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1. Introduction

The problem of the microscopic origin of the Bekenstein-Hawking (BH) entropy of black
holes is one of the most intriguing challenges for modern theoretical physics. Its solution is not
only important for delivering a microscopic basis for black hole thermodynamics. It also represents
one crucial test, perhaps the most relevant one, that any quantum theory of gravity has to pass.
It has been tackled using many different frameworks and approaches: String theory, AdS/CFT
correspondence, asymptotic symmetries, D-branes, induced gravity and entanglement entropy, loop
quantum gravity.

Many of these approaches reproduce correctly the BH black hole entropy (some exactly oth-
ers up to some numerical constant), in such a good way that this success is considered by some
physicists almost as a problem [1]. It is likely that this universality, rather then a problem, is a con-
sequence of some fundamental underlying feature of semiclassical quantum gravity that has to be
shared by the different approaches. A strong hint that this may be indeed the case is represented by
the wide, successfully, use of an asymptotical level formula for two-dimensional (2D) conformal
field theory (CFT), the so called Cardy formula, to count black hole microstates [2],

S � 2π

��
c l0
6

�

�
c l̄0
6

�
� (1.1)

where l0 and l̄0 are the eigenvalues of the L0 and L̄0 operators and c is the central charge in the
conformal algebra.

Obviously, Cardy’s formula has a chance to reproduce BH black hole entropy only if there is
an underlying (at least approximate) 2D conformal symmetry. This is for instance the case of black
holes in anti de Sitter (AdS) spacetime. The AdS/CFT correspondence should allow us to describe
black holes as thermal states of the dual CFT. An other approach is to use the built-in conformal
symmetry of event horizons and 2D diffeomorphisms and the related algebra of constraints, to
model the black hole as a microstate gas of a CFT ( see e.g. Ref. [3]).

Counting microstates using the AdS/CFT correspondence works well only when the black
hole geometry factorizes as AdS3�M (M compact manifold) or AdS2�M . For instance, the
famous Strominger-Vafa [4] calculation of the entropy of the 5D Reissner-Nordström (RN) SUSY
black hole has been made possible because of the AdS3 factor in the near-horizon geometry of the
5D black hole solution. Precise computation of the statistical entropy of generic AdS d black hole
(e.g. the Schwarzschild-AdS black hole in d=4) is out of our reach, because we do not know how
to compute in strongly-coupled gauge theories.

Thus, AdS3 and AdS2 QG together with the three and two-dimensional black holes in AdS
spacetime play a very special role for the computation of the statistical entropy of black holes.
In the large N limit AdS3 QG can be identified as a 2D CFT with central charge c � 3G�2l (G
and l are respectively the 3D Newton constant and the AdS length) describing Brown-Henneaux-
like boundary excitations, i.e. deformations of the asymptotic boundary of AdS 3 [5]. The CFT
reproduces correctly the entropy of the Bañados-Teitelboim-Zanelli (BTZ) black hole [6] and of a
wide class of higher-dimensional black holes. The related thermodynamic system describes a 2D
field theory with extensive entropy S � T with a ground state of zero entropy at zero temperature.
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On the other hand, it is still not completely clear whether AdS 2 QG has to be considered as the
chiral half of 2D CFT or a conformal quantum mechanics living on the asymptotic one-dimensional
boundary of AdS2 [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Nevertheless, it has been used with success
to compute the statistical entropy of AdS2 black holes and related higher dimensional solutions.

One important application of AdS2 QG is its use in the description of the near-horizon regime
of charged extremal (BPS) black holes, in which the near-horizon geometry factorizes as AdS2�M.
In this case the dynamical system has peculiar features, such as the attractor mechanism [17, 18,
19], whereas from the thermodynamical point of view the system is characterized by a ground
state of nonvanishing entropy at zero temperature. Interesting examples of this kind of behavior
are the near-horizon geometries of asymptotically flat, extremal, black p-branes in d space-time
dimensions,

AdSp�2�Sd�p�2 �
SO�p�1�2�
SO�p�1�1�

� SO�d� p�1�
SO�d� p�2�

� (1.2)

For p � 0 we have charged, BPS, black holes in d � 4�5. For p � 1 and d � 5�6 we have the
black string. It is interesting to notice that although Eq. (1.2) holds also for p � 0 and d � 3, this
geometry cannot be obtained as the near-horizon geometry of a 3D charged black hole. This is
because there are no asymptotically flat 3D black holes.

