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1. Introduction

Noncommmutativity & gravity. Heisenberg’s uncertainty principle together with Einsteins’ gen-
eral theory of relativity lead to the conclusion that the classical concept of spacetime loses its
meaning in the small. When measuring a spacetime coordinatewith great accuracya, there is an
uncertainty in momentum of the order 1/a. That is to say measuring small distances requires high
energies, which will curve locally the region of spacetime you want to measure. When the gravi-
tational field becomes so strong as to prevent any signal fromescaping that region the operational
meaning of this localization gets lost. The process of measuring a spacetime coordinate to infinite
accuracy is thus as a matter of principle not possible.

It has been shown in a fundamental paper by Doplicher, Fredenhagen and Roberts [1] that the
above argument leads to uncertainty relations for the spacetime coordinates which can be derived
from noncommuting spacetime coordinates, such as

[xµ ,xν ] = iθ µν . (1.1)

One can then study so called called “noncommutative (NC) quantum field theories” on spaces with
such noncommuting coordinates; for basic reviews see e.g. [2, 3]. In NC field theories quantum
fluctuations of spacetime coordinates occur naturally. Thus it is believed that these theories could
play an important rôle on the way towards a quantum theory of gravity. Recently, a specific realiza-
tion of this idea was published under the name of “emergent noncommutative gravity,” see [4] and
[5–8]. There, matrix models of noncommutative gauge theorydescribe dynamical noncommutative
spaces. The main lesson learned is that gravity is already contained in noncommutative gauge the-
ories. There is no need to add new concepts. Here we discuss specific results of this approach: We
study the successful coupling of fermions to the framework of emergent noncommutative gravity.
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2. Matrix models and effective geometry

Consider the matrix model action

SYM = −Tr[Ya,Yb][Ya′ ,Yb′ ]gaa′gbb′ (2.1)

for
gaa′ = δaa′ or gaa′ = ηaa′ (2.2)

in the Euclidean resp. Minkowski case.gaa′ should not be interpreted as a fixed, physical back-
ground metric, but rather as a prescription to fix the signature. Here the “covariant coordinates”
Ya for a = 1,2,3, are hermitian matrices or operators acting on some Hilbert spaceH . We will
denote the commutator of two matrices as

[Ya,Yb] = iθab (2.3)

so thatθab ∈ L(H ) is an antihermitian matrix, which isnotassumed to be constant here. We study
configurationsYa (not necessarily solutions of the equation of motion) whichcan be interpreted as
quantizations of a Poisson manifold(M ,θab(y)) with general Poisson structureθab(y). This de-
fines the geometrical background under consideration, and essentially any (local) Poisson manifold
is a possible backgroundYa. In particular, we assume thatθab is small and well approximated by
the classical Poisson structureθab(y) in a semi-classical expansion. More formally, this means that
there is an isomorphism of vector spaces

C (M ) → A ⊂ L(H ) (2.4)

whereC (M ) denotes the space of functions onM , andA is the algebra generated byYa, in-
terpreted as quantized algebra of functions. In particular, Ya corresponds to a classical coordinate
function1 ya on M . This can be used to define a star product onC (M ). Moreover,Ya defines a
derivation onA via

[Ya, f ] ∼ iθab(y)∂b f (y). (2.5)

In this paper, we restrict ourselves to the “irreducible” case, i.e. we assume thatA is in some
sense dense inL(H ). Then any matrix (“function”) inL(H ) can be expressed as a function ofYa

resp. ya. From the gauge theory point of view in Section 4, it means that we restrict ourselves to
theU(1) case. This is most interesting for us since the UV/IR mixing (see Sect. 5) happens in the
trace-U(1) sector. For the general case see [4,8].

Scalars. To begin with, we consider the case of scalar fields i.e. hermitian matricesΦ coupled
to the matrix model (2.1). There it is seen most easily how theeffective metric appears. The
only possibility to write down kinetic terms for matter fields is through commutators2 [Ya,Φ] ∼

1The coordinatesya are preferred ones since in their framegaa′ equalsδaa′ resp.ηaa′ . In other framesgaa′ will not
be constant.

2Throughout this paper,∼ indicates the leading contribution in a semi-classical expansion in powers ofθ ab.

