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1. Introduction

In the realm of smallx physics, hard processes are adequatly described witheagik, —
factorization. The major ingredient is the unintegratedogl density of a nucleon [1]. Heavy
nuclei bring in a new scale, the saturation sda}'\téx) which grows with the opacity — or size — of
the nucleus [2]. From a different point of view, multiple gluexchanges between, say, a projectile
color dipole and the target nucleus are enhanced by the $iwgef a nucleus. Heavy nuclei then
provide us with an opportunity to study the physics of a regh strong absorption/rescattering
corrections in a fairly systematic fashion, where we onlgchto account for (and “resum”) those
contributions in perturbation theory which grow with theesof the target.

An important issue is then what will be the fate of lindarfactorization in a nuclear en-
vironment, or more generally in a regime of a large satunasicale. It turned out, illustrated on
the example of dijets in deep inelastic scattering [3], {hear k —factorization is broken and
must be replaced by a new concept, called non-likgafactorization. The latter emerges as a
generic feature of the pQCD approach to hard processes itlaanienvironment, where hard
cross sections turn out to be nonlinear functionals of agngplefined nuclear unintegrated glue
[3,4,5,6,7,8, 9], which we will discuss further below.

Let us stress that a statement of factorisation —or the hmgdhkereof— is in fact one about
the relations between different observables. For examyide in the familiar lineark, factori-
sation the spectrum of dijets in the current fragmentategion simply maps out the transverse
momentum dependence of the same unintegrated gluon digintwhich enters the inclusive DIS
structure function [10], there is no such simple relatiotwaen dijets and inclusive DIS on a
nuclear target.

Explicit quadratures for all cases of interest can be fomrmbir series of papers quoted above.
Other approaches to the problem of factorization in a saturaegime are found in the reviews
[11]. Itis quite remarkable that the formalism of nonlingar-factorization gives in a surprisingly
straightforward manner access not only to fully inclusige— and dijet cross sections, but also
to topological cross sections [8].

Return once more to DIS: after multiple gluon exchanges &eittheqq color dipole and the
nucleus, the nuclear debris will be left in a state with nmléticolor excited nucleons. Cross sec-
tions for final states with a fixed number of cut pomerons (¢orcexcited or “wounded” nucleons)
are called topological cross sections. It is customary sxiee topological cross sections in a
language of unitarity cuts through multipomeron exchaniggrdms [12]. In an obvious manner,
color excited nucleons in the final state give a clear—cutdin of a cut pomeron.

Topological cross sections carry useful information on ¢berelation between forward or
midrapidity jet/dijet production and multiproduction ine nuclear fragmentation region. They are
also closely related to the important concept of centralfts collision.

We will now turn to a brief review of the formalism of nonlinga, —factorisation, paying close
attention to the derivation of topological cross section.

2. Dijet production as excitation of beam partonsa — bc

The most intriguing phenomena are expected in a situaticgrevl hard production process
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Figure 1. A typical contribution to the inelastic transiti@® — bcX with multiple color excitations of the
nucleus. The amplitude receives contributions from preegsvith interactions before and after the virtual
decay, which interfere destructively. The (pseudo)raigisliof partons, b,c must be larger, or of the order
of the nuclear boundary condition rapidify = log i, wherexy is defined in the text.

is coherent over the whole longitudinal extent of the nugleund the target nucleons contribute to
the process in a collective manner. This requires a cohgremdition to be fulfilled (see Figl),
which at high energies is typically the case over large avéphase space. For example in DIS we
demand, thak < xa = 1/2Ramp =~ 0.1-A~1/3, whereRj, is the nuclear radius, and, the proton
mass.

In the general case we deal with the breakup of a beam pariato its two—bodybc Fock—
component. The calculation is best done in the frameworkgbt+cone wave functions, and in
impact parameter space. Indeed the fast partons move di@ghs-line trajectories, and their
impact parameters are conserved during the interactiom té target. It is only in the — bc
guantum-transition, that the impact parameter will berstiaaccording td, = z,by + Z:bc, en-
suring conservation of angular momentum. Hereenotes the impact parameter of partpand
Z, ¢ are the light-cone momentum fractionsto€.

Now it would be a daunting task to calculate the amplitudetlfigra — bc transition withk
color excited nucleons in the final state, a tensor with, agrathers k adjoint color indices. An
elegant solution to the multichannel intranuclear evolugproblem relies on techniques developed
by Zakharov [13]. Namely, one should turn to thedensity matrix, and first average over the target
states. Thé&-matrix of a parton in the complex conjugate amplitude cawmibeed asS matrix of
an antiparton, and one ends up with an intranuclear evolygioblem for a multi—(2,3,4-)parton
system in an overall color singlet state.