The first, oldest, version of AdS2 QG has been constructed following closely the Brown-
Henneaux formulation of AdS3 QG [7]. It is based on AdS2 endowed with a linear dilatonic
background. Recently, there has been renewed interest for the AdS/CFT correspondence in two-
spacetime dimensions [13, 14, 15, 20]. In particular, a second formulation for AdS2 QG, based on
AdS2 endowed with constant dilaton and Maxwell field has been proposed in Ref. [13]. In this
paper we will argue that the two different formulations of AdS 2 QG and their relationship with
AdS3 could be the clue for understanding the complicate pattern of near-horizon geometries of
higher-dimensional charged black holes and their entropies. A key role in this context is played
by 3D charged BTZ black hole. This black hole interpolates between an asymptotic AdS 3 and a
near-horizon AdS2�S1 geometry. Circular symmetric dimensional reduction allows us to describe
AdS3 as AdS2 with a linear dilaton. Thus, the charged BTZ black hole interpolates between the
two different versions of AdS2 QG.

The plan of this paper is as follows. In Sect 2 we give a short review of the Brown-Henneaux
formulation of AdS3 quantum gravity. In Sect. 3 we briefly review AdS2 QG with a linear dilaton.
In Sect. 4 we consider AdS2 QG with constant dilaton and U�1� field. Some basic features of the
charged BTZ black hole are discussed in Sect. 5. In Sect. 6 we will show that charged BTZ black
hole interpolates between the two formulations of AdS 2 QG. In Sect. 7 we discuss the application
to the calculation of the microscopic black hole entropy. Finally in Sect. 8 we state our conclusions.

2. A short review of AdS3 quantum gravity

Classical AdS3 gravity is described by the action

I �
1

16πG

�
d3x
��g�R�2Λ�� (2.1)

where G is the 3D Newton constant and Λ � 1
l2 � 0 is the cosmological constant. We are using

units where G and l have both the dimension of a length. Black hole solutions in AdS 3, called BTZ
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after their discoverers Bañados, Teitelboim and Zanelli [21, 22], are characterized by mass M and
angular momentum J. The corresponding line element in Schwarzschild coordinates is

ds2 �� f �r�dt2� f�1dr2 � r2
�

dθ � 4GJ
r2

dt

�2

� (2.2)

with metric function:

f �r� � �8GM�
r2

l2 �
16G2J2

r2 � (2.3)

The outer and inner horizons, r�, r� are given by

r2
� � 4Gl2

�
M�

�
M2� J2

l2

�
� (2.4)

AdS3 quantum gravity was discovered by Brown and Henneaux [5] ten years before Malda-
cena conjecture about the correspondence between gravity on AdS and conformal field theories
[23, 24]. They realized that the asymptotic symmetry group (ASG) of AdS3, i.e. the group that
leaves invariant the asymptotic form of the metric, is the conformal group in two spacetime dimen-
sions.