3



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
3
7

Fermions coupled to emergent noncommutative gravity Daniela Klammer

iθab(y) ∂
∂yb Φ, and one is lead to the action

S[Φ] = (2π)2 Trgaa′ [Y
a,Φ][Ya′ ,Φ] ∼

∫
d4yρ(y)Gab(y)

∂
∂yaΦ(y)

∂
∂yb Φ(y). (2.6)

Here

Gab(y) = θac(y)θbd(y)gcd (2.7)

is the effective metric for the scalar fieldΦ. The Poisson manifold naturally acquires a metric struc-
ture (M ,θab(y),Gab(y)) determined by the Poisson structure. The metric is thus no fundamental
building block of the theory. We also used Tr∼

∫
d4yρ(y), where

ρ(y) = (detθab(y))−1/2 = |Gab(y)|
1/4 ≡ e−σ (≡ Λ4

NC(y)) (2.8)

is the symplectic measure on(M ,θab(y)) which can be naturally interpreted as non-commutative
scaleΛ4

NC. After appropriate rescaling ofGab(y), this can be rewritten in covariant form

S[Φ] =

∫
d4yG̃ab(y)∂yaΦ∂ybΦ (2.9)

with the effective metric

G̃ab = |Gab|
1/4 Gab = ρ(y)Gab, |G̃ab| = 1 (2.10)

being unimodular in the preferredya coordinates.

Fermions. The most obvious action for a spinor which can be written downin the matrix model
framework3 is

S= (2π)2 TrΨγa[Y
a,Ψ] ∼

∫
d4yρ(y)Ψiγaθab(y)∂bΨ (2.11)

ignoring possible nonabelian gauge fields here to simplify the notation. This is written for the case
of Minkowski signature, the Euclidean version involves theobvious replacement̄Ψ → Ψ†. This
defines the (matrix) Dirac operator

6DΨ = γa[Y
a,Ψ] ∼ iγaθab(y)∂bΨ. (2.12)

We can compare this with the standard covariant derivative for spinors

6DcommΨ = iγa eµ
a

(
∂µ + Σabωab

µ

)
Ψ (2.13)

where
ωab

µ = i
1
2

eaν
(

∇µeb
ν

)
(2.14)

is the spin connection, andΣab = i/4[γa,γb] is the representation of the Lorentz algebra. Comparing

3In particular, fermions should also be in the adjoint, otherwise they cannot acquire a kinetic term. This does not
rule out its applicability in particle physics, see e.g. [13].
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(2.12) with (2.13), we observe again that in the geometry defined by (2.7),

eµ
b (y) := θ µc(y)gcb (2.15)

plays the rôle of a preferred vielbein. However this must be used with great care, because the
distinction between the coordinate indexµ and the Lorentz indexa is lost in the special “gauge”
inherent in (2.15).

One notices that the spin connection does not appear in (2.11), which seems very strange at
first. In spite of this strange feature, the action (2.11) is agood action for a fermion propagating in
the geometry defined bỹGab. To see this, recall that the spin connection determines howthe spinors
are rotated under parallel transport along a trajectory. However, the spin-connectionωab

µ can always
be eliminated (via parallel-transport resp. a suitable gauge choice) along an open trajectory. Then
the conventional kinetic term (2.13) boils down to (2.11). Therefore in the point-particle limit,
the trajectory of a fermion with action (2.11) will follow properly the geodesics of the metric4

G̃ab, albeit with a different rotation of the spin. Furthermore,the induced gravitational action
obtained by integrating out the fermion in (2.11) indeed induces the expected Einstein-Hilbert term∫

d4yR[G̃]Λ2 at least for “on-shell geometries”, albeit with an unusual numerical coefficient and
an extra term depending onσ . All this shows that (2.11) defines a reasonable action for fermions
in the background defined bỹGab.

Equations of motion. So far we considered arbitrary background configurationsYa as long as
they admit a geometric interpretation. The equations of motion derived from the action (2.1)

[Ya, [Ya′ ,Yb]]gaa′ = 0
semi−cl. limit

→ θma∂mθnbgab = 0 (2.16)

select on-shell geometries among all possible backgrounds, such as the Moyal-Weyl quantum plane
(4.2). However since we are interested in the quantization here, we will need general off-shell
configurations below.

