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1. Introduction

Black holes (BHs) in Einstein-Maxwell theory are charaietst by three parameters [1]: mass
M, electric charg® and angular momentut= aM < M?. BHs are thought to be abundant objects
in the Universe. Their mass is estimated to vary betwddn and 16°°M., or higher [2], their
electrical charge is negligible because of the effect ofasurding plasma [3] and their angular
momentum is expected to be close to the extremal limit becataccretion and merger events [4].
A non-comprehensive list of some astrophysical BH candglf2, 5, 6, 7] is shown in Table 1.

Table 1: Mass,M, radius,R, angular momenturd, and compactnesg, = M/R, for some BH candidates
(from[2, 5, 6, 7])

Candidate Mass(M.) Radius (R-) J/M? Compactnessu = M/R
GRO J1655-40 3 (16—2.6)x 10> 0.65—0.80 047-0.83
XTE J1550-564 10 (21-84)x10> 0.90—1.00 025-0.99
GRS 1915+105 14 (29-9.7)x 10> 0.98—1.00 030-0.99
SGR A* 4x10° <27 050-1.00 >0.31

Despite the wealth of circumstantial evidence, there iseafinde observational proof of the
existence of astrophysical BHs due to the difficulty to dietecevent horizon in astrophysical BH
candidates [2, 8]. Thus astrophysical objects without elierizon, yet observationally indistin-
guishable from BHs, cannot be excluded a priori. Some of thstmiable alternative models
describing an ultra-compact astrophysical object inclgdevastars, boson stars, wormholes and
superspinars.

Dark energy stars agyravastarsare compact objects with de Sitter interior and Schwarsex-
terior [9]. These two regions are glued together by a modekddent intermediate region. In
the original model [9] the intermediate region is an ulti#-gin shell. Models without shells or
discontinuities have also been investigated [10, 11].

Boson starsare macroscopic quantum states which are prevented froergmwidg complete grav-
itational collapse by Heisenberg uncertainty principl2][1Their models differ in the scalar self-
interaction potential which also set the allowed maximummpactness for a boson star.

An exhaustive description aformholescan be found in the monograph [13] (see also Ref. [14]).
In this work we shall consider particular wormholes whicé @finitesimal variations of BH space-
times. These wormholes may be indistinguishable from argiBHs [15].

Superspinarsare solutions of the gravitational field equations thatatelthe Kerr bound. These
geometries could be created by high energy correctionsrsté&n gravity such as those present in
string-inspired models [16].

The objects described above can be almost as compact as adBtHumnthey are virtually
indistinguishable from BHs in the Newtonian regime, hereertame “BH mimickers”. Although
exotic these objects provide viable alternatives to akysical BHs. BH mimickers being hori-
zonless, no information loss paradox [17] arises in theaeedpmes. Moreover they can be regular
at the origin, avoiding the problem of singularities. By IBioff's theorem, the vacuum exterior
of a spherically symmetric object is described by the Scheerild spacetime. Thus the motion
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of orbiting objects both around a static BH and around acstdtra-compact object is the same
and it makes virtually impossible to discern between a Schsehild BH and a static neutral BH
mimicker. Instead for rotating objects deviations in thegarties of orbiting objects occur. Since
BH mimickers are very compact these deviations occur closihg horizon and are not easily
detectable electromagnetically. To ascertain the truereaif ultra-compact objects it is thus im-
portant to devise observational tests to distinguish ir@a@H mimickers from ordinary Kerr BHs.
The traditional way to distinguish a BH from a neutron statoisneasure its mass. If the latter
is larger than the Chandrasekhar limit, the object is betieto be a BH. However, this method
cannot be used for the BH mimickers discussed above, becatiseir broad mass spectrum. The
main difference between a BH and a BH mimicker is the presehe@ event horizon in the for-
mer. Some indirect experimental methods to detect the dnariton has been proposed [18, 19].
Another very promising observational method to probe thectire of ultra-compact objects is
gravitational wave astronomy. From the gravitational varm it is expected to detect the pres-
ence of an event horizon in the source [20]. Some other BH akiens (for example electrically
charged quasi-BHs [21]) are already ruled out by experimeMioreover there are evidences that
some model for BH mimickers is plagued by a singular behawitihe near-horizon limit [22].