In order to determine the ASG one has first to fix boundary conditions for the fields at r � ∞
then to find the Killing vectors leaving these boundary conditions invariant. The boundary con-
ditions must be relaxed enough to allow for the action of the conformal group and for the right
boundary deformations, but tight enough to keep finite the charges associated with the ASG gen-
erators, which are given by boundary terms of the action (2.1). These charges can be calculated
using a canonical realization of the ASG [5, 25]. Alternatively, one can use a lagrangian formalism
and work out the stress-energy tensor for the boundary CFT [26]. For the BTZ black hole suitable
boundary conditions for the metric are [5]

gtt � �r2

l2 �O�1� � gtθ � O�1� � gtr � grθ � O

�
1
r3

�
�

grr �
l2

r2 �O

�
1
r4

�
� gθθ � r2 �O�1� � (2.5)

whereas the vector fields preserving them are

χ t � l
�
ε��x��� ε��x��

�
�

l3

2r2 �∂
2
�ε

��∂ 2
�ε

���O

�
1
r4

�
�

χθ � ε��x��� ε��x��� l2

2r2 �∂
2
�ε

��∂ 2
�ε

���O

�
1
r4

�
�

χ r ��r�∂�ε
��∂�ε

���O

�
1
r

�
� (2.6)

where ε��x�� and ε��x�� are arbitrary functions of the light-cone coordinates x� � �t�l��θ and
∂� � ∂�∂x�. The generators Ln (L̄n� of the diffeomorphisms with ε� �� 0 (ε� �� 0) obey the
Virasoro algebra,
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�Lm�Ln� � �m�n�Lm�n �
c

12
�m3�m�δm�n0�

�L̄m� L̄n� � �m�n�L̄m�n �
c

12
�m3�m�δm�n0�

�Lm� L̄n� � 0� (2.7)

where c is the central charge. In the semiclassical regime c� 1, the central charge can be calculated
using a canonical realization of the ASG algebra. Explicit computation of c gives [5]

c �
3l
2G

� (2.8)

In a further development, Strominger reproduced the entropy of the rotating, BTZ black hole count-
ing states of the Hilbert space of the CFT, i.e. using the Cardy formula (1.1) and identifying the
eigenvalues of the L0 and L̄0 operators in terms of the mass and angular momentum of the hole [6],

lM � l0 � l̄0� J � l0� l̄0� (2.9)

Strominger calculation holds for c� 1 and for large mass, large angular momentum black holes.
What AdS3 QG for c � 1 really is, it is still not clear (see recent developments about this topic in
Ref. [27, 28])

3. AdS2 quantum gravity with linear dilaton

The simplest theory of classical AdS2 gravity contains a scalar field (the dilaton η ), parame-
trizing (the inverse of) 2D Newton constant,

A �
1
2

�
d2x η

�
R�

2
l2

�
� (3.1)

The ensuing field equations do not allow for a constant dilaton but require a linear dilaton back-
ground. Black hole solutions of mass M are given by [29]

ds2 � �
�

r2

l2 �
2Ml
η0

�
dt2 �

�
r2

l2 �
2Ml
η0

��1

dr2� η � η0
r
l
� (3.2)

The BH entropy of the 2D black hole is [29]

S � 2πηh � 2π
�

2η0Ml� (3.3)

where ηh is the value of the dilaton at the black hole horizon.
Linear dilaton AdS2 quantum gravity has been formulated following closely the Brown-Hen-

neaux derivation of AdS3 QG [7]. Suitable boundary condition for the metric and Killing vectors
at the timelike boundary of AdS2 are

gtt � �r2

l2 �O�1� � gtr � O

�
1
r3

�
� grr �

l2

r2 �O

�
1
r4

�
� (3.4)

η � O�r� � χ t � ε�t��O

�
1
r2

�
� χ r ��rε̇�t��O

�
1
r

�
� (3.5)
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The ASG of AdS2 is generated by one single copy of the Virasoro algebra spanned by the L 0

generators in Eq. (2.7). Thus AdS2 quantum gravity can be seen as the chiral half of a 2D CFT.
The main difference between the AdS2 and the AdS3 case is the origin of the central charge c in
the Virasoro algebra (2.7). In the 2D case the origin of the central charge can be traced back to
the breaking of the SL�2�R� isometry of AdS2 owing to the linear dilaton background given by Eq.
(3.2) [30].