3. Quantization and induced gravity

Next we study the quantization of our matrix model coupled tofermions. In principle, the
quantization is defined in terms of a (“path”) integral over all matricesYa andΨ. In 4 dimensions,
we can only perform perturbative computations for the “gauge sector”Ya, while the fermions can
be integrated out formally in terms of a determinant. Let us focus here on the effective action at
one loop5 obtained by integrating out the fermionic fields,

e−ΓΨ =
∫

dΨdΨ̄e−S[Ψ] with ΓΨ = −
1
2

Tr log 6D2 . (3.1)

for a non-interacting fermionic field with action Eq. (2.11).

4for massless particles, the geodesics ofG̃ab coincide with those ofGab. Masses should be generated spontaneously,
which is not considered here.

5For the sake of rigor we work in Euclidean case now.
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Square of the Dirac operator and induced action. The square of the Dirac operator takes the
following form

6D2Ψ = γaγb[Y
a, [Yb,Ψ]] ∼−γaγbθac∂c(θbd∂dΨ) = −Gcd∂c∂dΨ−ad∂dΨ, (3.2)

with

ad = γaγbθma∂mθdb = −2i Σabθac∂cθbd +gabθac∂cθbd. (3.3)

6D2 defines the quadratic form

Ssquare= (2π)2 TrΨ† 6D2Ψ ∼

∫
d4yρ(y)Ψ† 6D2Ψ =

∫
d4y|Gab|

1/4Ψ† 6D2Ψ, (3.4)

which is very similar to the scalar action. In terms of the unimodular metricG̃ab Eq. (2.10),Ssquare

can be written in standard covariant form

Ssquare=
∫

d4y
√

|G̃| Ψ˜6D2Ψ with ˜6D2Ψ = −
(

G̃cd∂c∂dΨ+e−σ ad∂dΨ
)

. (3.5)

We now compute the effective action using

1
2

Tr(log˜6D2− log˜6D2
0) = −

1
2

Tr
∫ ∞

0
dα

1
α

(
e−α˜6D2

−e−α˜6D2
0

)
e−

1
2αΛ̃2 , (3.6)

whereΛ̃2 denotes the cutoff for̃6D2 regularizing the divergence for smallα . Now we can apply the
heat kernel expansion

Tre−α ˜6D2
= ∑

n≥0

(α
2

) n−4
2
∫

M

d4y an

(
y,˜6D2

)
(3.7)

where the Seeley-de Witt coefficientsan(y,˜6D2) are given by [14]

a0(y) =
1

16π2 tr1l,

a2(y) =
1

16π2 tr

(
R[G̃]

6
1l+E

)
,

E = −G̃mn
(

∂mΩn + ΩmΩn− Γ̃k
mnΩk

)
, (3.8)

Ωm =
1
2

G̃mn

(
e−σ an + Γ̃n

)
, (3.9)

where tr denotes the trace over the spinorial matrices. The effective action is therefore

ΓΨ =
1

16π2

∫
d4y

(
2tr(1l) Λ̃4 + tr

(
R[G̃]

6
1l+E

)
Λ̃2 +O(logΛ̃)

)
, (3.10)

where tr(1l) = 4 assuming Dirac fermions. Everything is expressed in termsof the unimodular

6



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
3
7

Fermions coupled to emergent noncommutative gravity Daniela Klammer

metricG̃ab, which can be written in terms ofGab using

R[G̃] = ρ(y)

(
R[G]+3∆Gσ −

3
2

Gab∂aσ∂bσ
)

,

∆Gσ = Gab∂a∂bσ −Γc∂cσ ,

Γa = GbcΓa
bc,

e−σ(y) = ρ(y) = (detGab)
1/4 ,

Γ̃a = G̃cdΓ̃a
cd = e−σ Γa−e−σ (∂bσ)Gba. (3.11)

Note the relative minus sign of the various terms in the effective actionΓΨ compared with the
induced action due to a scalar field [5],

ΓΦ =
1

16π2

∫
d4y

(
−2Λ̃4−

1
6

R[G̃]Λ̃2 +O(logΛ̃)

)
. (3.12)

hence
ΓΨ +4ΓΦ =

1
16π2

∫
d4ytrE Λ̃2 . (3.13)

This expresses the cancellation of the induced actions due to fermions and bosons, apart from theE

term. For the standard coupling of Dirac fermions to gravityon commutative spaces, one has [15]

trEcomm= −R (3.14)

which originates from an additional constant term−1
4R in 6D2

comm (Lichnerowicz’s formula). In
our case,E turns out to be somewhat modified due to the missing spin connection, nevertheless it
contains the appropriate curvature scalar plus an additional term, see Eq. (3.24).

