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1. Introduction

The local conformal symmetry plays very important role in both classical and quantum the-

ories of gravity. There are two main aspects in the use of thissymmetry by theoreticians. At

the classical level, conformal transformation is frequently applied for mapping different theories

into each other, e.g. by mapping the popularf (R) models into metric-scalar gravity theories. At

quantum level, the most remarkable thing about the local conformal symmetry is that it is always

violated by anomaly. Despite violation of some symmetry is intuitively seen as a weakness of

the theory, this particular feature turns out to be extremely fruitful. The existence and simplicity

of conformal anomaly enables one to derive an important partof the vacuum effective action and,

therefore, obtain or better understand the origin of the most important applications of quantum field

theory in curved space, such as Hawking radiation [1] and Starobinsky inflationary model [2].

In the recent years there were several extensive reviews of conformal symmetry (e.g. [3]) and

conformal anomaly [4], including the ones of the present author [5, 6]. In this article we will try

to present a little bit different view on the problem, despite we are using mainly the known and

published material on the subject.

The paper is organized as follows. In section 2 we consider some approximate simple model

for the ideal gas on massive relativistic particles [7] and use it to discuss the role of conformal

symmetry in cosmology and, also, the soft violation of conformal symmetry by masses of the

particles at the classical level. In section 3, which is veryclose in content to [5, 6], we briefly

review conformal anomaly in the vacuum sector. In section 4 we consider the anomaly induced

effective action in case of gravitational and electromagnetic background and obtain a local and

covariant representation of such action. In section 5 we briefly discuss possible applications of the

abovementioned result to cosmology and draw our conclusions.

2. Massive and massless particles on the cosmological background

It is well known that the ideal gas of massless particles and the ideal gas of massive particles

have distinct equations of state. In the cosmological setting the gas of massless particles does not

change the law of the expansion of the universe, which behaves likea∼ t1/2 with or without mass-

less matter content. Let us consider, following [7] an approximate description of an ideal gas and

show how one can interpolate between the massless and massive cases. In fact, the assumption of

equal kinetic energies can be viewed as something not artificial, because this property is indeed

shared, with a good precision, by the completely degenerated Fermi gas, where all particles “live”

at the Fermi surface. One can imagine that the model of, e.g. Dark Matter (DM) where the parti-

cle constituents of the gas have such property, would be rather exotic, but maybe not completely

impossible.

Consider a single relativistic particle with the rest massm. The expressions for energy and
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momentum for such particle have standard form

ε2−c2p2 = m2c4 , where p =
mv

√

1−v2/c2
. (2.1)

If the particle is confined in a vessel of a volumeV, an elementary consideration shows that the

time average of the pressure produced by the particle is

P =
1

3V
· mv2
√

1−v2/c2
. (2.2)

For the gas ofN such particles which ate distributed according to the Maxwell law, the equation

of state was derived about a century ago by Jüttner [8], it involves the ratio of two modified Bessel

functions and is a bit complicated. Let us simplify things and obtain an approximate equation of

state, by assuming that all these particles has identical kinetic energies,ε . Using this assumption,

we arrive at the following equation of state for the gas

P =
ρ
3
·
[

1−
(mc2

ε

)2
]

=
ρ
3
·
[

1− ρ2
d

ρ2

]

, where ρ =
Nε
V

(2.3)

is the energy density andρ2
d is the rest energy density,ρ2

d = Nmc2/V.

Let us notice thatw = P/ρ tends to 1/3 in the ultra-relativistic limitε → ∞ and to zero in

the non-relativistic limitε → mc2. Indeed this property is shared by Maxwell and (degenerate or

not) Fermi-Dirac and Bose-Einstein relativistic distributions, and moreover, the relative numerical

difference between (2.3) and the Maxwell case does not exceed 2.5% [7].

One of the important things here is that the massless case is characterized byw = P/ρ = 1/3.

