr0, where the value of the
fieldY(ω , r0) is extracted. The integration is repeated for different values ofω until Y(ω , r0) = 0 is
obtained with the desired precision. IfY(ω , r0) vanishes, the field satisfies the boundary condition
for perfect reflection andω = ω0 is the oscillation frequency of the mode.

3.2.1 Objects witha < M

The regimea < M requires a surface or mirror atr0 = r+(1+ ε) > r+. Thus the compactness
is M/r0 ∼ (1− ε)M/r+ and, in the limitε → 0, it is infinitesimally close to the compactness
of a Kerr BH. Numerical results for scalar and gravitationalperturbations of objects witha < M
are summarized in Table 4 and are in agreement with the analytic results [24]. The instability
is weaker for largerm. This result holds also forl 6= m ands = 0, ±1 and±2. The minimum
instability timescale is of orderτ ∼ 105M for a wide range of mirror locations. Figure 6 shows the
results for gravitational perturbations. Instability timescales are of the order ofτ ∼ 2÷6M. Thus
gravitational perturbations lead to an instability about five orders of magnitude stronger than the
instability due to scalar perturbations (see Table 4). Figure 6 shows that the ergoregion instability
remains relevant even for values of the angular momentum as low asa = 0.6M.

Table 4: Characteristic frequencies and instability timescales for a Kerr-like object witha = 0.998M. The
mirror is located atε = 0.1, corresponding to the compactnessµ ∼ 0.9µKerr.

(Re(ω)M , Im(ω)M)

l = m s= 0 s= 2
1 (0.1120,0.6244×10−5) −
2 (0.4440,0.5373×10−5) (0.4342,0.2900)
3 (0.7902,0.1928×10−5) (0.7803,0.2977)
4 (1.1436,0.5927×10−6) (1.1336,0.3035)

3.2.2 Objects witha > M

Objects witha > M could potentially describe superspinars. Several arguments suggest that
objects rotating above the Kerr bound are unstable. Firstly, extremal Kerr BHs are marginally
stable. Thus the addition of extra rotation should lead to instability. Secondly, fast-spinning objects
usually take a pancake-like form [43] and are subject to the Gregory-Laflamme instability [44, 45].
Finally, Kerr-like geometries, like naked singularities,seem to be unstable against a certain class
of gravitational perturbations [46, 47] called algebraically special perturbations [40]. For objects
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Figure 6: Details of the instability for gravitational perturbations, for differentl = m modes anda/M =

0.998 (top panels) and forl = m= 2 and differenta/M < 1.

with a> M the surface or mirror can be placed anywhere outsider = 0. In general the instability is
as strong as in thea < M regime. An example in shown in Fig. 7 for the surface atr0/M = 0.001.
This result confirms other investigations suggesting that ultra-compact objects rotating above the
Kerr bound are unstable [48].

4. Conclusion

We investigated the ergoregion instability of some ultra-compact, horizonless objects which
can mimick the spacetime of a rotating black hole. We studiedsome of the most viable BH mim-
ickers: gravastars, boson stars, wormhole and superspinars.

If rotating, boson stars and gravastars may develop ergoregion instabilities. Analytical and
numerical results indicate that these objects are unstableagainst scalar field perturbations for a large
range of the parameters. Slowly rotating gravastars can develop an ergoregion depending on their
angular momentum, their compactness and the thickness of their intermediate region. In a recent
work [36] it has pointed out that slowly rotating gravastarsmay not develop an ergoregion. In the
formation of the ergoregion for rotating gravastars an important role is played by the thickness (see
Figure 3) which is not easily detectable. Thus further investigations are needed to better understand
the ergoregion formation in physical resonable gravastar models.

The instability timescale for both boson stars and gravastars can be many orders of magnitude
stronger than the instability timescale for ordinary starswith uniform density. In the largel = m
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Figure 7: The fundamentall = m= 2,3,4 modes of an object spinning above the Kerr bound as functionof
rotation. The surface is located atr0/M = 0.001.

approximation, suitable for a WKB treatment, gravitational and scalar perturbations have similar
instability timescales. In the low-m regime gravitational perturbations are expected to have even
shorter instability timescales than scalar perturbations. Instability timescales can be as low as
∼ 0.1 seconds for aM = 1M⊙ objects and about a week for supermassive BHs,M = 106M⊙,
monotonically decreasing for larger rotations and a largercompactness.

The essential features of wormholes and superspinars have been captured by a simple model
whose physical properties are largely independent from thedynamical details of the gravitational
system. Numerical and analytic results show that the ergoregion instability of these objects is
extremely strong for any value of their angular momentum, with timescales of order 10−5 seconds
for a 1M⊙ object and 10 seconds for aM = 106M⊙ object. Therefore, high rotation is an indirect
evidence for horizons.

Although further studies are needed, the above investigation suggests that exotic objects with-
out event horizon are likely to be ruled out as viable candidates for astrophysical ultra-compact
objects. This strengthens the role of BHs as candidates for astrophysical observations of rapidly
spinning compact objects.
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