Ricci scalar in terms of θmn. The curvature is given as usual by

Rabc
d = ∂bΓd

ac−∂aΓd
bc+ Γe

acΓ
d
eb−Γe

bcΓ
d
ea. (3.15)

The Ricci scalar is then

R= GacRb
abc = Gac

(
∂bΓb

ac−∂aΓb
bc+ Γe

acΓ
b
eb−Γe

bcΓ
b
ea

)
. (3.16)

By plugging in the explicit formula for metric tensor,

Gmn(y) = θma(y)θnb(y)gab (3.17)

one can express the Ricci scalarR in terms ofθ . By making use of the Jacobi identity,

∂aθ−1
bc + ∂cθ−1

ab + ∂bθ−1
ca = 0 (3.18)

∂aθ pq = −
(
∂cθ−1

am

)
(θmpθcq−θmqθcp) , (3.19)

and by exploiting relations coming from partial integration several terms appearing in the compu-

7
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tation of trE andR[G̃] are equivalent6. After a rather lengthy computation, which can be found
in [6], one yields the following compact form for the Ricci scalar in terms of the unimodular metric
G̃ab

∫
d4yR[G̃]Λ̃2 = e−σ

{1
2

Gmk(∂kθ−1
na

)
Gnl (∂l θ−1

mb

)
gab−

1
2

GmnGpq(∂pθ−1
ma

)(
∂qθ−1

nb

)
gab

−
1
2

(∂pθ pa)Gqk(∂kθ−1
qa

)
+

1
2

Gmn(∂mσ)(∂nσ)
}

Λ̃2. (3.20)

Evaluation of trE . We also need to evaluate

trE = −trG̃ab
(

∂aΩb + ΩaΩb− Γ̃r
abΩr

)
, (3.21)

where

Ωm =
1
2

G̃mn
(
ãn + Γ̃n

)

=
1
2

(
Gmnγaγbθ pa

(
∂pθnb

)
−Gmn(∂pGpn)+ ∂mσ

)
(3.22)

andãn = e−σ an. For the computation of trE we use again the Jacobi identity (3.18) and relations
from partial integration and we find:

trE = e−σ
{

GklGmn
(
∂kθ−1

ma

)(
∂l θ−1

nb

)
gab−Gmk

(
∂kθ−1

na

)
Gnl
(
∂l θ−1

mb

)
gab
}
. (3.23)

Comparing with (3.20) for̃Λ2 regarded as constant cutoff of∆G̃, we can write this as

trE = −2R[G̃]− (∂pθ pa)Gqk(∂kθ−1
qa

)
+Gmn(∂mσ)(∂nσ)

eom
= −2R[G̃]+Gmn∂mσ∂nσ , (3.24)

assuming on-shell geometries (2.16) in the last line. This formula applies for Dirac fermions, and
with an additional factor12 for Weyl fermions. It is remarkable that trE is essentially given by
the appropriate curvature scalarR[G̃], and up to a contribution from the dilaton-like scaling factor
ρ = e−σ . This is a very reasonable modification of the standard result (3.14), as desired and tells
us that Einstein-Hilbert action also emerges for fermions at one-loop.

4. Relation with gauge theory on R
4
θ

One motivation to study NC field theories comes from the fact that NC spacetime coordinates
in the small tend to cure the UV divergencies. However, the supposedly removed divergencies reap-
pear in the infrared limitp→ 0. This effect is the notoriousUV/IR mixingwhich spoils renormal-
izability [17]. In the framework of emergent noncommutative gravity the UV/IR mixing problem
of noncommutative gauge theories is understood in terms of an induced gravity action. In order
to show this we want to interpret the fermionic action (2.11)as action for a Dirac fermion on the
Moyal-Weyl quantum planeR4

θ coupled to aU(1) gauge field in the adjoint. This point of view is

6By means of these relations one can also check that the action(3.4) is indeed hermitian.

