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1. Introduction

The local conformal symmetry plays very important role irthbolassical and quantum the-
ories of gravity. There are two main aspects in the use ofghismetry by theoreticians. At
the classical level, conformal transformation is freqlyeapplied for mapping different theories
into each other, e.g. by mapping the popul@R) models into metric-scalar gravity theories. At
guantum level, the most remarkable thing about the localororal symmetry is that it is always
violated by anomaly. Despite violation of some symmetrynisiitively seen as a weakness of
the theory, this particular feature turns out to be extrgnfrelitful. The existence and simplicity
of conformal anomaly enables one to derive an importantgdatte vacuum effective action and,
therefore, obtain or better understand the origin of thetimmgortant applications of quantum field
theory in curved space, such as Hawking radiation [1] antbBiiasky inflationary model [2].

In the recent years there were several extensive reviewsndbenal symmetry (e.g. [3]) and
conformal anomaly [4], including the ones of the presenhauf5, 6]. In this article we will try
to present a little bit different view on the problem, despite are using mainly the known and
published material on the subject.

The paper is organized as follows. In section 2 we consideesapproximate simple model
for the ideal gas on massive relativistic particles [7] aseé U to discuss the role of conformal
symmetry in cosmology and, also, the soft violation of comfal symmetry by masses of the
particles at the classical level. In section 3, which is velngse in content to [5, 6], we briefly
review conformal anomaly in the vacuum sector. In sectionedcansider the anomaly induced
effective action in case of gravitational and electrom#gneackground and obtain a local and
covariant representation of such action. In section 5 weflgridiscuss possible applications of the
abovementioned result to cosmology and draw our conclasion

2. Massive and massless particles on the cosmological background

It is well known that the ideal gas of massless particles arddeal gas of massive particles
have distinct equations of state. In the cosmologicalragttie gas of massless particles does not
change the law of the expansion of the universe, which behieea ~ t/2 with or without mass-
less matter content. Let us consider, following [7] an agpnate description of an ideal gas and
show how one can interpolate between the massless and maasis. In fact, the assumption of
equal kinetic energies can be viewed as something not @tjfleecause this property is indeed
shared, with a good precision, by the completely degengifaeemi gas, where all particles “live”
at the Fermi surface. One can imagine that the model of, eagk Batter (DM) where the parti-
cle constituents of the gas have such property, would beratkotic, but maybe not completely
impossible.

Consider a single relativistic particle with the rest massThe expressions for energy and
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momentum for such particle have standard form
mv
g2 —c’p?=mPc*, where p= ——. (2.1)
V1-v2/c?
If the particle is confined in a vessel of a voluie an elementary consideration shows that the
time average of the pressure produced by the particle is

po Lt o m 2.2)

3V \/m
For the gas ofN such particles which ate distributed according to the Mdiiae, the equation
of state was derived about a century ago by Juttner [8]ydlues the ratio of two modified Bessel
functions and is a bit complicated. Let us simplify thingsl aitain an approximate equation of
state, by assuming that all these particles has identipetiki energiesg. Using this assumption,
we arrive at the following equation of state for the gas
2
P:%-[l—(mTcz)z}:%-[ —%}, where p:% (2.3)

is the energy density angf is the rest energy densitg? = Nmc&/V.

Let us notice thatv = P/p tends to ¥3 in the ultra-relativistic limite — c and to zero in
the non-relativistic limitt — mc. Indeed this property is shared by Maxwell and (degenenate o
not) Fermi-Dirac and Bose-Einstein relativistic disttibns, and moreover, the relative numerical
difference between (2.3) and the Maxwell case does not dxe&és [7].

One of the important things here is that the massless cabaiaaterized byv=P/p =1/3.
As a result the trace of the Energy-Momentum tensor vanisis fAas very special significance in
cosmology. Consider the first of the Friedmann equations

2_ (&) _8MG Kk
H _<a>_ 3 P @ @4

where H = a/a is a Hubble constant and is the overall energy density. At this stage we are
interested in the pure radiation content of the Universep $®the radiation densityy = p;. It
is obvious that the value @, defines the speed of the expansion of the Universe, pardnseter
by the Hubble parameter. From the other side, there is anBtiedmann equation, which defines
acceleration of the Universe expansion,
e o). (2.5)

And this equation has vanishirdn.s. for the radiation content, whew = 1/3. As a result the
acceleration is not sensitive to the presence or absente @l¢ctromagnetic radiation, or to any
other ideal gas of massless patrticles.