As a result the trace of the Energy-Momentum tensor vanish. This has very special significance in

cosmology. Consider the first of the Friedmann equations

H2 =

( .
a

a

)

=
8πG

3
ρ − k

a2 , (2.4)

where H =
.
a/a is a Hubble constant andρ is the overall energy density. At this stage we are

interested in the pure radiation content of the Universe, soρ is the radiation density,ρ = ρr . It

is obvious that the value ofρr defines the speed of the expansion of the Universe, parameterized

by the Hubble parameter. From the other side, there is another Friedmann equation, which defines

acceleration of the Universe expansion,
..
a

a
= − 4πG

3
(ρ +3p) . (2.5)

And this equation has vanishingr.h.s. for the radiation content, whenw = 1/3. As a result the

acceleration is not sensitive to the presence or absence of the electromagnetic radiation, or to any

other ideal gas of massless particles.

One can see this situation from different viewpoint. If we are interested in the evolution of the

conformal factor of the Universe,a(t), the most natural thing is to parametrize the metric as

gµν = ḡµν ·e2σ , σ = lna (2.6)

3
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where ḡµν is the fiducial metric with fixed determinant. For the cosmological metric, using spher-

ical coordinates, we have

ḡµν = diag

(

1, − 1
1−kr2 , −r2sin2 θ , −r2

)

.

Furthermore,a = a(t) in the cosmological case, that means the conformal factor ofthe metric

depends only on time but not on the space coordinates.

There is a useful relation which is valid for any functionalA[gµν ] of the metric and maybe

other fields (which we do not show here for brevity),

− 2√−g
gµν

δ A[gµν ]

δ gµν
= − 1√−ḡ

e−4σ δ A[ḡµν e2σ ]

δσ

∣

∣

∣

∣

ḡµν→gµν ,σ→0
. (2.7)

If we replace the action of some theory in curved space at the place of A[gµν ], then thel.h.s. of

the above relation is nothing else than the trace of the corresponding Energy-Momentum tensor. In

order to remove the effect of other fields variables, it is sufficient to use the corresponding equations

of motion.

It is obvious, at this point, that the vanishing trace of the Energy-Momentum tensor implies

that the conformal factor of the metric decouples from the matter in a sense the dynamical equation

for this factor does not depend on the presence or absence of the corresponding matter, exactly as

we have already seen above. Of course, this does not mean thatthe first integral of this dynamical

equations does depend on the presence of radiation, that is why we observe such dependence in

eq. (2.4). In general, the situation when the coordinate-dependent conformal factor decouples

from matter or from other components of the metric of the space-time, is called local conformal

symmetry. As we shall see in what follows, the local conformal symmetry is never perfect. On the

contrary, it is always violated in one or another way, on bothclassical and quantum level.

The two very important observations are in order. First, it is obvious that the violation of the

local conformal symmetry may occur in two distinct ways. This symmetry is violated by any, even

tiny mass of the particles, because (using our simple model)the masses make the value ofw in

the relation (2.3) different from 1/3 and therefore make the trace of the Energy-Momentum tensor

nonzero. On the other hand, the same relation is necessary violated by the interaction of absolutely

massless particles between themselves and maybe even by theinteraction of these particles with

some external source.

We do not know whether the first way of violating conformal symmetry holds universally or

it does not, this depends on the existence of the nonzero massof the photon. It might happen that

this mass is exactly zero, then the photon represents an example (probably unique) of the theory

where the first version of violating local conformal symmetry does not take work. However, it

is indeed impossible to avoid the second version of such violation. The point is that there is no

single photon in the Universe which isabsolutelyfree, and this is in fact requested by rigid local

conformal symmetry of the massless particles gas. It is wellknown that the photons do not interact

with each other only in the classical theory, while taking the quantum (QED) effects we meet

4
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certain interactions. Of course, this interaction is very week, but it is important that the ideal gas

description is in fact an approximation and not an absolutely correct approach. Furthermore, the

real photons never move an absolute vacuum, the last is always an approximation, despite it may

be a very good-quality approximation. Finally, according to General Relativity photons always

interact to gravity, that means there is a coupling between electromagnetic potential and the metric.

At the classical level, however, the electromagnetic potential decouples from the conformal factor

of the metric, because the classical action of electromagnetic field,

Sem = −1
4

∫

d4x
√−g Fµν F µν . (2.8)

possesses local conformal invariance. The last means this action does not change under simultane-

ous transformation of the metric and of the vectorAµ , namely

gµν → g′µν = gµν e2σ , Aµ → A′
µ = Aµ . (2.9)

Let us note that the difference between conformal weight anddimension for the vector field is due

to the vector field definition in curved space-time,

Aµ = Abeb
µ , eb

µ ea
ν ηab = gµν , eb

µ ea
ν gµν = ηab. (2.10)

For other known kinds of the fields (scalars, fermions, higher derivative scalars and spinors) there

is similar correspondence between the dimension and conformal weight, in these cases there is no

need to perform consideration like in (2.10).