The central charge c can be calculated using a canonical realization of the ASG algebra [7] 1,

c � 12η0� (3.6)

Using Eq. (3.6), identifying l0 in terms of the black hole mass, l0 � Ml, the Cardy formula (1.1)
reproduces exactly the entropy of the AdS2 black hole given by Eq. (3.3).

4. AdS2 quantum gravity with constant dilaton and U(1) field

Recently Hartmann and Strominger have found an independent formulation of AdS 2 QG,
which works for a background with constant dilaton and differs in the mechanism generating the
central charge [13]. The classical theory considered in Ref. [13] is 2D Maxwell-Dilaton gravity,

I �
1
2

�
d2x
��g

�
η
�

R�
8
l2

�
� l2

4
F2
	
� (4.1)

where Fµν is the Maxwell tensor. The ensuing equations of motion admit solutionsdescribing AdS 2

endowed with a constant dilaton and U�1� field parametrized by a constant E. In the conformal
gauge the solutions are given by

ds2 � � l2

4σ2 dx�dx�� F�� � 2Eε��� A� �
El2

4σ
� η �

l4E2

4
� σ �

1
2
�x��x��� (4.2)

We fix the diffeomorphisms and U�1� gauge freedom using a conformal, respectively, Lorentz
gauge,

ds2 � �e2ρdx�dx�� ∂µAµ � 0� (4.3)

After gauge fixing, conformal diffeomorphisms are described by two arbitrary functions ε ��x���
ε��x�. The stress-energy tensor and the U�1� current are the constraints enforcing gauge fixing
and generate, respectively, residual diffeomorphisms and gauge transformations

T�� �
2��g

δ I
δg��

� �2∂�η∂�ρ�∂�∂�η�2∂�h∂�a � 0� (4.4)

J� � 2
δ I
δA�

��2∂�h � 0� (4.5)

where h is an auxiliary field used to linearize the quadratic term for the U�1� field and we have
dualized the vector potential Aµ in terms of a scalar a. If one now requires that the asymptotic

1The outcome of early calculations was two times the actual value of the central charge, c� 24η 0 [7]. The origin
of the mismatch has been later clarified in several independent ways [31, 32, 12].
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boundary of AdS2 remains at σ � 0 under the action of conformal diffemorphisms (this is equiv-
alent to fix boundary conditions for the metric) ε � is determined in terms of ε�. We are left with
only a chiral half of the 2D CFT. Analogously to the previous realization of AdS 2 QG the symmetry
algebra is one single copy of the Virasoro algebra.

Being the dilaton constant, one is led to conclude that we are dealing with pure 2D QG, which
has vanishing central charge [33]. This is not the case because of the presence of the U�1� field.
We need boundary conditions for the vector potential at σ � 0. Absence of charged current flow
out of the boundary of AdS2 requires Aµ�σ � 0� � 0. The problem is that this boundary condition
is not invariant under the action of conformal diffeomorphisms,

δεAµ�σ�0 �
l2E
2

∂ 2
�ε

��σ�0� (4.6)

This term can be cancelled by a gauge transformation A� A�∂λ with

λ �x�� � � l2E
2

∂�ε
�� (4.7)

Hence, the conformal symmetry group is a chiral half of conformal diffeomorphisms supplemented
by the gauge transformation (4.7). We have a twisted CFT. Conformal transformations are gener-
ated by Virasoro generators given in terms of an improved stress energy tensor,

L̃ �
1
2

�
dx�T̃��ε

�� T̃�� � T���
El2

4
∂�J�� (4.8)

The central charge in the Virasoro algebra can be calculated expanding in Laurent modes and using
the transformation law of the improved stress-energy tensor

δε T̃�� � ε�∂�T̃���2∂�ε
�T̃���

c
12

∂ 3
�ε

�� (4.9)

The transformation law of the original T�� is anomaly-free, but that of the current J� may have an
anomalous term proportional to its level k [13],

δλ J� � k∂�λ
�� (4.10)

This produces a central charge c in the Virasoro algebra given by,

c � 3kE2l4 �
3
4

k

�
π
G

lQ� (4.11)

