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We find eleven dimensional non-BPS black M-brane solutions from Kerr solution in M-theory
by using U-duality. Under the transformation four dimensional Kerr metric change to non-BPS
rotating intersecting M-brane solutions. To easy application for AdS/CFT correspondence we
must need a supersymmetric black brane solution, which limits special configuration of M-branes,
e.g., M2-M2-M2 branes in five dimensional black brane and M5-M5-M5 brane with pp-wave in
four dimensional one. In this case we may easily apply the AdS/CFT correspondence for non-BPS
black hole solutions.
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1. Introduction

AdS/CFT correspondence [1] is the most successful theory to describe strong coupling limit
for boundary conformal field theory. There is a holographic duality between bulk quantum gravity
and boundary quantum field theory. Four dimensional CFT is studied in all aspects because of CFT
interests, and its dual theory is based on five dimensional supergravity black hole solutions. In
recent years, Kerr/CFT correspondence are found only for the extremal limit case [2]. The paper
shows the reason of the finite entropy of the extremal Kerr black hole, even the Hawking tempera-
ture is zero. AdS/CFT correspondence are very useful to show that reason. However non-extremal
case we have no information about AdS/CFT correspondence, thus for non-extremal Kerr/CFT
correspondence we will give the M-brane configuration about non-extremal Kerr solution.

Non BPS black ring solutions [3] using the same method we use below, but these solutions
related to intersecting M2 ⊥ M2 ⊥ M2-brane solution in M-theory, or intersecting F1 ⊥ D2 ⊥ D2-
brane solution in type IIA string theory with compactification on one-dimensional torus of M-
Theory. These configuration in string theory is impossible to analysis for AdS/CFT correspondence
[1], because we must choose typical coordinates for the compact space for near horizon limit,
which is the kk-wave direction, but this solution has not any typical direction for compact spaces.
Thus we show the NS5 ⊥ D4 ⊥ D4-brane solutions from general axisymmetric four-dimensional
vacuum solution with two Killing vector, e.g., Kerr metric. We also get the general rotating black
string solutions, which is rotating four-dimensional black hole with extra one dimension, by the
M2 ⊥ M2 ⊥ M2-brane solutions from the Kerr metric.

In our previous work [4], black hole solutions with flat extra dimensions in M-theory are only
exist the specific configuration of intersecting M-branes. However the earlier study for the micro
state of Kerr black hole [5] using the D0⊥D6 branes, which is impossible to extension to the
supersymmetric black brane solution in four dimension. The supersymmetric black brane means
which have the regular event horizon with finite surface area.

Adding the new charge for the solution, we apply the boost for the ordinary metric along the
extra dimension. Applying T-duality for the boost solution, we find D3-brane given by four-form
field D4, which is the self-dual field strength dD4 = ∗(dD̃4). There are some technical difficulties
for the Hodge dual for the stationary spacetime, since the stationary black hole remains the non-
diagonal component after the boost. Such a component makes problem for integration in order to
get the explicit description of the dual field D̃4.

We will construct the intersecting M-brane solution consistent to the intersecting rule, and
avoiding the difficulties of integration we apply the final boost after the lifting up to the eleven
dimension. Thus we try to find the sequence to get the M5⊥M5⊥M5-brane soltuion, which is
related to the D4⊥D4⊥NS5 brane solutions in type IIA superstring theory.

2. From Kerr metric to Intersecting D-branes

Before charging up the vacuum solution, we introduce the Kerr metric, which is a stationary
solution of four-dimensional vacuum Einstein equation. The Kerr metric in spherical coordinate is
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written in

ds2 = − f (dt +Ω)2 +Σ2
(

dr2

∆
+dθ 2

)
+

∆
f

sin2 θdφ 2

where the metric functions are defined by

Σ2 = r2 +a2 cos2 θ , ∆ = r2 −2mr +a2

Ω =
2mr

Σ2 −2mr
asin2 θdφ , f = 1− 2mr

Σ2 .

The mass of the black hole is m and a is the specific angular momentum witch bounded for m ≥ a.
In the Kerr/CFT correspondence, we take the extremal limit m = a and near horizon limit r → r+,
where the event horizon r+ is determined by ∆ = 0. For simplicity we denote ds2 =− f (dt +Ω)2 +
ds2

base in below. The base metric ds2
base = γi jdxidx j are the orthogonal three-dimensional metric

written by the variables r,θ ,φ . The metric has the two Killing vector ξt and ξφ .
Adding the extra six flat dimension, the metric change to ds2+− f (dt +Ω)2+ds2

base +∑6
i=1 dz2

i .
This metric is also a solution of ten dimensional vacuum Einstein equation Rµν = 0. To add first
charge (D3-brane), we apply a sequence in below;

Bα2(z1) → T (z1) → S → T (z2) → T (z3) ,

then we find a D3-brane solution in type IIB supergravity. We denote Bα(z1) is boost for zi direction
with boost parameter α , T (zi) is T-dual for zi direction, and S is S-dual. To add second and third
charges, we take next sequence in below,