One can see this situation from different viewpoint. If we enterested in the evolution of the
conformal factor of the Universe(t), the most natural thing is to parametrize the metric as

guv :g_uv‘eza, o= Ina (26)
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wheregyy is the fiducial metric with fixed determinant. For the cosngadal metric, using spher-
ical coordinates, we have

J— . 1 2 . 2
guv = diag <1, T Sit o, —r ) .

Furthermore,a = a(t) in the cosmological case, that means the conformal factdhefmetric
depends only on time but not on the space coordinates.

There is a useful relation which is valid for any functiorl,,| of the metric and maybe
other fields (which we do not show here for brevity),

2 oA 1 SA[g,y °
_ v 5[9uv] _ e 40 % . 2.7)
v—9g Guv v—a a Guv— Qv ,0—0
If we replace the action of some theory in curved space at ldmef Alg,y], then thel.h.s. of
the above relation is nothing else than the trace of the sporeding Energy-Momentum tensor. In

order to remove the effect of other fields variables, it ifisigit to use the corresponding equations

of motion.

It is obvious, at this point, that the vanishing trace of threefgy-Momentum tensor implies
that the conformal factor of the metric decouples from thétenan a sense the dynamical equation
for this factor does not depend on the presence or absenbe obtresponding matter, exactly as
we have already seen above. Of course, this does not meahdHast integral of this dynamical
equations does depend on the presence of radiation, thdtyiswe observe such dependence in
ed. (2.4). In general, the situation when the coordinafeddent conformal factor decouples
from matter or from other components of the metric of the sgiiroe, is called local conformal
symmetry. As we shall see in what follows, the local confdrayanmetry is never perfect. On the
contrary, it is always violated in one or another way, on lmiéissical and quantum level.

The two very important observations are in order. Firsts iblvious that the violation of the
local conformal symmetry may occur in two distinct ways. Srffymmetry is violated by any, even
tiny mass of the particles, because (using our simple mdbelmasses make the valuewfin
the relation (2.3) different from/B and therefore make the trace of the Energy-Momentum tensor
nonzero. On the other hand, the same relation is necessdayed by the interaction of absolutely
massless particles between themselves and maybe even ioyafaetion of these particles with
some external source.

We do not know whether the first way of violating conformal syatry holds universally or
it does not, this depends on the existence of the nonzero ohéss photon. It might happen that
this mass is exactly zero, then the photon represents anpéxdprobably unique) of the theory
where the first version of violating local conformal symmetioes not take work. However, it
is indeed impossible to avoid the second version of suctatitsi. The point is that there is no
single photon in the Universe which absolutelyfree, and this is in fact requested by rigid local
conformal symmetry of the massless particles gas. It is kmelvn that the photons do not interact
with each other only in the classical theory, while taking tjuantum (QED) effects we meet
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certain interactions. Of course, this interaction is vegely, but it is important that the ideal gas
description is in fact an approximation and not an absofutetrect approach. Furthermore, the
real photons never move an absolute vacuum, the last is alampapproximation, despite it may
be a very good-quality approximation. Finally, according@eneral Relativity photons always
interact to gravity, that means there is a coupling betwésttremagnetic potential and the metric.
At the classical level, however, the electromagnetic gakdecouples from the conformal factor
of the metric, because the classical action of electromagfield,

1
Sm=—7 /d"’x\/_—g Fau FHV. 2.8)

possesses local conformal invariance. The last meansadtiism aloes not change under simultane-
ous transformation of the metric and of the veatgr namely

Let us note that the difference between conformal weightdimension for the vector field is due
to the vector field definition in curved space-time,

Au=Rod), &N =gu, ehefg’ =n". (2.10)

For other known kinds of the fields (scalars, fermions, higlegivative scalars and spinors) there
is similar correspondence between the dimension and aoaforeight, in these cases there is no
need to perform consideration like in (2.10).

For scalars the action of the free field with the non-mininmalging to external metric curva-
ture has the form

So= [ %= (00,009 + P97 + ERY?). (211)

The particular case of the theory which posses local cordbayimmetry satisfies the constraints
m=0,& =1/6. One can rewrite it in the form

S= —% /d“x\/—g(pAzq}, where A, = O—R/6. (2.12)
Another conventional example of conformal field is the messkpinor,
i — _
Syz = 5 [ d%/=G{ BV Duy — Cul Yy} (2.13)

The conformal transformation rules for scalar and spiner ar
p—¢' =0 Yoy =ye¥? g g=ge>

The metric is always transformed like in (2.9). Other exasapf conformal theories include, typ-
ically, higher derivatives and, also, have different tfammation laws [5]. Here we shall mention
only higher derivative scalar theory, with the action [9] 10

S = /d4x\/§)(A4x, (2.14)

2 1
where A4 = 0%+ 2R*VO,0, — 3RO+ 3RuOH. (2.15)
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The conformal transformation law for this scalar 33— x’ = x. The importance of the model
(2.14) is based on its use for deriving and integrating coné anomaly. We shall discuss this
point in the next section.

