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1. Brownian Motion and Quantum Field Theory

Path integral quantization of field theories is analogous to the calculation of stochastic aver-
ages. Consider Brownian motion of a particle with coordinates qi in a given potential U , described
via the Langevin equation [1]

dqi(t)
dt

=−δ
i j ∂U(q)

∂q j +η
i(t), (1.1)

where η is a completey irregular function ("noise"), thus satisfying the correlations

〈η i(t)〉= 0 , 〈η i(t)η j(t̄)〉= 2δ
i j

δ (t− t̄). (1.2)

Expectation values of a function of the coordinates can be calculated as follows:

〈 f (q)〉 ∼
∫

dnq ρ(q, t) f (q). (1.3)

The density ρ is given by the Fokker Planck equation

∂ρ(q, t)
∂ t

=
∂

∂qi δ
i j

(
∂U(q)

∂q j +
∂

∂q j

)
ρ(q, t), (1.4)

which has a simple solution for ρ̇ = 0, the equilbrium distribution

ρequ(q)∼ e−U(q). (1.5)

Equilibrium expectation values of a function f (q) are therefore calculated to be

〈 f (q)〉equ ∼
∫

dnq e−U(q) f (q). (1.6)

Now the crucial point is to compare the structure of this formula with the Green functions in
Quantum Field Theory, which are expectation values of fields calculated in a similar way:

G(x1, . . . ,xn)∼
∫

Dφ e−S[φ ]
φ(x1) . . .φ(xn). (1.7)

2. Stochastic Quantization

Green functions can thus be interpretated as equilibrium expectation values of a Brownian
motion process, where the equilibrum distribution density is just the usual path integral density
e−S[φ ]. Indeed, a Langevin equation for a field φ = {φ i} can be formulated, such that its equilibrium
limit gives the Green functions written above. It reads [2], [3], [4]

∂φ(x,s)
∂ s

=− δS
δφ

(x,s)+η(x,s) (2.1)

in analogy to equation (1.1). s is the evolution parameter of the stochastic process, usually called
"stochastic time". The noise field satisfies the relations

〈η(x,s)〉= 0 , 〈η(x,s)η(x̄, s̄)〉= 2δ
4(x− x̄)δ (s− s̄). (2.2)
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The Fokker Planck equation now reads

∂ρ[φ ,s]
∂ s

=
∫

d4x
δ

δφ

(
δS[φ ]

δφ
+

δ

δφ

)
ρ[φ ,s], (2.3)

whose equilibrium solution can be read of easily:

ρequ[φ ]∼ e−S[φ ]. (2.4)

Expectation values of a functional F [φ ] are therefore calculated in the following way:

〈F [φ ]〉equ ∼
∫

Dφ e−S[φ ] F [φ ]. (2.5)

Hence the Green functions of Quantum Field Theory are equilibrium averages for a field undergo-
ing Brownian Motion as described by the field equation (2.1):

G(x1, . . . ,xn)∼
∫

Dφ e−S[φ ]
φ(x1) . . .φ(xn). (2.6)

3. Active Brownian Motion and Active Stochastic Quantization

Equation (2.1) describes Brownian motion of a field φ in the potential S[φ ]. When the process
equilibrates, this leads to a QFT with path integral density e−S[φ ]. The action is typically ∼ φ 2,
therefore defining linear dynamics of the field. One can ask the following question: What kind
of QFT (i.e. what path integral density) will be the equilibrium of a certain nonlinear Brownian
motion? A recently established, heavily studied model of nonlinear Brownian motion is "active"
Brownian motion [5], [6], whose generalization for infinite degrees of freedom we studied in [7].
The Langevin equation for fields now reads:

∂φ i(x,s)
∂ s

=−δ
i j δS

δφ j (x,s)+ eδ
i j ∂V

∂φ j (x,s)+η
i(x,s), (3.1)

where e is an additional degree of freedom, called the "internal" energy, satisfying the equation

∂e
∂ s

= c1− c2e− c3eV (φ). (3.2)

ci are parameters assumed to be positive. For a specific choice of these parameters, the internal
energy, after some time, equilibrates to a fixed value: ∂e

∂ s = 0 (as can be seen by a stability analysis
of fixpoints or a direct computer simulation, see [8]), so that it becomes a pure function of the
fields:

e = e(φ) =
c1

c2 + c3V (φ)
. (3.3)

Plugging this expression into the field equation (3.1) yields the standard form

∂φ(x,s)
∂ s

=− δ S̃
δφ

(x,s)+η(x,s) (3.4)

with the effective action

S̃[φ ]≡
∫

d4x
{

L (φ ,∂φ)− c1

c3
ln

(
c2 + c3V (φ)

)}
.
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The resulting Quantum Field Theory is given by the Green Functions

G(x1, . . . ,xn)∼
∫

Dφ e−S̃[φ ]
φ(x1) . . .φ(xn). (3.5)

Active Brownian motion of fields in the equilibrium limit thus results in a QFT with the effective
Lagrangian being given by the sum of the usual kinetic term T (∂φ) and the effective potential
Ṽ (φ):

L̃ (φ ,∂φ) = L (φ ,∂φ)− c1

c3
ln

(
c2 + c3V (φ)

)
= T (∂φ)+Ṽ (φ). (3.6)

The effective potential Ṽ (φ) reads

Ṽ (φ) = V (φ)− c1

c3
ln

(
c2 + c3V (φ)

)
. (3.7)

In the case of small c3
c2

(physically meaning a small coupling of internal energy e to potential energy
V ) this leads to

Ṽ (φ)'−aV (φ)+bV (φ)2, (3.8)

where the constants a and b are functions of c1, c2 and c3.

4. Application to Scalar QED: Higgs Mechanism

In principle, this scheme can be applied to all field theories given by an action S[φ ]. Equilib-
rium solutions are especially interesting for Scalar QED. Consider the Lagrangian

L =
1
4

FµνFµν +(Dµφ)∗(Dµ
φ)+V (|φ |) (4.1)

with the potential
V (|φ |) = m2|φ |2. (4.2)

Let the fields undergo active Brownian motion, governed by equation (3.1) - the equilibrium limit
in the small coupling expansion will give a QFT with the effective potential

Ṽ (|φ |) =−aV (|φ |)+bV (|φ |)2 =−am2|φ |2 +bm4|φ |4, (4.3)

which is just the symmetry breaking potential of the Higgs mechanism. Conventionally expanding

around one of the minima |φ |0± =± 1
m

( a
2b

) 1
2 leads to the identification of the gauge field mass and

the Higgs mass:

mA
2 =

a
b

(
1
m

)2

, mH
2 = 2am2. (4.4)

5. Summary and Outlook

We sketched a procedure of how to deduce the Higgs mechanism within the Stochastic Quan-
tization scheme. One could see the Higgs potential arising in a state, when active Brownian motion
of the fields equilibrates. Further studies [8] involved the investigation also of nonequilibrium
dynamics ( ∂e

∂ s 6= 0). So far, this was only done for finite degrees of freedom. Analogies of nonequi-
librium behavior of active Brownian particles in QFT remain to be found.
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