Here, we describe a method originally proposed in [23, 24]discriminating rotating BH
mimickers from ordinary BHs. This method uses the fact tlahgact rotating objects without
event horizon are unstable when an ergoregion is preseris. efdoregion instabilityappears in
any system with ergoregions and no horizons [25]. The oofihis instability can be traced back
to superradiant scattering. In a scattering process, mgiance occurs when scattered waves have
amplitudes larger than incident waves. This leads to etitraof energy from the scattering body
[26, 27, 28]. Instability may arise whenever this procesalliewed to repeat itself ad infinitum.
This happens, for example, when a BH is surrounded by a “mithat scatters the superradiant
wave back to the horizon, amplifying it at each scatterirginatheBH bombprocess [29, 30]. If
the mirror is inside the ergoregion, superradiance may teaah inverted BH bomb. Some super-
radiant waves escape to infinity carrying positive energusing the energy inside the ergoregion
to decrease and eventually generating an instability. if@g occur for any rotating star with an
ergoregion: the mirror can be either its surface or, for amstade of matter non-interacting with
the wave, its center. On the other hand BHs could be stabléodbe absorption by the event hori-
zon being larger than superradiant amplification. Indeed RBEls are stable aganist small scalar,
electromagnetic and gravitational perturbations [31].

Rapidly rotating stars do possess an ergoregion and thysatieeunstable. However typi-
cal instability timescales are shown to be larger than thbliutime [32]. Thus the ergoregion
instability is too weak to produce any effect on the evolutaf stars. This conclusion changes
drastically for BH mimickers due to their compactness [28, For some of the rotating BH mim-
ickers described above, instability timescales range éetw 10~°s and~ weeks depending on
the object, its mass and its angular momentum.

This paper is organized as follows. In Section 2 we deal withvgstars and boson stars.
We describe rotating models for these objects and discessittstability timescale. In Section
3 a toy model for both rotating wormholes and superspinafgrésented. Section 4 contains a
brief discussion of the results and concludes the paperoutiimout the paper geometrized units
(G=c=1) are used, except during the discussion of results fotingtdhoson stars when we set
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the Newton constant to i@ = 0.05/(4m) as in Ref. [33].

2. Gravastars and boson stars

This section discusses the main properties of gravastdrb@son stars as well as the method
to compute the ergoregion instability for these objects.&Hmore detailed discussion see [23].

2.1 Nonrotating Gravastars

Although exact solutions for spinning gravastars are nawkm they can be studied in the
limit of slow rotation by perturbing the nonrotating sotuts [34]. This procedure was used in
Ref. [35] to study the existence of ergoregions for ordinaating stars with uniform density. In
the following, we omit the discussion for the original ttéhell model by Mazur and Mottola [9]
and we focus on the anisotropic fluid model by Chirenti andzeka [10, 11].

The model assumes a thick shell with continuous profile a@tropic pressure to avoid the
introduction of an infinitesimally thin shell. The stregseegy tensor ig#, = diag—p, pr, pt, Pt}
where p; and p; are the radial and tangential pressures, respectively. spherical symmetric
metric is

dg* = —f(r)dt®> + B(r)dr® + r2dQ3 (2.1)

and it consists of three regions: an interior<( r;) described by a de Sitter metric, an exterior
(r > r,) described by the Schwarzschild metric and a model-depenidirmediaterg < r < ry)
region. In the following we shall indicate with = r, —r1 the thickness of the intermediate region
and withu = M /r, the compactness of the gravastar. In the model by ChiredtRezzolla the
density function is

Po, 0<r<n interior
p(r)=< ar*+br’+cr+d, ri<r<r, intermediate
0, ro<r exterior

wherea, b, c andd are found imposing continuity conditiomg0) = p(r1) = po, p(r2) = p'(r1) =
p'(r2) = 0 andpy is found fixing the total mass, M. The metric coefficients are

(1M gyrey 14 2m(n)
_<1 r2>er Fira) s=1-—"—, (2.2)
where
r r 3
m(r):/0 4mr?pdr, F(r):/0 %dr. (2.3)

The above equations and some closure relafpg; pr(p), completely determine the structure of
the gravastar [10]. The behaviors of the metric coefficidotsa typical gravastar are shown in
Fig. 1.
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Figure 1: Metric coefficients for the anisotropic pressure modgk 2.2,r; = 1.8 andM = 1).