Let us close this sections by summarizing the main results of the last two sections. We have two
different formulations of AdS2 QG; both are described by the chiral half of a 2D CFT but the origin
of the central charge is drastically different. In the first case, AdS2 with a linear dilaton, the central
charge is originated by the breaking of the conformal symmetry caused by a nonconstant dilaton
and is determined by 2D inverse Newton constant η 0. In the second case, AdS2 with a constant
dilaton and U�1� field, the central charge is produced by a Schwinger effect and by a twisting of
the CFT and is determined by the electric field E. To find a bridge between the two formulations
we have to go up to three dimensions and to bring into the play the charged BTZ black hole.

7
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5. The charged BTZ black hole

AdS gravity in three spacetime dimensions admits also charged black hole solutions, which
are the charged version of the BTZ black hole [34]. They are solution of the action

I �
1

16πG

�
d3x
��g�R�

2
l2 �4πGFµνFµν�� (5.1)

where Fµν is the electromagnetic (EM) field strength. Considering for simplicity solutions with
zero angular momentum, we have the two-parameter �M�Q� family of electric charged black hole
solutions [34]

ds2 � � f �r�dt2� f�1dr2 � r2dθ 2� f �r� ��8GM�
r2

l2 �8πGQ2 ln�
r
w
�� Ftr �

Q
r
� (5.2)

where M�w are constants and �∞ � t � �∞, 0 	 r ��∞, 0	 θ 	 2π . Notice that the parameter
w can be reabsorbed in the definition of M. The striking differences with the BTZ black hole is
represented by the presence of a power-law curvature singularity at r � 0. The charged BTZ black
hole has an inner, r � r�, and outer, r � r�, event horizon. It also has well-defined temperature
and entropy,

TH �
r�

2π l2 �
2GQ2

r�
� S �

πr�
2G

�
π l
G

�
2GM�2πGQ2 ln�

r�
w
�� (5.3)

The charged BTZ black hole has been considered as the Cinderella in the family of 3D AdS
black hole celebrities. The reason is that it has some unpleasant features. By varying the action
one gets logarithmic divergent boundary terms. This makes the mass of the solution a poorly
defined concept. Moreover, in order to avoid naked singularities one must impose a BPS-like
bound involving M and Q,

∆� 8GM�4πGQ2�1�2ln�
2Ql
w

�
πG��
 0� (5.4)

Unfortunately, this bound can be satisfied for arbitrary negative values of M, making the definition
of thermodynamic ensembles problematic.

These problems can be handled using renormalization group ideas and the IR/UV relation for
the AdS/CFT correspondence [20, 35]. The system is enclosed in a circle of radius r 0 (the UV
cutoff for the CFT), one takes r�r0 � ∞, keeping the ratio r�r0 � 1, and writes,

f �r� � �8GM0�r�w��
r2

l2 �8πGQ2 ln�
r
r0
�� M0�r0�w� � M�πQ2 ln�

r0

w
�� (5.5)

The parameter w is interpreted as a running scale and M�r0�w� is the regularized black hole mass,
the total energy (gravitational plus electromagnetic) inside a circle of radius r 0. Basically, one has
now two options:

1. M is kept fixed and the metric (hence the position of the horizon) is scale-dependent. In this
case M is seen as the black hole mass [34].

2. The metric (hence the horizon position) is w-independent and M runs with w [20, 35].

8
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Because we want to keep the horizon (the IR scale for the CFT) fixed, we use prescription 2.
M runs with w: w � λw�M � M � πQ2 lnλ � but M0 is w-independent. We fix now w � l and
r0 � r�. The invariant black hole mass, to be identified with the conserved charge associated with
time-translations, becomes

M0�r�� l� � M�πQ2 ln�
r�
l
�� (5.6)

This solves the problem of divergent boundary terms in the variation of the action (5.1). Moreover,
the use of the mass M0 of Eq. (5.6) instead of M as the energy of the system allows for a consistent
formulation of the thermodynamics of the charged BTZ black hole [36].