Let us come back to the photon case. At classical level eleetgnetic field gains interaction
with the conformal factor of the metrio only through its couplings to matter fields, which are
typically massive and hence strongly couplestaf the photons moves in vacuum, this interaction
is very weak and we can in fact think that the photon is confdridowever, the situation changes
dramatically if we take quantum effects onto account. Wesiar this part of the story in the next
section.

3. Conformal anomaly in the semiclassical theory

Consider the derivation of conformal anomaly, includinghie photon sector. This anomaly
shows up because of the contribution of the electron loopdevesider the one loop approxima-
tion only) or due to the loop of other field coupled to the al@ttagnetic vector field. One can
replace electromagnetic vector field by the Yang-Mills owéhout essential changes in the lo-
cal conformal anomaly. Therefore, without losing the galigrwe shall always speak about the
electromagnetic field and photon.

The first step is to consistently formulate the action of tieoty on classical curved back-
ground. In our case the background includes also the vectenpal but we need also the pure
gravitational sector. The standard criteria for the actibrexternal metric field are (see, e.g.
[11, 12]) as follows:

a) locality of the vacuum action,

b) renormalizability and

c) what one can call simplicity, e.g. we assume there arémo’| parameters or, in other words,
we include the minimal set of terms which satisfyyand b) conditions.

The action of vacuum which satisfies these necessary conslitias the form

Siac = SEH + SHp, (3.1)
where Sy is the Einstein-Hilbert action with cosmological term and
Sip = /d“x\/—_g {@1C? + aE + agTR+ ayR2} . (3.2)
Here and below we use the following notations
E=R, - 4R +R. (3.3)

is the Gauss-Bonnet term (Euler densitynia= 4). We avoid using the letteiG to denote this
guantity because it may be confused with the Newton constant

In the case of conformal theory at the one-loop level it igisigint to consider the simplified
vacuum action

1
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where we included the electromagnetic term at once. Let yshasize that it is nampossibleto
add the Einstein-Hilbert action, cosmological constarther [ \/—gR® term here. The statement
is that these terms ampot really necessarat the one-loop level. In fact, beyond the one-loop
approximation the [ /—gR® terms becomes also necessary, this means the conformay iseo
not consistent beyond one loop [13]. In case of broken symynaatid generated masses of the
matter fields (e.g. through the Coleman-Weinberg mechgnistner mentioned terms may also
become necessary.

Consider the derivation of the conformal anomaly. Thisessas addressed in many papers,
in particular we have recently reviewed it in [5]. Hence thér no need to enter into full details
again and we shall mainly take care of the electromagnetimshich was not considered in [5].

We assume the theory includes the metgg, and the vector potentiah, as background
fields and also some quantized matter fiskdshich do contribute to the effective action (including
the one of the background) via the loop corrections. We dgrfatthermore, ke the conformal
weight of the fields, in particular for the vector potentfg| it is ka = 0, as it was explained above.

As we have already discussed above, the Noether identithédocal conformal symmetry

o) o
— 20y —— + ko ®—| Y ®)=0 3.5
Guv 590 ko >0 Ouv, P) (3-5)

producesT}' = 0 on the mass shell.

At quantum levelSont has to be replaced by the effective action of vacuityg(guv, Ay).
At the one-loop level in the relevant sector we have (see {@2}he introduction and further
references)

re = % 4 / d"xy/—g {Blcz + BoE + BsOR + 2% Fuv F“V} : (3.6)
where ¢ is the dimensional regularization parameter=n—4, p1,3 are beta-functions for the
corresponding effective chargas, 3 and ¢ is the beta-function for the electromagnetic chagge
in the minimal subtraction (MS) scheme or renormalizati&ince 3. [ €3, the coefficient in the
last term does not depend enFor this reason we shall denote, in what foIIO\ﬁs,: Be/€.