2.1 Masgter formula for dijets

We can then derive the following master formula for the défeial cross section of thee— bc
process [5] withk color—excited nucleons in the final state [8]:

do®™(a— bc d?bpd?b.d?b] d?b. . .
2 ) [ L 0 DL i (b b ipe(be — )

dz,d?ppd?pe (2m*
Wa—be(Zo, b —bc) Y5 e, b() - b::)
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Herepy ¢ are the transverse momenta of partbres (J, .pc is the light—cone wave function for
the transitiona — bc. The indexk reminds us of our restriction on the final state, namely ittmus
containk color-excited nucleons. If we sum over all final states, thitipartonS-matrices can be
evaluated using Glauber—Gribov theory. The building blotthe multiple scattering expansion is
the color dipole (CD) cross section operafé@(C) for the interaction of thé@chc- system with a
free nucleon. Her€ is a collective label for the relevant impact paramet&f4)(C) is a matrix in
the space of possible color—singlet states (within a chosapling—scheme)RR) = ](bc)R(56)§>.

It has been obtained for all the cases of practical interest:

e DISSyY*—qq — 1 + 8

N~~~
1 N2
e Opencharmg—cc — 1 + 8

~~ ~—
1(N.—Suppressed N2

e Forward dijetsg—qg — 3 +6+15

Ne N x N2
e Central dijetsg —gg — 1 +80+8s+10+10+27+R;.
1(Nc—suppressed N2 N2 xN2

The color algebra was performed f8U(N;), we labelled the pertinent representations mostly by
their SU(3) dimensions. For concrete applications a lafgeexpansion is helpful, and we also
indicated the sizes of representations at la¥ge There emerges a systematics which leads to a
notion of universality classes of observables.

The crucial step is now to decompose the free—nucleon CI3 s@xtion operator into a color
rotation/excitation which represents the cut Pomeron, thacklastic part, which corresponds to
the color singlet exchange two—gluon exchange with a nadlethe amplitude, and represents the
uncut Pomeron:

(S s8©) + J© (2.2)

el

{
{

color rotation/excitation color diagonal

It is important to realize, that the cut and uncut Pomerotspi (4 (C) separately are infrared
sensitive, and depend explicitly on a nonperturbative rpatar, the CD cross section for a large
dipole ap.

Returning to the nuclear problem, we obtain, for examplaherfour—partors-matrix from
Glauber-Gribov theory:

() = 3 S0 = exp| - 2Tab) (38(C) 35 (). (2.3)
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whereTa(b) is the well-known nuclear thickness function. Now, the s$aufpr multipartonS-
matrix for the final state withk color excited nucleons can be obtained fromkktb order term of
the expansion of (2.3):

4K e 1 R R
(0 = (-1 | dB... | dBLGo(1—Be.C)f ex(C)Go( B~ B-1.C) .. Fex(C)Go(Br.C)
+8¢0Go(1,C), (2.4)

where 1 1
Go(B.C) = 8(B)exp| — B5Tab)2) (C)] . Fex(C) = STABIER(C).  (25)

Here the parametgt has the meaning of a dimensionless depth inside the nudimige that
the neste@B—integration arises due to the fact tlféi? andif;l1> do not commute. This underlines
the fact that the nucleus cannot be treated in terms of aicdéhdgeld of the target as a whole.
Furthermore, an expansion of the exponentiabgwould give rise to the familiar alternating sign
expansion of uncut multipomeron absorptive correctionimately, the contributions fronGg’'s
can be regrouped into effective coherent distortions ofititcone wave—function for the — bc
transition. This is a typical manifestation of the physi€taoge coherence lengths.

3. Nuclear unintegrated glue and its properties

After we have established all ingredients of the calcutatioimpact parameter space, let us
move on to the momentum space formulation. Here the cenieaitdy is the nuclear unintegrated
glue. We remind the reader, that in the coherent breakupowfspinto dijets, the diffractive final
state consist of a back—to—back dijet in which the largestrarse momenta of jets are taken from
gluons exchanged with the target nucleons [14]. Thus tlieadifve amplitude, or th&-matrix of
aqg—dipole, serves as a good definition of the collective nualkeintegrated glue:

2r

®(b,x,p) = /(gw%ﬁ(b%r)exq—ipr] — exp—va(b)]5? (p) + @b p).  (3.1)

Hereva(b) = 0go(X)Ta(b)/2 is the nuclear opacity. At the boundary value- xa, one can derive
a useful representation of the collective nuclear uniriiegt glue in terms of the free-nucleon
unintegrated gluon structure function (we use a notatiogp) 0 p~4dG(x,p?)/d log(p?)):