For scalars the action of the free field with the non-minimal coupling to external metric curva-

ture has the form

Ssc =
1
2

∫

d4x
√−g

(

gµν ∂µϕ∂νϕ +m2ϕ2+ ξ Rϕ2
)

. (2.11)

The particular case of the theory which posses local conformal symmetry satisfies the constraints

m= 0, ξ = 1/6. One can rewrite it in the form

S = − 1
2

∫

d4x
√−gφ ∆2φ , where ∆2 = 2−R/6. (2.12)

Another conventional example of conformal field is the massless spinor,

S1/2 =
i
2

∫

d4x
√−g

{

ψ̄ γµ ∇µψ − ∇µ ψ̄ γµψ
}

. (2.13)

The conformal transformation rules for scalar and spinor are

ϕ → ϕ ′ = ϕ e−σ/2 , ψ → ψ ′ = ψ e−3σ/2 , ψ̄ → ψ̄ ′ = ψ̄ e−3σ/2 .

The metric is always transformed like in (2.9). Other examples of conformal theories include, typ-

ically, higher derivatives and, also, have different transformation laws [5]. Here we shall mention

only higher derivative scalar theory, with the action [9, 10]

S4 =
∫

d4x
√

g χ ∆4 χ , (2.14)

where ∆4 = 2
2 +2Rµν∇µ∇ν −

2
3

R2+
1
3

R;µ ∇µ . (2.15)

5
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The conformal transformation law for this scalar isχ → χ ′ = χ . The importance of the model

(2.14) is based on its use for deriving and integrating conformal anomaly. We shall discuss this

point in the next section.

Let us come back to the photon case. At classical level electromagnetic field gains interaction

with the conformal factor of the metricσ only through its couplings to matter fields, which are

typically massive and hence strongly couple toσ . If the photons moves in vacuum, this interaction

is very weak and we can in fact think that the photon is conformal. However, the situation changes

dramatically if we take quantum effects onto account. We consider this part of the story in the next

section.

3. Conformal anomaly in the semiclassical theory

Consider the derivation of conformal anomaly, including inthe photon sector. This anomaly

shows up because of the contribution of the electron loop (weconsider the one loop approxima-

tion only) or due to the loop of other field coupled to the electromagnetic vector field. One can

replace electromagnetic vector field by the Yang-Mills one,without essential changes in the lo-

cal conformal anomaly. Therefore, without losing the generality we shall always speak about the

electromagnetic field and photon.

The first step is to consistently formulate the action of the theory on classical curved back-

ground. In our case the background includes also the vector potential but we need also the pure

gravitational sector. The standard criteria for the actionof external metric field are (see, e.g.

[11, 12]) as follows:

a) locality of the vacuum action,

b) renormalizability and

c) what one can call simplicity, e.g. we assume there are no
[

m−1
]

parameters or, in other words,

we include the minimal set of terms which satisfya) and b) conditions.

The action of vacuum which satisfies these necessary conditions has the form

Svac = SEH + SHD , (3.1)

whereSEH is the Einstein-Hilbert action with cosmological term and

SHD =

∫

d4x
√−g

{

a1C
2 +a2E+a32R+a4R2} . (3.2)

Here and below we use the following notations

E = R2
µναβ −4R2

αβ +R2 . (3.3)

is the Gauss-Bonnet term (Euler density inn = 4). We avoid using the letterG to denote this

quantity because it may be confused with the Newton constant.