8
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obtained by writing the general covariant coordinate resp.matrixYa as

Ya = Xa +A
a . (4.1)

HereXa are generators of the Moyal-Weyl quantum plane, which satisfy

[Xa,Xb] = iθ̄ab, (4.2)

whereθ̄ab is a constantantisymmetric tensor. These are particular solutions of the equations of
motion (2.16). The effective geometry for the Moyal-Weyl plane is flat, given by

ḡab = θ̄acθ̄bdgcd

g̃ab = ρ̄ ḡab, detg̃ab = 1

ρ̄ = (detθ̄ab)−1/2 = |ḡab|
1/4 ≡ Λ4

NC . (4.3)

Consider now the change of variables

A
a(x) = −θ̄abAb(x) (4.4)

whereAa are hermitian matrices interpreted as smooth functions onR
4
θ̄ . Thus we can write

[Ya, f ] = [Xa+A
a, f ] = iθ̄ab

(
∂

∂xb f + i [Ab, f ]

)
≡ iθ̄abDb f , (4.5)

giving for the quadratic form (3.4)

Ssquare = (2π)2 Tr Ψ†γaγb

[
Ya,
[
Yb,Ψ

]]

= −

∫
d4xρ̄ Ψ† γaγbθ̄amθ̄bnDmDnΨ

=

∫
d4xΨ†˜6D2

AΨ . (4.6)

This is an exact expression onR
4
θ , where

˜6D2
A = −ρ̄ γaγbθ̄amθ̄bnDmDn = − γ̃mγ̃nDmDn , (4.7)

and
γ̃a = (detḡab)

1
8 γb θ̄ba, {γ̃a, γ̃b} = 2g̃ab . (4.8)

We now want to rewrite the geometrical results of Section 3 interms of gauge theory onR4
θ in

x-coordinates. To do this, note that most formulas of Section3 are not generally covariant, but only
valid in the preferredy-coordinates defined by the matrix models wheregab = δab resp.gab = ηab.
Eq. (4.1) defines the leading-order relation betweeny andx coordinates,

ya = xa− θ̄abĀb +O(θ2) . (4.9)

9



P
o
S
(
B
H
s
,
 
G
R
 
a
n
d
 
S
t
r
i
n
g
s
)
0
3
7

Fermions coupled to emergent noncommutative gravity Daniela Klammer

See [6] for details of this change of variables. Let us moreover denote∂̄a = ∂/∂xa. The Poisson
tensor can be written in terms of theu(1) field strength as

iθab(y) =
[
Ya,Yb

]
= iθ̄ab− iθ̄acθ̄bdF̄cd, (4.10)

whereF̄cd is a rank two tensor inx coordinates onR4
θ . We also need the effective metric (2.7) in

x-coordinates,

Gab =
(
θ̄ac− θ̄aiθ̄c jF̄i j

)(
θ̄bd− θ̄beθ̄d f F̄e f

)
gcd. (4.11)

We find for the one-loop induced action

ΓΨ =

∫
d4y
(

a0Λ̃4 +a2Λ̃2 +O
(

logΛ̃
))

= −4ΓΦ −
1

16π2

∫
d4y

ρ(y)
2

ḡacḡbdF̄ab∂̄ 2F̄cdΛ̃2. (4.12)

Finally, there is a nontrivial relation between the cutoffΛ̃ of the geometrical action and the cutoff
Λ of theu(1) gauge theory, which follows from the identity

Ssquare= Tr Ψ†γaγb

[
Ya,
[
Yb,Ψ

]]
=

∫
d4yΨ†˜6D2

G̃Ψ =

∫
d4y

ρ(y)
ρ̄

Ψ†˜6D2
AΨ. (4.13)

For the Lapacians this means
˜6D2

G̃ =
ρ(y)

ρ̄
˜6D2

A. (4.14)

Since we implement the cutoffs using Schwinger parameterization they are related as follows

Λ̃2 =
ρ(y)

ρ̄
Λ2. (4.15)

This makes sense providedρ(y)/ρ̄ varies only on large scales respectively small momentap≪ Λ,
which is our working assumption. We obtain as a final result for the geometric one-loop effective
action expressed in terms of gauge theory onR

4
θ

ΓΨ = −4ΓΦ −
∫

d4xρ̄
Λ2

2
ḡacḡbdF̄ab∂̄ 2F̄cd

= −4ΓΦ +

∫
d4p

(2π)4 g̃acg̃bdF̄ab(p)F̄cd(−p)
p2

Λ4
NC

Λ2

2
(4.16)

wherep2 = pi p jgi j . This agrees precisely with the one-loop computation in thegauge theory point
of view obtained below. Note that the last term corresponds to trE in (3.13).