Consider the high energy (or UV) limit, when the mass of therqum field (e.g. of electron)
is negligible. In this situation the (MS) scheme is reliaduhal we arrive at the following leading-log
behavior of the electromagnetic sector:

BFEHY In (%) Fuv. (3.7)

Similar asymptotic behavior takes place also in the grtital sector of the theory. For instance,
the Weyl term has similar formfactor,

O
,CHVOB | <F) Cuvag. (3.8)

Of course, the d’Alembertian operator in both cases is thar@ant one.
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The presence of the term (3.8) has been confirmed by a direatiant calculations [14] in
the physical (momentum subtraction equivalent) renomatibn scheme. TheIS-scheme based
procedure described above can be successfully appliedriteedbe quantum corrections to the
classical action of gravity and, e.g., scalar field [15, E&g(also [16] for an alternative considera-
tion).

In fact, the expressions (3.7) and (3.8) are sufficient tovdehe corresponding parts of the
conformal anomaly, even in case of a local conformal symynefor this end, let us apply the
conformal parametrization of the metric (2.9) and the déffdial relation (2.7). Consider the case
of (3.7) as an example, (3.8) is completely analogous. Ifeptace the parametrization (2.9) into
(3.7), the only place where tleefield shows up is th&. This operator becomes

O=e29 [0+ 0(do)], (3.9)

where the operatdn is constructed with the metrig,, and the explicit form of the term&(do)
is in fact irrelevant for us. When we apply (2.7), only thetftesm in the bracket (3.9) is important,
because the other terms vanish after weaset 0. Of course, the logarithmic dependence makes

O+ 0(do)

O
In T =-20+1n e . (3.10)

Finally, after applying (2.7) we arrive at
< T} >em= BF2, (3.11)

in the electromagnetic sector. The general expressionvingpthe purely gravitational sector,
have the form (see, e.g., [4] for the historical review arld¢®the technical introduction)

<TH>= {B1CZ+B2E+a’DR+[3F§V}. (3.12)

For the anomaly corresponding to the global conformal sytnime = A = const we finda’ = 33
[18, 19, 12]. However, in the case of local conformal invacia there is an ambiguity in the
parametera’ [11, 4]. The origin and mechanism for this ambiguity has bequlained recently in
[13].

The anomaly can be derived in many different ways, which paiffer by the regularization
choice [20, 21] (see, e.g. [11] for the list of results in samgularizations). We refer the reader to
[5] for the details of the most simple, dimensional-regaktion based approach to this calculation
[20] and further references. Let us consider here how theesscheme can be applied to the
electromagnetic term.

The renormalized one-loop effective action has the form

R=S+T+AS, (3.13)

where I = F_div+ Ffin is the naive quantum correction to the classical acBamdASis a coun-
terterm. The classical action i$ = Smatter+ Siac; Where S,ac has the form (3.1). Indeed, only
conformal invariant part of the vacuum action must be usd8.i13).
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ASin (3.13) is an infinite local counterterm which is called tncel the divergent part of the
effective actiorT. It turns out tha\Sis the only source of the noninvariance of the effectivecsgti
since naive (albeit divergent and nonlocal) contributiohgiluantum matter fields are conformal.
The anomalous trace is therefore equal to

2 olr 2 0AS

T THoe ofr) 2 . 3.14
T gl .

g -
\/_g HY 5guv D=4
The calculation of this expression can be done, in a mostlsimay, by changing the parametriza-
tion of the metric to (2.6). The counterterfd& is non-invariant because it is local and because it
must be formulated in spacetime dimensions. At that point we need a transformédios for the
divergent electromagnetic term, which has the form

Gy = Guv €%, / V=g F?n) = / Vg e IE2(n), (3.15)

whereF? = Fﬁv = FywFHY. In the simplest case of global conformal factoe= A = constwe
immediately arrive at the expression (3.12) wath= 33. However in the local case = g(x) the
situation is more complicated. We refer the reader to Reff8, 17, 5] for the recent and (in our
opinion) complete discussion of this issue.

4. Anomaly-induced action of vacuum

One can use conformal anomaly to construct the equationhfoffibite part of the 1-loop
correction to the effective action (we change notation® Her the sake of convenience) of the
background matric and electromagnetic potential,

2_, OMing 1
V=g 1 dgu  (4m)

The solution of this equation is straightforward [10] (séspayeneralizations for the theory with
torsion [22] and with a scalar field [23]). The simplest pb##y is to parametrize metric as in
(3.15), separating the conformal factorx) and rewrite the eq. (4.1) using (2.7). The solution for
the effective action is

. <a02+bE+CDR+[3F§V) . (4.1)

r N, 1 4 ~2 5 =2 - 2_
M= SC[guwAuHW /d xy/~§{a0C? + BoF], +bo(E - ZOR)
2 _ _

+ 2b0A40 — %2 (c+3D)R- 6(00)%—(T0)])} (4.2)

where&[Quv, Au] = S[0uv] is an unknown conformal invariant functional of the metnima,,,
which serves as an integration constant for the eq. (4.1)gudntities wit bars are constructed
using the metrigyy, in particular