-k
?(b.xe,P) = 3 Wk(va(b)) M (p), t9(p) = / (1% fP)]d? (-3 m), (32

and (b
Y
wi(va(b)) = A exgi—va(b). 33)
Clearly, we observe here once more the equivalence betweetd75—parton fusion description
of nuclear shadowing [15] and the unitarization of the cdlipole—nucleus interaction [16].
We come to the first of unitarity cutting rules in momentum cgpa Firstly, there holds a
proportionality of the nuclear unintegrated glue and thasiglastic inclusive single quark cross

section:
do(gA— gX)

dzbdzp = (p(bvayp) ) (34)
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Figure 2: Multiple convolution of the free nucleon unintegrated g(irecluding gluon propagators) at=
0.01. Observe the emergence of the plateau in higher conwahiti

and secondly, thk—th order term in the expansion (3.2)pseciselythe topological cross section
for the quark—nucleus scattering wkitolor excited nucleons in the final statexat xa:

da®(gA— gX)

d2bd2p :Wk(VA(b)) f(k)(p)> (3.5)

3.1 Nuclear unintegrated glue: salient features

Before proceeding to the more complex dijet observable¢sisieollect a few salient features
of the collective nuclear glue, which follow from the repeatation (3.2) [14]. Firstly, for soft
gluon momenta (smafl), the collective glue develops a plateau of the form (se€lrig

1 Q,?\(b>XA)
@(b,Xa.p) ~ (P2 + Q2 (b, Xa))?’

(3.6)

where the width of the plateau is the saturation SR, xa) ~ %ag(Qi)G(x, Q3)Ta(b), and
G(x,Q?) is the collinear gluon structure function of a nucleon.

For the hard taip? > Q3, one obtains a Cronin—type antishadowing of the glue pendou
nucleon:

@(b,xa,p) _ £ (Xa,p) [1+f as(p*)G(xa,p?) Q/zx(b,XA)] ’

va(b) 2 as(@Q)G(xa. Q@) P’
wherey > 2 is the exponent of the hard tail 6tx,p) 0 as(p?)/p?’. A remarkable fact about these
large and smalb? behaviours is that they are predicted without any soft patamFurthermore, re-
garding its smallx dependence, it can be shown [9] tiggb, x, p) fulfills the Balitsky—Kovchegov
[17] equation.

(3.7)
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4. Topological cross sections for dijet processes

Let us finally demonstrate our cutting rules on the more wvetlexample of dijets in the
current fragmentation region in DIS. The nonlinéarfactorization expression for the differential
cross section, reads (we omit the possible diffractive Gitete):

(2m*doa(y* — a(p)aQ—p)) _ 1 /l / 2. 42
= =Ta(b dg [ d°qid“qf —01) — —Q1—
2bdzPpd?Q 5 1a(b) A B | d“aqd“qf(a)|@(B,zp—a1) —¥(B,p—0q1—q)
Xq)(l_B7b7Q_Q1_Q)¢(1_BabaQ1) (41)

Here we omitted to show the argumet ®(1— 3,b,q) is the nuclear unintegrated glue taken for
the opacity(1— B)va(b), and the light—cone wave function of the virtual photon ¢ehdy dis-
torted over a slicg of the nucleus is given by a convolution over transverse rmang(3,z,p) =
(P(B) @ Y)(p). Now, the unitarity cutting rule is easily stated: to obttie partial cross section
with k color excited nucleons in the final state, substitute in thdineark | —factorization formula
(4.1) (we skip all arguments except transverse momenta):

®(p1)®(pz) — § S(k—1—i— jhwiw;fV(p1) D (py). (4.2)
1]

2

A few comments: we witness in this formula the emergendsvoftypes of cut Pomeron®ne, of
the color excitation type, which is related to the transitid theqq dipole into the color octet state,
and another one of the color rotation type — once in the cattetpquark and antiquark scatter
independently in the remaining slice of the target. Any regation of the initial color singlet state
is large-N. suppressed [3], yet of course explicitly calculable. The types of cut Pomerons are
but a technical manifestation of the multichannel propeftshe intranuclear evolution problem.
In fact this property makes much of the standard Glauber—A@& from old—fashioned hadronic
models inapplicable to pQCD, see for example [8, 18].

Let us turn to an interesting feature of topological crosgises for single particle spectra.
When integrating the expression for tkecut Pomeron dijet cross section over the transverse mo-
mentum of one of the jets, we realise, that the factgref the spectator parton do not cancel out.
Notice that the cancellation of spectator interactionsigr@portant ingredient of the pQCD factor-
ization theorems —indeed it relies on the fact that we sumallénal states. Interestingly, we can
recover the quark contribution through a peculiar resuronaiver backward multiplicities [8].

5. Summary/Outlook

At small-x, strongly absorbing targets, like heavy nuclei, introdacew scale into the pQCD
description of hard processes, the saturation scale. Im auegime, the conventional linelar
factorization breaks down, and is replaced by the new cdrafeponlineark; factorization. We
have demonstrated how the nonlin&arfactorization formulas for single— and dijet processeg giv
rise to the corresponding expressions for topologicalscsastions. First steps for phenomenolog-
ical apllications to DIS structure functions have been mgde8]. Of particular interest will be the
analysis of quenching of forward jets pA and y*A processes. Obviously there must be an extra
flow of energy from the forward region to the nuclear hemisphdepending on the added activity
due to color excited nucleons.
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