5. Comparison with UV/IR mixing

In this section, we compare the geometrical form of the one-loop effective action obtained in
the previous section with the one-loop effective action obtained from the gauge theory point of

10
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view. The strategy is to apply first the concept of covariant coordinates to obtain a noncommutative
gauge theory coupled to fermions and compute thereafter theone-loop effective action. The result
is of course the same, which provides not only a nontrivial check for our geometrical interpretation,
but also sheds new light on the conditions to which extent thesemi-classical analysis of the previous
section is valid. This generalizes the results of [5] to the fermionic case. We find as expected that the
UV/IR mixing terms obtained by integrating out the fermionsare given by the induced geometrical
resp. gravitational action (3.10), in a suitable IR regime.In particular, we need an explicit, physical
momentum cutoffΛ.

Using the variables and conventions of the previous section, the action (2.11) can be exactly
rewritten asU(1) gauge theory onR4

θ , which in the Euclidean case takes the form

S[Ψ] = (2π)2 TrΨ†γa[Y
a,Ψ]

=

∫
d4xΨ̃†iγ̃a(∂̄aΨ̃+ ig[Aa,Ψ̃]) (5.1)

We introduce an explict coupling constantg, and define a rescaled fermionic field

Ψ̃ = |ḡab|
1
16 Ψ (5.2)

in order to obtain the properly normalized effective metricg̃ab; we will omit the tilde onΨ hence-
forth. Recall also that onlyU(1) gauge fields are considered here, because only those correspond
to the nontrivial geometry considered in the previous section.

We need theO(A2) contribution to the one-loop effective action obtained by integrating out
the fermionic fieldΨ. While this computation has been discussed several times inthe literature
[16–20], the known results are not accurate enough for our purpose, i.e. in the regimep2,Λ2 < Λ2

NC

where the semiclassical geometry is expected to make sense.We need to analyze carefully the IR
regime of the well-known effective cutoffΛe f f(p) (5.7) for non-planar graphs asp→ 0, keeping
Λ fixed. In this regime the non-planar diagrams almost coincide with the planar diagrams, and the
leading IR corrections due to the nonplanar diagrams correspond to the induced geometrical terms
in (3.10). This has not been considered in previous attemptsto explain UV/IR mixing, e.g. in terms
of exchange of closed string modes [21,22].

To proceed we use the fermionic Feynman rules and consider the Feynman diagram in Figure
1 corresponding to

ΓΨ = −
1
2

Tr log∆0−
g2

2

〈∫
d4xρ̄ Ψ̄γ̃a[Aa,Ψ]

∫
d4yρ̄ Ψ̄γ̃b[Ab,Ψ]

〉

= −
1
2

Tr log∆0 + ΓΨ(A). (5.3)

The minus sign in front is due to the fermionic loop. This integral looks explicitly as follows

ΓΨ = −4g2
∫

d4p
(2π)4 Aa′(p)Ab′(−p) g̃a′ag̃b′b

∫
d4k

(2π)4

2kakb +kapb + pakb− g̃abk(k+ p)

(k ·k)((k+ p) · (k+ p))

×
(

e−iki θ i j pj −1
)

(5.4)
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Figure 1: Fermionic one-loop diagram.

which is quite close to the bosonic case, using the notation

k ·k≡ kik j g̃
i j k2 ≡ ki k jg

i j . (5.5)

An evaluation of the integral gives

ΓΨ = −4ΓΦ −g2nf

∫
d4p

(2π)4 Aa′(p)Ab′(−p) g̃a′ag̃b′b (papb− g̃abp· p)

1
8π2

∫ 1

0
dz
(

K0(2

√
z(1−z)p· p

Λ2 )−K0(2

√
z(1−z)p· p

Λ2
e f f

)
)

, (5.6)

for Dirac fermions, where

Λ2
e f f =

1

1/Λ2 + 1
4

p2

Λ4
NC

= Λ2
e f f(p) (5.7)

is the “effective” cutoff for non-planar graphs, andΛNC is defined in (4.3). To proceed we consider
the IR regime

p2Λ2

Λ4
NC

< 1. (5.8)

Then bothΛ andΛe f f are large, and we can use an asymptotic expansions for the Bessel function

K0

(
2

√
m2

Λ2

)
= −

(
γ + log(

√
m2

Λ2 )

)
+O

(m2

Λ2 log(
Λ
m

)
)
. (5.9)

Moreover, in the valid regimepΛ < Λ2
NC one is allowed to expand the effective cutoff