In the case of conformal theory at the one-loop level it is sufficient to consider the simplified

vacuum action

Scon f =
∫

d4x
√−g

{

a1C
2 +a2E +a32R− 1

4e2 Fµν Fµν
}

, (3.4)

6
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where we included the electromagnetic term at once. Let us emphasize that it is notimpossibleto

add the Einstein-Hilbert action, cosmological constant orthe
∫ √−gR2 term here. The statement

is that these terms arenot really necessaryat the one-loop level. In fact, beyond the one-loop

approximation the
∫ √−gR2 terms becomes also necessary, this means the conformal theory is

not consistent beyond one loop [13]. In case of broken symmetry and generated masses of the

matter fields (e.g. through the Coleman-Weinberg mechanism), other mentioned terms may also

become necessary.

Consider the derivation of the conformal anomaly. This issue was addressed in many papers,

in particular we have recently reviewed it in [5]. Hence there is no need to enter into full details

again and we shall mainly take care of the electromagnetic sector which was not considered in [5].

We assume the theory includes the metricgµν and the vector potentialAµ as background

fields and also some quantized matter fieldsΦ which do contribute to the effective action (including

the one of the background) via the loop corrections. We denote, furthermore,kΦ the conformal

weight of the fields, in particular for the vector potentialAµ it is kA = 0, as it was explained above.

As we have already discussed above, the Noether identity forthe local conformal symmetry
[

−2gµν
δ

δgµν
+ kΦ Φ

δ
δΦ

]

S(gµν , Φ) = 0 (3.5)

producesTµ
µ = 0 on the mass shell.

At quantum levelScon f has to be replaced by the effective action of vacuumΓvac(gµν , Aµ).

At the one-loop level in the relevant sector we have (see [12]for the introduction and further

references)

Γ̄(1)
div =

1
ε

µn−4
∫

dnx
√−g

{

β1C
2 + β2E + β32R+

βe

2e3 Fµν Fµν
}

, (3.6)

where ε is the dimensional regularization parameter,ε = n−4, β1,2,3 are beta-functions for the

corresponding effective chargesa1,2,3 andβe is the beta-function for the electromagnetic chargee

in the minimal subtraction (MS) scheme or renormalization.Sinceβe ∝ e3, the coefficient in the

last term does not depend one. For this reason we shall denote, in what follows,β̃ = βe/e3.

Consider the high energy (or UV) limit, when the mass of the quantum field (e.g. of electron)

is negligible. In this situation the (MS) scheme is reliableand we arrive at the following leading-log

behavior of the electromagnetic sector:

β̃ Fµν ln
(

2

µ2

)

Fµν . (3.7)

Similar asymptotic behavior takes place also in the gravitational sector of the theory. For instance,

the Weyl term has similar formfactor,

β1Cµναβ ln
(

2

µ2

)

Cµναβ . (3.8)

Of course, the d’Alembertian operator in both cases is the covariant one.

7
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The presence of the term (3.8) has been confirmed by a direct covariant calculations [14] in

the physical (momentum subtraction equivalent) renormalization scheme. TheMS-scheme based

procedure described above can be successfully applied to derive the quantum corrections to the

classical action of gravity and, e.g., scalar field [15, 12] (see also [16] for an alternative considera-

tion).

In fact, the expressions (3.7) and (3.8) are sufficient to derive the corresponding parts of the

conformal anomaly, even in case of a local conformal symmetry. For this end, let us apply the

conformal parametrization of the metric (2.9) and the differential relation (2.7). Consider the case

of (3.7) as an example, (3.8) is completely analogous. If we replace the parametrization (2.9) into

(3.7), the only place where theσ field shows up is the2. This operator becomes

2 = e−2σ [2̂+O(∂σ)] , (3.9)

where the operator ˆ2 is constructed with the metric ¯gµν and the explicit form of the termsO(∂σ)

is in fact irrelevant for us. When we apply (2.7), only the first term in the bracket (3.9) is important,

because the other terms vanish after we setσ → 0. Of course, the logarithmic dependence makes

ln
2

µ2 = −2σ + ln
2̄+O(∂σ)

µ2 . (3.10)

Finally, after applying (2.7) we arrive at

< Tµ
µ >em= β̃ F2

µν (3.11)

in the electromagnetic sector. The general expression involving the purely gravitational sector,

have the form (see, e.g., [4] for the historical review and [5] for the technical introduction)

< Tµ
µ >=

{

β1C
2 + β2E +a′2R+ β̃F2

µν

}

. (3.12)

For the anomaly corresponding to the global conformal symmetry, σ = λ = const, we finda ′ = β3

[18, 19, 12]. However, in the case of local conformal invariance there is an ambiguity in the

parametera′ [11, 4]. The origin and mechanism for this ambiguity has beenexplained recently in

[13].