2.1.1 Slowly rotating gravastars and ergoregions

Slowly rotating solutions can be obtained using the methmdkkbped in Ref. [34]. A rota-
tion of orderQ gives corrections of orde®? in the diagonal coefficients of the metric (2.1) and
introduces a non-diagonal term of ordeyg:y = —wgye, Where@ is the azimuthal coordinate and
w = w(r) is the angular velocity of frame dragging. The full metric is

ds = —f(r)dt® + B(r)dr? +r2d6? + r?sir? 6 (dg — w(r)dt)?. (2.4)

If the gravastar rotates rigidly, i.€ = constant, from thét, ) component of Einstein equations
we find a differential equation fao(r) [23]
// / 4 j/

W@ | T+ ) = 16mB(N(@-Q) (p+ ). (2.5)
where j = (fB)~%/2 is evaluated at zeroth order apd p; are given in terms of the nonrotating
geometry. The above equation reduces to the correspondingtien for isotropic fluids [34].
Solutions of Eq. (2.5) describe rotating gravastars to dirder inQ.

The ergoregion can be found by computing the surface on whistanishes [35]. An approx-
imated relation for the location of the ergoregion in veryng@act gravastars is

0= —f(r)+ w?r?sirfo. (2.6)

The existence and the boundaries of the ergoregions cannyeuted from the above equations.
We integrate equation (2.5) from the origin with initial @lbtions (Q — w)’ =0 and (Q — w)
finite. The exterior solution satisfies= 2J/r3, wherel is the angular momentum of the gravastar.
Demanding the continuity of botfQQ — w)’ and (Q — w), Q andJ are uniquely determined. The
rotation parameteR depends on the initial condition at the origin. Figure 2 shidhe results the
gravastar model described in the previous sections. Thaaegpn can be located by drawing an
horizontal line at the desired value &fM?. The minimum of the curve is the minimum values of
J/M? which are required for the existence of the ergoregion. Goispn with the results for stars
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Figure 2: J/M? and angular frequencf for the anisotropic pressure model with= 2.2, r; = 1.8 and
M=1.

of uniform density [35], shows that ergoregions form morsilgaaround gravastars due to their
higher compactness. The slow-rotation approximation isictered valid forQ/Qx < 1 where
MQk = pu%2is the Keplerian frequency.

Depending on the compactnegs, the angular momentund, and the thickness), a spinning
gravastar does or does not develop an ergoregion. The fiormatt an ergoregion for rotating
gravastar is exhaustively discussed in the whole paramepce in Ref. [36]. A delicate issue
is the strong dependence on the thicknéssiyhich cannot be directly measured by experiments.
Figure 3 shows how the ergoregion width is sensitivé.to

Figure 3: Ergoregion width (in units of M) as function of the thickneds=r, —rq, forr, =2.3,M =1 and
for differentJ values. From top to bottoml/M? = 0.95, 090, 085, 080, 075, 070, 065 and 060. The
ergoregion width decreases@s- O.
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2.2 Rotating boson stars

A example of rotating boson star is the model by Kleihaus, Kuuist and Schaffer (KKLS)
[33]. The KKLS solution is based on the Lagrangian for a gglracting complex scalar field

1
fKKLS:—Eg‘“’ (q)fuq)’v—l-q)jkvq)#) —U(‘q)’), 2.7

whereU (|®|) = A|®|?(|®|* — a|®|? + b). The mass of the boson is given by = vAb. The
ansatz for the axisymmetric spacetime is

de? = — fdt2+$ g(dr?+r2d6?) +-r?sir? @ (d¢ — (r)dt) (2.8)