Λ2
e f f = Λ2− p2 Λ4

4Λ4
NC

+ ... , Λ4
e f f = Λ4− p2 Λ6

2Λ4
NC

+ ... . (5.10)

We obtain our final result

ΓΨ +4ΓΦ ∼
1
4

g2

16π2

∫
d4p

(2π)4 g̃a′ag̃b′b F̄ab(p)F̄a′b′(−p)
p2Λ2

Λ4
NC

,

=
1
4

g2

16π2

∫
d4p

(2π)4 ρ̄2Λ2p2 ḡa′aḡb′b F̄ab(p)F̄a′b′(−p) , (5.11)

wherep2 = papbgab. There are obvious modifications due to the appropriate expansion ofΛ2
e f f if

one approaches the border of the IR regime (5.8).
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To compare this with the geometrical results, we must take into account the different regu-
larizations used in the heat-kernel expansion (3.6) and in the above one-loop computation. It was
shown in [5] that these regularizations agree if we replaceΛ2 with 2Λ2 in the one-loop computa-
tion above7. We then find complete agreement with the result (4.16) obtained using the geometrical
point of view. Notice in particular that the induced gravitational action is nontrivial even in the case
of e.g.N = 1 supersymmetry. This is now understood in terms of induced gravity, and full cancel-
lation is obtained only in the case ofN = 4 supersymmetry. This will be discussed below.

Cancellations and supersymmetry It is very interesting to compare the fermionic and the bosonic
contribution to the gravitational action. As is well-known[16, 19], we note that the fermionic
contribution to the one-loop effective action in NC gauge theory does not quite cancel the scalar
contribution, due to (5.11). This means that even in supersymmetric cases some UV/IR mixing
may remain. From the geometrical point of view, this terms corresponds to a gravitational action
trE Λ̃2 = −2R[G̃] Λ̃2+ ..., so that the cutoff̃Λ2 should be interpreted as effective gravitational con-
stant 1

G. This is completely analogous to the commutative case, where the gravitational term (3.14)
is induced. The remaining UV/IR mixing term cancels only in the case ofN = 4 supersymmetry.
We can therefore identifỹΛ as the scale ofN = 4 SUSY breaking (assuming such a model), above
which the model is finite. These observations strongly suggest that for the model to be well-defined
at the quantum level,N = 4 SUSY is required above the gravity scale i.e. the Planck scale. This is
realized by the IKKT model [10] on a NC background.

6. Discussion and outlook

In this paper, fermions are studied in the framework of emergent noncommutative gravity, as
realized through matrix models of Yang-Mills type. The matrix model strongly suggests a partic-
ular fermionic term in the action, corresponding to a specific coupling to a background geometry
with nontrivial metricG̃µν . This coupling is similar to the standard coupling of fermions to a
gravitational background, except that the spin connectionvanishes in the preferred coordinates
associated with the matrix model.

The main result of this paper is that in spite of this unusual feature, the resulting fermionic
action is very reasonable, and properly describes fermionscoupled to emergent gravity. In the point
particle limit, fermions propagate along the appropriate trajectories, albeit with a different rotation
of the spin. At the quantum level, we find an induced gravitational action which includes the
expected Einstein-Hilbert term with a modified coefficient,as well as an additional term for a scalar
density reminiscent of a dilaton. There are further terms which vanish for on-shell geometries. We
conclude that the framework of emergent gravity does extendto fermions in a reasonable manner,
and might well provide - in a suitable extension - a physically viable theory of gravity.

In a second part of the paper, we compare this induced gravitational action with the well-
known UV/IR mixing in NC gauge theory due to fermions. Generalizing the results in [5] for
scalar fields, we find as expected that the UV/IR mixing can be explained precisely by the gravita-
tional point of view. This also provides a nice understanding for the fact that some UV/IR mixing

7while this was strictly speaking established only for the bosonic case, the argument should extend to the fermionic
case without difficulties.
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remains in supersymmetric cases, and only disappears forN = 4 supersymmetry. The reason is
that a gravitational action is induced even in supersymmetric cases, except inN = 4 SUSY. This in
turn leads to the conjecture that the gravitational constant should be related to the scale ofN = 4
SUSY breaking, which is quite reasonable. All of these findings suggest that the IKKT model on a
noncommutative background [9–12] should be the most promising candidate for a realistic version
of emergent gravity. These issues will be discussed in more detail elsewhere.
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