Fiy = FuvFapd g
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The solution (4.2) has the merit of being simple, but an irtgrdrdisadvantage is that it is
not covariant or, in other words, it is not expressed in teaferiginal metric g,,. In order to
obtain the non-local covariant solution and after repregémthe local form using auxiliary fields,
we shall follow [10, 24]. The presence of tlﬁgv terms does not require any essential changes
compared to the consideration presented in [5], in padicillis term can be always taken together
with theC2 one. So, we present just the final result in the non-local foammch is expressed in
terms of the Green function for the operator (2.15),

A4,X(3(X7 y) = 5(X7 y) .

Using these formulas and (2.7) we find, for agy,) = A(Quv, 0), the relation

xv/—g(X) A (E — %DR) = 4V700A = 4 —gMA. (4.3)

Guv =0%uv

In particular, we obtain

I_induced: ra+ I_b + rCa (4-4)
where
Fa_/d4 xv/—g /d“y\/ (a(:2 )+ BFZ,) G(x, )(E—gﬂR) , (45
=2 [a%/7a0 [ dy/"a0) (E - SOR),G(XY) (E - SOR), (4.6)
and

_ c+3
Mo — 124n/ xr/—g(x) RE(X) 4.7)

The nonlocal expressions for the anomaly induced effeetidtmn can be presented in a local
form using two auxiliary scalar fieldg and s [24]. Let us give just a final result which has an
extra electromagnetic terms compared to the one describ&dl i

b
M= Slgu] - g’gﬁ/ X/ =IR + [ /=g { 5 9t — 5 ey
Vb 2 1 ~
4 ¢ %(E—émR) 8\/B(a02+/3 )+mw<aC2+BFﬁv)}. 4.8)

The local covariant form (4.8) is dynamically equivalentth@ non-local covariant form. The

complete definition of the Cauchy problem in the theory wiith hon-local action requires defining
the boundary conditions for the Green functioB$x, y), which shows up independently in the two
terms (4.5) and (4.6). The same can be achieved, in the lecsibn, by imposing the boundary
conditions on the two auxiliary fields and .

10
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5. Discussions: some applications of anomaly-induced effective action

The applications of purely gravitational part of the confat anomaly have been extensively
discussed, e.g., in[11, 4, 5] and [6]. Let us give just a fesepbations about the possible impor-
tance of the electromagnetic terms.

It is well known that the conformal anomaly is relevant fodarstanding and to some ex-
tent deriving the Hawking radiation (see, e.g., [4, 25, G] egferences therein). In particular, the
second auxiliary scalar introduced in [24] proved usefuldpplications. In particular, the vac-
uum states of the black hole (Boulware, Hartle-Hawking amdull) can be classified through the
choice of initial conditions for the two auxiliary fields [REsee also [26] for the treatment of the
Reissner-Nordstrom case). Let us stress that this can ramidoenplished by using only one figjd
Therefore the correspondence with other approaches to idgw&diation indicates that our con-
siderations about the correctness of introducing the skaailiary scalar are correct. It would be
interesting to look for the classical solution of the bldule type on the metric-electromagnetic
background and explore the corresponding quantum effamtg ¢he same line.

Another important application of the anomaly-induced @ffe action of gravity is the model
of anomaly-induced inflation [27, 23], or Modified Starolkipsviodel. In this case, the behaviour
of conformal factor of the metric is not affected by the preseof the second auxiliary scalar.
However, for investigating the evolution of gravitationedves specifying the initial data for both
scalars is essential and the situation is close to the oreeiblack hole case. Let us note that our
results show that the background (that means physical andnhaal) electromagnetic field does
inevitably produce an extra terms in the conformal anoniélye remember the discussion of the
section 2, this means that the quantum effects produce stetaétion between electromagnetic
field and metric, that the photons do not form an ideal massjas anymore. This is indeed an
important point, because the anomaly results in the slighhge of the equation of state for the
photon gas and this will of course modify the evolution of thaverse in the radiation dominated
period. We are going to come back to this issue in a specidiqation.

In conclusion, the conformal invariant theories are notsistent at quantum level. In fact, the
local conformal symmetry may be only approximate, howedisra very useful tool for calculating
guantum corrections. Despite the conformal anomaly is val studied subject, there are still
many interesting problems to solve in this area.
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