and® = @ % where the metric components and the real functiotepend only orr and
6. The requirement thab is single-valued implies = 0,+1,+£2,.... The solution has spherical
symmetry fom = 0 and axial symmetry otherwise. Since the Lagrangian deissiivariant under
a globalU (1) transformation, the currenj” = —i®*gH® + c.c., is conserved and it is associated
to a chargeQ, satisfying the quantization condition with the angulammemtumJ = nQ[37]. The
numerical procedure to extract the metric and the scalar iadescribed in Ref. [33]. Throughout
the paper we will consider solutions with=2, b= 1.1, A = 1.0, a= 2.0 and different values
of (J,M) corresponding td/(GM?) ~ 0.566, Q731 and (858. In Fig. 4 the metric functions
for a boson star along the equatorial plane are shown. By gtingpthe coefficienty; one can
prove that boson stars develop ergoregions deeply insilesttr. For this particular choice of
parameters, the ergoregion extends fioffGM) ~ 0.0471 to 0770. A more complete discussion
on the ergoregions of rotating boson stars can be found in[B&f

T T T T T T T

1.0 a(r)
08 |-

o6f 100

0.4

0.2

0.0

r/(GM) r/(GM)

Figure 4: Left panel: Metric coefficients for a rotating boson stamgthe equatorial plane, with parameters
n=2,b=11,A=10,a=20, J/(GM?) ~ 0566. Right panel: Fractional difference of the metric
potentials betweef = 11/2 and6 = 11/4 for the same star.
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2.3 Ergoregion instability for rotating gravastars and boson stars

The stability of gravastars and boson stars can be studitatipatively by considering small devi-
ations around equilibrium. Due to the difficulty of handliggavitational perturbations for rotating
objects, the calculations below are mostly restricted &des@erturbations. However the equation
for axial gravitational perturbations of gravastars isiiteal to the equation for scalar perturba-
tions in the largd = mlimit [23]. There are also generic arguments suggestingth@atimescale
of gravitational perturbations is smaller than the timésaod scalar perturbations for lom [38].
Thus, scalar perturbations should provide a lower boundhestrength of the instability.

2.3.1 Scalar field instability for slowly rotating gravastas: WKB approach

Consider now a minimally coupled scalar field in the backgrbaf a gravastar. The metric of
gravastars is given by Eq. (2.4). In the lafge mlimit, which is appropriate for a WKB analysis
[32, 39], the scalar field can be expanded as

> = Z)ﬂm exp{—— (g Zf; B)dr] e Ym0, 0). (2.9)

The functionsy, are determined by the Klein-Gordon equation which, droggarms of order
0 (1/n?), yields
Xim + T (1, %) Xim = 0, (2.10)

whereX = —w/mand

_B(1) B f(r)
T_m(z—vg(z—v,), Vi = —wd
Equation (2.10) can be shown to be identical for the axiabitagonal perturbations of perfect
fluid stars [24].
The WKB method [32] for computing the eigenfrequencies of dLO0) is in excellent agree-
ment with full numerical results [39]. The quasi-bound aié modes are determined by

h
m/ \/T(r)dr:g+nn, n=0,1,2,... (2.12)
la

and have an instability timescale

-rc -r
r:4exp{2m/ \/]T\dr] / b%\/fdr, (2.13)
I'p la

wherer,, ryp are solutions of/, = Z andr. is determined by the conditioni. = 2.

Table 2 shows the WKB results for the anisotropic pressurdaintor different values of
J/M?. Although the WKB approximation breaks down at loawalues, these results still provide
reliable estimates [32]. This claim has be verified with & fuimerical integration of the Klein-
Gordon equation. The results show that the instability sica¢e decreases as the star becomes
more compact. Larger values 8fM? make the star more unstable. The maximum growth time
of the instability can be of the order of a few thousavdbut it crucially depends od, u andd
[36]. For a large range of parameters this instability isc@lfor the star evolution. Gravitational

(2.11)
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perturbations are expected to be more unstable. Moreoigawdrth to notice that the slowly rotat-
ing approximation allows only fopt < 0.5, while for rotating BHs ® < 4 < 1 (see Table 1). The
ergoregion instability being monotonically increasindtwii, we expect that instability timescales
for realistic gravastars should be much shorter than the computed. For most of the BH mim-
ickers models to be viable we requit¢éM? ~ 1 andu ~ 1. It would be interesting to study whether
the ergoregion instability is or is not always effective lvistcase. Possible future developments
include: (i) a full rotating gravastar model, which allowa fu > 0.5; (ii) the stability analysis
against gravitational perturbations for rotating graaest (iii) a gravavastar model which is not
strongly dependent on the thickness,

The ergoregion instability of a rotating boson star is gtiforwardly computed following the
method described above for spinning gravastars. We redaetder to [23] and we only summarize
the results in Table 3. The maximum growth time for this bostam model is of the order of $M
for J/GM? = 0.857658. Thus the instability seems to be truly effectiverédating boson stars.