T (z4) → Bα1(z1) → T (z1) → S → T (z5) → T (z6) → T (z2) → B(z6) → T (z6) → S → T (z5) ,

then we find a D2 ⊥ D2 ⊥ D2 intersecting brane solution as

ds2 = −ξ−1/2 f (dt + c1c2c3Ω)2 +ξ 1/2ds2
base +ξ 1/2

[
h−1

1

2

∑
i=1

dz2
i +h−1

2

4

∑
i=3

dz2
i +h−1

3

6

∑
i=5

dz2
i

]
,

where ξ = h1h2h3 −β 2
t , βt = s1s2s3

macosθ
Σ2 . The dilaton field is e−2ϕ = ξ−3/2h1h2h3 and the gauge

fields are

Bziz j = h−1
α

cα

sα
βt , Ãt = −ξ−1βt f , Ãφ = −ξ−1βt f ω

C̃ziz jt =
2
3

h−1
α sαcα( f −1) , C̃ziz jφ =

2
3

h−1
α f c−1

α sαω .

where the pair of indices (i, j) = (1,2),(3,4),(5,6) are corresponding to α = 1,2,3, and ω =
c1c2c3Ω.

For the first example of a black hole solution, we continue to apply the U-duality for the
charging up the four-dimensional Kerr solutions. Next we try to apply another example related
to the rotating black string, which can be described by the Kerr metric with another one extra
dimension, and these solutions must possess the Gregory-Laflamme instability [6].
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2.1 Kerr solutions in String/M-theory

In order to get M5⊥M5⊥M5 brane solution, we must apply the sequence in following as

T (z1) → T (z3) → T (z5) → T (z2) → T (z4) → T (z6) ,

then we find the D4 ⊥ D4 ⊥ D4-brane solutions and we lift up the z7 direction and boost for the
same direction z7, then we find the M5 ⊥ M5 ⊥ M5-brane with pp-wave solutions in M-theory;

ds2 = Ξ1/3

[
h̄−1

1

2

∑
i=1

dz2
i + h̄−1

2

4

∑
i=3

dz2
i + h̄−1

3

6

∑
i=5

dz2
i

]
+Ξ1/3 [

−ξ−1 f (dt +ωdφ)2 +ds2
base

]
+Ξ−2/3ξ

(
dz7 + Âtdt + Âφ dφ

)2
, (2.1)

where the conformal factor can be written by Ξ = h̄1h̄2h̄3 and h̄i = ξ ĥ−1
i with ĥi = −s2

i f + c2
i g−1

i .
The function gi is determined by gi = 1 +(h1h2h3)−1h−1

i s−2
2 β 2

t . The three-form fields related to
M5-brane are given by

Ĉ(α)
7 ≡Cziz jz7 =

2
3

h̄−1
α s−1

α cαβt , Ĉ(α)
a ≡ C̃ziz ja =

8
3

D̂(α)
a + h̄−1

α s−1
α cαβt Âa ,

where the component of M5-brane fields and the metric components are given by

D̂(1)
t = −ξ−1h2s1c2c3D̃t , D̂(1)

φ = s2c2
[
D̃φ +(1−ξ−1h2c2

1c2
3)D̃tΩφ

]
D̂(2)

t = −ξ−1h1c1s2c3D̃t , D̂(2)
φ = s1c1

[
D̃φ +(1−ξ−1h1c2

2c2
3)D̃tΩφ

]
D̂(3)

t = −ξ−1h3c1c2s3D̃t , D̂(3)
φ = s3c3

[
D̃φ +(1−ξ−1h3c2

1c2
2)D̃tΩφ

]
Ât = s1c1s2c2s3c3

ma2 cos2 θ
Σ4

Âφ = −s1s2s3

(
c2

1c2
2c2

3 +
2rΣ2h1h2h3

r2 −a2 cos2 θ

)
ma3 sin2 θ cos2 θ

Σ4 .

We note that Kerr metric with flat dimensions has no Chern-Simons term, but there are exist in
eleven dimension after the charging up sequence, e.g., Ĉ(1)

7 ∧dĈ(2)
t ∧Ĉ(3)

φ or like that combinations.
The Chern-Simons terms gives the non-trivial effect of the topology for BPS black ring solutions,
and this effect change the Laplace equation for the harmonic function hi to the Poisson equation for
the non-harmonic function h̄i. Because of non conformally flat base space, supersymmetrie breaks
for φ direction, thus in the ordinary base space configuration we took maximally charge for three.