5.1 The near-horizon limit

We expect the generic near-horizon, extremal behavior of black branes given by Eq. (1.2) to
hold also for p � 0 and d � 3 not for asymptotically flat but for asymptotically AdS black holes.
Thus, we expect an AdS2�S1 near horizon geometry for our extremal charged BTZ black hole.

In the extremal limit the charged BTZ black hole saturates the bound (5.4), i.e. we have
∆ � 0� r� � r� � γ � 2

�
πGQl. Expanding near the horizon, r � γ � x one finds that the 3D

geometry factorize as AdS2�S1, whereas the EM field becomes constant,

ds2 � �
�

2
l2 x2�8G∆M

�
dt2�

�
2
l2 x2�8G∆M

��1

dr2 � γ2dθ 2� Ftx �
1

2
�
πGl

� (5.7)

where ∆M � M�M�γ� � M�πQ2� 1
2 � ln�2Q

�
πG�� is the mass above extremality. This black

hole solution shares with its higher-dimensional, asymptotically flat, cousins the thermodynamical
behavior. The extremal charged BTZ black hole is a state of zero temperature and constant entropy
Sext � πγ�2G. Thus, the charged BTZ black hole interpolates between an asymptotic, r�∞, AdS 3

geometry and a near horizon AdS2�S1 geometry.

6. Interpolating the two versions of AdS2 quantum gravity

The two limiting regimes, the asymptotic and near-horizon one, of the BTZ black hole can
be both described by an effective 2D Maxwell-Dilaton theory of gravity. The 2D effective theory
can be obtained performing a circular symmetric dimensional reduction 3D� 2D, with the dilaton
parametrizing the radius of the transverse circle and with an electric ansatz for the Maxwell field,
Ftθ � Frθ � 0,

ds2
�3� � ds2

�2�� l2η2dθ 2� (6.1)

The 2D Maxwell-Dilaton gravity theory turns out to be,

I �
1
2

�
d2x
��gη

�
R�

2
l2 �4πGF2

�
� (6.2)

The corresponding 2D field equations admit two classes of solutions whose metric part is always a
2D AdS spacetime:

� AdS2 with linear dilaton and Maxwell field Ftr � Q�r. This corresponds to the asymptotic
r� ∞ regime of the charged BTZ black hole.

� AdS2 with constant dilaton and electric field. This corresponds to the near horizon regime.

9
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6.1 AdS2 with linear dilaton

These solutions are nothing but the 3D solution written in a 2D form. They are given by the
2D sections of the 3D solutions (5.2) and with η � η̄0�r�l�. Owing to a scale symmetry, η � λη ,
of the 2D field equations, the constant η̄0 is determined by the dimensional reduction:

η̄0 �
l

4G
� (6.3)

Mass, temperature and entropy of the 2D black hole are the same as those of the 3D black hole.
The dual CFT can be constructed following the same procedure used in Sect. 3 for 2D dilaton

gravity without Maxwell field. There is, however, a non trivial detail. Not only the charge associ-
ated with the L0 Virasoro operator (the mass) diverges, but also the other charges associated with
the other Virasoro operators Lm. The renormalization procedure used in the previous section for
the mass allows also to define finite charges for the other Virasoro operators (see for details Ref.
[35]). It turns out that the central charge of the Virasoro algebra is also finite and matches exactly
that of pure AdS2 with linear dilaton,

c � 12η̄0 �
3l
G
� (6.4)

The EM field does not contribute to the central charge but only enters in the renormalization of the
eigenvalue of L0, which is given in terms the mass M0 of Eq. (5.6),

L0 � lM0�r�� l�� (6.5)

6.2 AdS2 with constant dilaton and electric field

The 2D field equations stemming from the action (6.2) admit also solutions describing AdS 2

with constant dilaton and electric field. They are given by the 2D sections of the near-horizon 3D
solution (5.7) . A Weyl transformation of the metric together with a rescaling by a constant of the
U�1� field strength brings the 2D action into the form [20],