The anomaly can be derived in many different ways, which mainly differ by the regularization

choice [20, 21] (see, e.g. [11] for the list of results in someregularizations). We refer the reader to

[5] for the details of the most simple, dimensional-regularization based approach to this calculation

[20] and further references. Let us consider here how the same scheme can be applied to the

electromagnetic term.

The renormalized one-loop effective action has the form

ΓR = S+ Γ̄+ ∆S, (3.13)

where Γ̄ = Γ̄div + Γ̄ f in is the naive quantum correction to the classical actionSand∆S is a coun-

terterm. The classical action isS= Smatter+ Svac, where Svac has the form (3.1). Indeed, only

conformal invariant part of the vacuum action must be used in(3.13).

8
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∆S in (3.13) is an infinite local counterterm which is called to cancel the divergent part of the

effective actionΓ̄. It turns out that∆Sis the only source of the noninvariance of the effective action,

since naive (albeit divergent and nonlocal) contributionsof quantum matter fields are conformal.

The anomalous trace is therefore equal to

T =< Tµ
µ >= − 2√−g

gµν
δ ΓR

δ gµν

∣

∣

∣

∣

D=4

= − 2√−g
gµν

δ ∆S
δ gµν

∣

∣

∣

∣

D=4

. (3.14)

The calculation of this expression can be done, in a most simple way, by changing the parametriza-

tion of the metric to (2.6). The counterterm∆S is non-invariant because it is local and because it

must be formulated inn spacetime dimensions. At that point we need a transformation laws for the

divergent electromagnetic term, which has the form

g′µν = gµν e2σ(x) ,

∫

√

−g′ F ′2(n) =

∫

√

−g′e(n−4)σ F2(n) , (3.15)

whereF2 = F2
µν = FµνFµν . In the simplest case of global conformal factorσ = λ = constwe

immediately arrive at the expression (3.12) witha′ = β3. However in the local caseσ = σ(x) the

situation is more complicated. We refer the reader to Refs. [13, 17, 5] for the recent and (in our

opinion) complete discussion of this issue.

4. Anomaly-induced action of vacuum

One can use conformal anomaly to construct the equation for the finite part of the 1-loop

correction to the effective action (we change notations here for the sake of convenience) of the

background matric and electromagnetic potential,

2√−g
gµν

δ Γ̄ind

δgµν
=

1
(4π)2

(

aC2 +bE+c2R+ β̃F2
µν

)

. (4.1)

The solution of this equation is straightforward [10] (see also generalizations for the theory with

torsion [22] and with a scalar field [23]). The simplest possibility is to parametrize metric as in

(3.15), separating the conformal factorσ(x) and rewrite the eq. (4.1) using (2.7). The solution for

the effective action is

Γ̄ = Sc[ḡµν , Aµ ]+
1

(4π)2

∫

d4x
√−ḡ{aσC̄2 + β̃σ F̄2

µν +bσ(Ē− 2
3
2̄R̄)

+ 2bσ ∆̄4σ − 1
12

(c+
2
3

b)[R̄−6(∇̄σ)2− (2̄σ)]2)} (4.2)

whereSc[ḡµν , Aµ ] = Sc[gµν ] is an unknown conformal invariant functional of the metric and Aµ ,

which serves as an integration constant for the eq. (4.1). All quantities wit bars are constructed

using the metric ¯gµν , in particular

F̄2
µν = F̄µν F̄αβ ḡµα ḡβν .

9
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The solution (4.2) has the merit of being simple, but an important disadvantage is that it is

not covariant or, in other words, it is not expressed in termsof original metric gµν . In order to

obtain the non-local covariant solution and after represent it in the local form using auxiliary fields,

we shall follow [10, 24]. The presence of thēF2
µν terms does not require any essential changes

compared to the consideration presented in [5], in particular this term can be always taken together

with theC̄2 one. So, we present just the final result in the non-local form, which is expressed in

terms of the Green function for the operator (2.15),

∆4,xG(x,y) = δ (x,y) .