Table 2: WKB results for the instability of rotating gravastars with=2.2,r; = 1.8 andM = 1.
/M

J/M?2=040 J/M?2=060 J/M?>=080 J/M?>=090 J/M?=1.0

Q/Qx =033 Q/Qx =049 Q/Qx =065 Q/Qx =074 Q/Qy =0.82
1.33x 10/ 2.78x 10* 5.99x 10° 3.58x 10° 2.34x 10°
8.25x 10’ 1.14x 1P 1.11x 10° 4.81x 10 2.33x 10*
1.31x 100 5.65x 10’ 2.25x 100 6.82x 1P 2.45x 1P
2.50% 1012 2.95x% 10° 4.81x 10’ 1.02x 10’ 2.73x 10°
5.06 x 1014 1.59x 1011 1.02x 10° 1.52x 108 3.07x 10’

O N wWN PR3

Table 3: Instability for rotating boson stars with parametees 2,b=1.1,A = 1.0,a= 2.0 and different
values of] (from [23]). The Newton constant is defined as@= 0.05.

1/(GM)
m || J/GM? =0.566139 J/GM?=0.730677 J/GM?=0.857658
1 8.847x 107 6.303x 10° —
2 7.057x 10° 5.839x 10* 1.478x 1P
3 6.274x 10 9.274 x 10° 2.815x 1C°
4 5.824x 10° 1.603x 10’ 2.815x 100
5 5.554x 10° 2.915x% 108 1.717x 1012

3. Atoy model for Kerr-like objects

This section discusses Kerr-like objects such as partisalations of rotating wormholes and su-
perspinars. A rigorous analysis of the ergoregion instglfibr these models is a non-trivial task.
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Indeed known wormhole solutions are special non-vacuuntisok of the gravitational field equa-
tions, thus their investigation requires a case-by-caalysis of the stress-energy tensor. Moreover
exact solutions of four-dimensional superspinars are noi. To overcome these difficulties, the
following analysis will focus on a simple model which ca@sithe essential features of most Kerr-
like horizonless ultra-compact objects. Superspinarsratading wormholes will be modeled by
the exterior Kerr metric down to their surface, where mitike boundary conditions are imposed.
This problem is very similar to Press and Teukolsky’s “BH W29, 30], i.e. a rotating BH sur-
rounded by a perfectly reflecting mirror with its horizon leged by a reflecting surface. For a
more detailed discussion see [24].

3.0.2 Superspinars and Kerr-like wormholes

A superspinar of madgl and angular momentuth= aM can be modeled by the Kerr geom-
etry [16]

2,22
A2, = — <1— %) a2+ §er+ [(rsi:z: ) 4 2'\2/” a2| sin 6d¢? — gasinz 6dqdt+3d6?,

(3.2)
whereX = r? 4 a?cos’ 8 andA = r2 4+ a? — 2Mr. Unlike Kerr BHs, superspinars hase- M and no
horizon. Since the domain of interestiso < r < 4o, the space-time possesses naked singularities
and closed timelike curves in regions whegg < 0 [40]. High energy modifications (i.e. stringy
corrections) in the vicinity of the singularity are also egfed.

Kerr-like wormholes are described by metrics of the form

d%/ormhole: dierr + 5gabdxadxb> (3-2)

wheredgyy, is infinitesimal. In general, Eg. (3.2) describes an hotiges object with a excision
at some small distance of orderfrom the would-be horizon [15]. Wormholes require exotic
matter and/or divergent stress tensors, thus some uifraastter is assumed close to the would-be
horizon. In the following, both superspinars and wormhaldsbe modeled by the Kerr metric
with a rigid “wall” at finite Boyer-Lindquist radiusg, which excludes the pathological region.