I �
1
2

�
d2x
��g

�
η
�

R�
�∂η�2

η
�

2η
l2η0

�
� l2

2
F2
	
� (6.6)

The classical solutions are

ds2 � �� 2
l2 x2�a2�dt2��

2
l2 x2�a2��1dx2� Fµν � 2Eεµν �

η � 2l4E2� E2 �
1

4l3

�
π
G

Q� (6.7)

Apart from a trivial redefinition of the AdS length, this 2D model differs from the Hartmann-
Strominger model just for the presence of a kinetic term for the dilaton and a dilaton potentialV�η�.
In a constant dilaton background these terms do not contribute to the central charge. It is a simple
exercise to construct the dual twisted CFT describing AdS 2 QG using the Hartmann-Strominger
procedure described in Sect. 4 (see for details Ref. [20]). The central charge of the twisted CFT
turns out to be

c � 3kE2l4 �
3
4

k

�
π
G

lQ� (6.8)
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7. Microscopic black hole entropy

We can easily reproduce the Bekenstein-Hawking entropy of the 2D AdS black hole and hence
the entropy of the charged BTZ black hole calculating the asymptotic density of states for the linear
dilaton CFT. Using Eqs. (6.4), (6.5) and (5.6) into the Cardy formula (1.1) we find exactly the BH
entropy (5.3).

In principle, one should also be able to reproduce the entropy of the extremal (and near-
extremal) charged BTZ black hole by calculating the asymptotic density of states for the twisted
CFT. However this requires using in the Cardy formula the eigenvalues of the twisted operator L̃0

instead of that for the untwisted one. Careful analysis of the CFT spectrum and detailed knowledge
of the effect of twisting on the CFT Hilbert space is needed.

8. Conclusions

The two different realizations of AdS2 QG investigated in this paper describe different states:
AdS2 QG with linear dilaton describes Brown-Henneaux-like boundary excitations, which are rel-
evant for explaining the entropy of the BTZ black hole whereas AdS 2 QG with constant dilaton and
maxwell field describes D-brane-like excitations, which should account correctly for the entropy
of extremal BPS black holes. Both realizations have a dual gravitational description in terms of an
asymptotic and near-horizon geometry. Similarly to what happens for higher-dimensional charged
RN solutions, there is an interpolating gravitational solution, the charged BTZ black hole bridging
the two descriptions. These features make AdS2 QG a powerful tool for investigating microscopic
black hole physics and to shed light on several features of the AdS/CFT correspondence.

There is a long list of open questions and possible further developments. One should be able
to reproduce the entropy of extremal and near-extremal (BPS) black holes using the near-horizon
CFT. From the gravitational side this requires the use of the entropy function formalism [14, 37],
whereas from the CFT side requires careful investigation of the Hilbert space of the twisted CFT.

An other key issue is the understanding, at the pure 2D level, of the relationship between the
two sectors of 2D Maxwell-Dilaton gravity, the one with constant dilaton and the other with linear
varying dilaton. In Ref. [38] it has been shown that the constant dilaton sector requires a negative
2D Newton constant. A true unified description of both constant and linear dilaton sector would
shed light on these issues.

Also from the CFT point of view the relationship between the asymptotic CFT and the near-
horizon CFT is far from being understood. The relevant question here is whether or not these two
realizations correspond to two different conformal points. In the case of 3D AdS gravity minimally
coupled with a scalar field it has been shown that the two dual CFTs are related by renormalization
group flow and that the Zamolodchikov c-theorem holds [39]. Presently it is not clear if the same
holds for Maxwell-Dilaton AdS3 gravity.

Finally, one would like to extend our arguments to d � 3 spacetime dimensions. Here the main
question is whether or not the interpolating feature of the charged BTZ black hole is a peculiarity
of d � 3 and whether we can extend it to a wide class of charged and/or rotating black holes in
d � 3.
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