Using these formulas and (2.7) we find, for anyA(gµν) = A(ḡµν ,σ), the relation

δ
δσ(y)

∫

d4x
√

−g(x)A (E− 2
3
2R)

∣

∣

∣

∣

gµν = ḡµν

= 4
√
−ḡ∆̄4A = 4

√−g∆4A. (4.3)

In particular, we obtain

Γinduced= Γa + Γb+ Γc , (4.4)

where

Γa =

∫

d4x
√

−g(x)
∫

d4y
√

−g(y)
1
4

(

aC2(x)+ β̃F2
µν

)

G(x,y)
(

E− 2
3
2R

)

y , (4.5)

Γb =
b
8

∫

d4x
√

−g(x)
∫

d4y
√

−g(y) (E− 2
3
2R)xG(x,y)(E− 2

3
2R)y (4.6)

and

Γc = − c+ 2
3 b

12(4π)2

∫

d4x
√

−g(x)R2(x) . (4.7)

The nonlocal expressions for the anomaly induced effectiveaction can be presented in a local

form using two auxiliary scalar fieldsϕ andψ [24]. Let us give just a final result which has an

extra electromagnetic terms compared to the one described in [5]

Γ = Sc[gµν ]− 3c+2b
36(4π)2

∫

d4x
√

−g(x)R2(x)+

∫

d4x
√

−g(x)
{1

2
ϕ∆4ϕ − 1

2
ψ∆4ψ

+ ϕ

[ √
b

8π
(E− 2

3
2R) − 1

8π
√

b

(

aC2 + β̃F2
µν

)

]

+
1

8π
√

b
ψ

(

aC2 + β̃F2
µν

) }

. (4.8)

The local covariant form (4.8) is dynamically equivalent tothe non-local covariant form. The

complete definition of the Cauchy problem in the theory with the non-local action requires defining

the boundary conditions for the Green functionsG(x,y), which shows up independently in the two

terms (4.5) and (4.6). The same can be achieved, in the local version, by imposing the boundary

conditions on the two auxiliary fieldsϕ andψ .
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5. Discussions: some applications of anomaly-induced effective action

The applications of purely gravitational part of the conformal anomaly have been extensively

discussed, e.g., in [11, 4, 5] and [6]. Let us give just a few observations about the possible impor-

tance of the electromagnetic terms.

It is well known that the conformal anomaly is relevant for understanding and to some ex-

tent deriving the Hawking radiation (see, e.g., [4, 25, 6] and references therein). In particular, the

second auxiliary scalar introduced in [24] proved useful for applications. In particular, the vac-

uum states of the black hole (Boulware, Hartle-Hawking and Unruh) can be classified through the

choice of initial conditions for the two auxiliary fields [25] (see also [26] for the treatment of the

Reissner-Nordstrom case). Let us stress that this can not beaccomplished by using only one fieldϕ .

Therefore the correspondence with other approaches to Hawking radiation indicates that our con-

siderations about the correctness of introducing the second auxiliary scalar are correct. It would be

interesting to look for the classical solution of the black-hole type on the metric-electromagnetic

background and explore the corresponding quantum effects along the same line.

Another important application of the anomaly-induced effective action of gravity is the model

of anomaly-induced inflation [27, 23], or Modified Starobinsky Model. In this case, the behaviour

of conformal factor of the metric is not affected by the presence of the second auxiliary scalar.

However, for investigating the evolution of gravitationalwaves specifying the initial data for both

scalars is essential and the situation is close to the one in the black hole case. Let us note that our

results show that the background (that means physical and not virtual) electromagnetic field does

inevitably produce an extra terms in the conformal anomaly.If we remember the discussion of the

section 2, this means that the quantum effects produce such interaction between electromagnetic

field and metric, that the photons do not form an ideal massless gas anymore. This is indeed an

important point, because the anomaly results in the slight change of the equation of state for the

photon gas and this will of course modify the evolution of theUniverse in the radiation dominated

period. We are going to come back to this issue in a special publication.

In conclusion, the conformal invariant theories are not consistent at quantum level. In fact, the

local conformal symmetry may be only approximate, however it is a very useful tool for calculating

quantum corrections. Despite the conformal anomaly is verywell studied subject, there are still

many interesting problems to solve in this area.
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