3.1 Instability analysis

If the background geometry of superspinars and wormholesifficiently close to the Kerr
geometry, its perturbations is determined by the equatidmerturbed Kerr BHs [24]. Thus the
instability of superspinars and wormholes is studied bysat®ring Kerr geometries with arbitrary
rotation parametes and a “mirror” at some Boyer-Lindquist rading Using the Kinnersley tetrad
and Boyer-Lindquist coordinates, it is possible to segathé angular variables from the radial
ones, decoupling all quantities. Small perturbations gfia-s field are reduced to the radial and
angular master equations [41]

9 o
A*S% (Aﬂld?rm> + [K - Z'SX MK iser —)\] Rim =0, (3.3)

2
[(1 — xz)ssm] xT {(aoox)2 — 28WSX+ S+ sAm — %] sSm =0, (3.4)

10
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wherex = cosf, A =r? — 2Mr + a andK = (r2 + a?)w — am Scalar, electromagnetic and grav-
itational perturbations correspondde= 0, +1, +2 respectively. The separation constahtand
Am are related b\ = A + a2w? — 2amw.

3.1.1 Analytic results

0.085 |-

0.080 -

Im(Mo)
| Re(0)-mQ |/mQ

0.075 |-

a=0.998M, s=2 0.03 2=0.998M, s=2

1 1 1 1 1 1 1 1
0.0002 0.0004 0.0006 0.0008 0.0010 0.0002 0.0004 0.0006 0.0008 0.0010

3 €

Figure 5: Imaginary and real parts of the characteristic gravitatidrequencies for an object with =
0.998M, according to the analytic calculation for rapidly-spimgiobjects. The mirror location is a§ =
(1+¢)r.. The real part is approximately constant and close@) in agreement with the assumptions used
in the analytic approach.

Following Starobinsky [27], equations (3.3)-(3.4) can Imalgtically solved in the slowly-
rotating and low-frequency regimeyM < 1, and in the rapidly-spinning regime, where~ r_
and w ~ mQy, whereQy, = a/(2Mr..) is the angular velocity at the horizon. The details of the
analytic approximation are described in Ref. [24]. Analygolutions for a star witla = 0.998V
are shown in Fig. 5 where gravitational perturbations aresictered. The instability timescale for
gravitational perturbations is about five orders of magtgtemaller than the instability timescale
for scalar perturbations.

3.2 Instability analysis: numerical results

The oscillation frequencies of the modes can be found fr@cénonical form of Eq. (3.3)

d2y
d—r§+VY: 0, (3.5)
where
2— . _ - _
Y = A92(r2 4 ) Y/2R, V= K< —2is(r —-M)K +A(4irws—A) &2 dG (3.6)

(r2+a?)? Cdr,’

andK = (r’4+a?)w—am G = s(r — M) /(r? + a?) +rA(r? +a?)~2. The separation constahtis
related to the eigenvalues of the angular equatiol by sAm + a?w? — 2amw. The eigenvalues
sAim are expanded in power seriesasb as [42]

Am= 5 fi(aw)*. (3.7)
k=0

11
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Terms up to ordefaw)? are included in the calculation. Absence of ingoing wavemfatity
implies
Y ~rSders (3.8)

Numerical results are obtained by integrating Eq. (3.5)irdifrom a large distanag,. The inte-
gration is performed with the Runge-Kutta method with fixedtarting atMr., = 400, where the
asymptotic behavior (3.8) is imposed. (Choosing a diffeneitial point does not affect the final
results.) The numerical integration is stopped at the gdfuithe mirrorrg, where the value of the
fieldY(w,ro) is extracted. The integration is repeated for differentiealofc until Y (e, rg) =0 is
obtained with the desired precision.Y{w, ro) vanishes, the field satisfies the boundary condition
for perfect reflection and = wy is the oscillation frequency of the mode.

3.2.1 Objects witha < M

The regimea < M requires a surface or mirror ef =r(1+€) >r. Thus the compactness
is M/ro ~ (1—¢&)M/ry and, in the limite — 0, it is infinitesimally close to the compactness
of a Kerr BH. Numerical results for scalar and gravitatiopafturbations of objects wita < M
are summarized in Table 4 and are in agreement with the &mabgults [24]. The instability
is weaker for largem. This result holds also far# m ands= 0, +1 and+2. The minimum
instability timescale is of order ~ 10°M for a wide range of mirror locations. Figure 6 shows the
results for gravitational perturbations. Instability @etales are of the order o~ 2+~ 6M. Thus
gravitational perturbations lead to an instability aboué forders of magnitude stronger than the
instability due to scalar perturbations (see Table 4). Edushows that the ergoregion instability
remains relevant even for values of the angular momenturovaasa = 0.6M.