Finally we apply the boost for the z7 direction, then we find non-BPS four charge solution.
However if we took same special value for physical parameters, we find supersymmetric solution
with conformally flat base space. To Compactify extra seven dimensions (z1, · · · ,z7) on torus, we
find the four dimensional charged solution as

ds2 = −ϒ f (dt + ω̄dφ)2 +ϒ−1ds2
base , (2.2)

where ω̄ and ϒ are determined by

ω̄ = c4ω + s4(ωÂt − Âφ )

ϒ−2 = Ξ
(
−ξ−1 f s2

4 +Ξ−1ξ (c4 + s4Ât)2) ,
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In the Kerr metric case, the regularity condition for the rotating axis are the same as before, thus
the metric has no conical singularity at the ordinary event horizon r+ = m+

√
m2 −a2.

In the asymptotic region (r → ∞) the metric becomes flat and the ADM mass M = m(1 +
∑4

i=1 s2
i /2), the conserved charge Q =

√
2m∑4

i=1 sici/2 and the angular momentum J = c1c2c3c4a
are given in the asymptotic metric form. The surface gravity change as below

κ =
1

β 2
t+(c4 + s4Ât+)

r2
+−a2

4mr2
+

, (2.3)

where βt+ and Ât+ are defined by the substitution for r = r+. The surface area of the outer event
horizon

A =
∫

dθdφ
√

Σ2
(
ϒ−2γφφ − f ω̄2

)∣∣∣∣
r=r+

= 8πmr+c1c2c3

[
c4 −

1
2

a3s4

(
π
4
− a

r+
arctan

r+

a

)]
,

and we can show the thermodynamics with the physical parameter as the charge and angular mo-
mentum and the temperature, but the dilaton fields does not contribute.

The extremal solution (κ = 0) is given by m = a, which is as the same as ordinary Kerr metric.
The area surface is vanishing in the extremal limit of the ordinary Kerr metric, however the area
surface in M-theoretical Kerr metric doesn’t vanishing (A = 8πm2c1c2c3c4). Since cα is related
to the charge of M-brane (or D-brane), this non-vanishing area surface gives the microstate of
M-brane.

Sen gave the rotating charged black hole solution [7], which metric is given in

ds2 = −h−1
α f

(
dt + c2

αΩ
)2

+hαds2
base , (2.4)

where hα = −s2
α f +c2

α . Sen’s solution is included in our solution with the parameter c1 = c2 = cα

and c3 = c4 = 1, and this case the action is changing as φ1 = φ2 and φ3 = φ4 = 0 and ρα = 0 and
only A

(1)
a = A

(2)
a are exist.

3. Concluding remark

In this paper we have presented the charging up Kerr solution using the U-duality method.
Black hole solutions are presented by intersecting M-brane, and we have construct the intersecting
M-brane solution, which consistent to the supersymmetrical black hole solution given by our pre-
vious work [4]. The four-dimensional black hole solution is given by M5⊥M5⊥M5 brane solution
with traveling wave, and the five-dimensional black string solution is given by M2⊥M2⊥M2 brane
solution. Both of the solution exist the non-vanishing Chern-Simons term in M-theory, although
the Chern-Simons term in the ordinary Kerr metric with additional flat extra dimensions must be
vanishing. The Chern-Simons terms change the metric function given by Laplece equation to the
function given by Poisson equation.

The four-dimensional solution is represented by the charged dilaton black hole. The Maxwell
charge and the dilatons are coupled to each other, and the angular momentum are represented by

5
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the charges. Thus we are only possible to take the limit to vanishing the charges with the trivial
dilaton, and this limit gives static black brane solution [?]. The black hole has the regular extremal
limit to the BPS solution in four dimension with non-vanishing are surface, and the area surface
are represented by the micro state of M- or D-branes.

The five-dimensional solution is fully understood as the charged dilaton Kerr black hole with
flat extra one dimension with traveling wave along this extra direction. The charged-rotating black
string solution with regular event horizon is given in a higher dimensional Einstein-Maxwell theory
with a positive cosmological constant [9] , however we gave the another solution with regular event
horizon coupled to dilaton. The representation for M2 ⊥ M2 ⊥ M2-brane is the same configuration
as the non-BPS black ring solution given by [3], and tihs solution include the limit for R → ∞ for
the non-BPS two rotating charged black ring solution. The black string solution must have the
Gregory-Laflamme instability [10].

Since there are kk-wave mode in the ten-dimensional metric, the D-brane configuration of this
metric is suitable to apply the AdS/CFT correspondence. We will show the micro state of these
solutions in the context of AdS/CFT correspondence, and we will also show the regular solutions
with the specific physical parameters in subsequent paper, witch we are writing now. In the limit
for the CFT, we compare the micro state of Kerr black hole by D0 ⊥ D6-brane solutions given by
Horowitz et. al., [5].

By the way of this paper we only consider from the vacuum solutions, but adding the extra
dimension we can extend to the Einstein manifold with the constant gauge field, which satisfy the
Einstein and Maxwell equation in lower and higher dimension. In this formalism, including the one
rotating black ring case, we can apply the more interesting case, especially cosmology and black
hole dynamics.
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