Table 4: Characteristic frequencies and instability timescalesfierr-like object witha = 0.998M. The

mirror is located at = 0.1, corresponding to the compactngss 0.9ukerr.
(Re(w)M,Im(w)M)

m s=0 s=2

1 (0.1120,0.6244x 10°°) -

2 (0.4440,0.5373x 107°)  (0.4342,0.2900
3 (0.7902,0.1928x 10°°) (0.7803,0.2977)
4 (1.1436,0.5927x 10°°) (1.1336,0.3035H

3.2.2 Objects witha> M

Objects witha > M could potentially describe superspinars. Several argtsrsrggest that
objects rotating above the Kerr bound are unstable. Firsitfremal Kerr BHs are marginally
stable. Thus the addition of extra rotation should lead $taipility. Secondly, fast-spinning objects
usually take a pancake-like form [43] and are subject to treg@ry-Laflamme instability [44, 45].
Finally, Kerr-like geometries, like naked singularitisgem to be unstable against a certain class
of gravitational perturbations [46, 47] called algebr#icapecial perturbations [40]. For objects
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Figure 6: Details of the instability for gravitational perturbatgrfor differentlt = m modes anda/M =
0.998 (top panels) and for= m= 2 and differene/M < 1.

with a > M the surface or mirror can be placed anywhere outsid®. In general the instability is
as strong as in tha < M regime. An example in shown in Fig. 7 for the surfacext = 0.001.
This result confirms other investigations suggesting ttad-gompact objects rotating above the
Kerr bound are unstable [48].

4. Conclusion

We investigated the ergoregion instability of some ultbapact, horizonless objects which
can mimick the spacetime of a rotating black hole. We stud@de of the most viable BH mim-
ickers: gravastars, boson stars, wormhole and superspinar

If rotating, boson stars and gravastars may develop ergoregstabilities. Analytical and
numerical results indicate that these objects are unstglaliest scalar field perturbations for a large
range of the parameters. Slowly rotating gravastars caelaigan ergoregion depending on their
angular momentum, their compactness and the thicknes®iofitilermediate region. In a recent
work [36] it has pointed out that slowly rotating gravastaray not develop an ergoregion. In the
formation of the ergoregion for rotating gravastars an irtgrd role is played by the thickness (see
Figure 3) which is not easily detectable. Thus further itigasions are needed to better understand
the ergoregion formation in physical resonable gravastadeats.

The instability timescale for both boson stars and gravastan be many orders of magnitude
stronger than the instability timescale for ordinary staith uniform density. In the largé=m
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Figure 7: The fundamentdl= m= 2, 3,4 modes of an object spinning above the Kerr bound as funofion
rotation. The surface is locatedrayM = 0.001.

approximation, suitable for a WKB treatment, gravitatioaad scalar perturbations have similar
instability timescales. In the lows regime gravitational perturbations are expected to haea ev
shorter instability timescales than scalar perturbatiohsstability timescales can be as low as
~ 0.1 seconds for & = 1M, objects and about a week for supermassive BWs= 10°M..,
monotonically decreasing for larger rotations and a lacgenpactness.

The essential features of wormholes and superspinars le@redaptured by a simple model
whose physical properties are largely independent fromdyimamical details of the gravitational
system. Numerical and analytic results show that the egjmmeinstability of these objects is
extremely strong for any value of their angular momentunthwinescales of order 10 seconds
for a 1M, object and 10 seconds fo\ = 10°M., object. Therefore, high rotation is an indirect
evidence for horizons.

Although further studies are needed, the above investigatiggests that exotic objects with-
out event horizon are likely to be ruled out as viable candisldor astrophysical ultra-compact
objects. This strengthens the role of BHs as candidatesstorphysical observations of rapidly
spinning compact objects.
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