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1. Introduction

In the realm of small–x physics, hard processes are adequatly described within (linear)k⊥–
factorization. The major ingredient is the unintegrated gluon density of a nucleon [1]. Heavy
nuclei bring in a new scale, the saturation scaleQ2

A(x) which grows with the opacity – or size – of
the nucleus [2]. From a different point of view, multiple gluon exchanges between, say, a projectile
color dipole and the target nucleus are enhanced by the largesize of a nucleus. Heavy nuclei then
provide us with an opportunity to study the physics of a regime of strong absorption/rescattering
corrections in a fairly systematic fashion, where we only need to account for (and “resum”) those
contributions in perturbation theory which grow with the size of the target.

An important issue is then what will be the fate of lineark⊥–factorization in a nuclear en-
vironment, or more generally in a regime of a large saturation scale. It turned out, illustrated on
the example of dijets in deep inelastic scattering [3], thatlinear k⊥–factorization is broken and
must be replaced by a new concept, called non–lineark⊥–factorization. The latter emerges as a
generic feature of the pQCD approach to hard processes in a nuclear environment, where hard
cross sections turn out to be nonlinear functionals of a properly defined nuclear unintegrated glue
[3, 4, 5, 6, 7, 8, 9], which we will discuss further below.

Let us stress that a statement of factorisation –or the breaking thereof– is in fact one about
the relations between different observables. For example,while in the familiar lineark⊥ factori-
sation the spectrum of dijets in the current fragmentation region simply maps out the transverse
momentum dependence of the same unintegrated gluon distribution which enters the inclusive DIS
structure function [10], there is no such simple relation between dijets and inclusive DIS on a
nuclear target.

Explicit quadratures for all cases of interest can be found in our series of papers quoted above.
Other approaches to the problem of factorization in a saturation regime are found in the reviews
[11]. It is quite remarkable that the formalism of nonlineark⊥–factorization gives in a surprisingly
straightforward manner access not only to fully inclusive single– and dijet cross sections, but also
to topological cross sections [8].

Return once more to DIS: after multiple gluon exchanges between theqq̄ color dipole and the
nucleus, the nuclear debris will be left in a state with multiple color excited nucleons. Cross sec-
tions for final states with a fixed number of cut pomerons (or color excited or “wounded” nucleons)
are called topological cross sections. It is customary to describe topological cross sections in a
language of unitarity cuts through multipomeron exchange diagrams [12]. In an obvious manner,
color excited nucleons in the final state give a clear–cut definition of a cut pomeron.

Topological cross sections carry useful information on thecorrelation between forward or
midrapidity jet/dijet production and multiproduction in the nuclear fragmentation region. They are
also closely related to the important concept of centralityof a collision.

We will now turn to a brief review of the formalism of nonlinear k⊥–factorisation, paying close
attention to the derivation of topological cross section.

2. Dijet production as excitation of beam partons a→ bc

The most intriguing phenomena are expected in a situation where a hard production process
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Figure 1: A typical contribution to the inelastic transitionaA→ bcX with multiple color excitations of the
nucleus. The amplitude receives contributions from processes with interactions before and after the virtual
decay, which interfere destructively. The (pseudo)rapidities of partonsa,b,c must be larger, or of the order
of the nuclear boundary condition rapidityηA = log 1

xA
, wherexA is defined in the text.

is coherent over the whole longitudinal extent of the nucleus, and the target nucleons contribute to
the process in a collective manner. This requires a coherency condition to be fulfilled (see Fig1),
which at high energies is typically the case over large areasof phase space. For example in DIS we
demand, thatx ∼< xA = 1/2RAmp ≈ 0.1 ·A−1/3, whereRA is the nuclear radius, andmp the proton
mass.

In the general case we deal with the breakup of a beam partona into its two–bodybc Fock–
component. The calculation is best done in the framework of light–cone wave functions, and in
impact parameter space. Indeed the fast partons move along straight–line trajectories, and their
impact parameters are conserved during the interaction with the target. It is only in thea → bc
quantum–transition, that the impact parameter will be ‘shared’ according toba = zbbb + zcbc, en-
suring conservation of angular momentum. Herebi denotes the impact parameter of partoni, and
zb,c are the light–cone momentum fractions ofb,c.

Now it would be a daunting task to calculate the amplitude forthe a → bc transition withk
color excited nucleons in the final state, a tensor with, among others,k adjoint color indices. An
elegant solution to the multichannel intranuclear evolution problem relies on techniques developed
by Zakharov [13]. Namely, one should turn to thebcdensity matrix, and first average over the target
states. TheS–matrix of a parton in the complex conjugate amplitude can beviewed asSmatrix of
an antiparton, and one ends up with an intranuclear evolution problem for a multi–(2,3,4-)parton
system in an overall color singlet state.

2.1 Master formula for dijets

We can then derive the following master formula for the differential cross section of thea→ bc
process [5] withk color–excited nucleons in the final state [8]:

dσ (k)(a→ bc)
dzbd2pbd2pc

=
∫ d2bbd2bcd2b′

bd2b′
c

(2π)4 exp[−ipb(bb−b′
b)− ipc(bc−b′

c)]

ψa→bc(zb,bb−bc)ψ∗
a→bc(zb,b′

b−b′
c)
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{

S(4,k)
b̄c̄cb

(b′
b,b

′
c,bb,bc)+S(2,k)

āa (b′,b)−S(3,k)
b̄c̄a

(b,b′
b,b

′
c)−S(3,k)

ābc (b′,bb,bc)
}

(2.1)

Herepb,c are the transverse momenta of partonsb,c, ψa→bc is the light–cone wave function for
the transitiona→ bc. The indexk reminds us of our restriction on the final state, namely it must
containk color–excited nucleons. If we sum over all final states, the multipartonS–matrices can be
evaluated using Glauber–Gribov theory. The building blockof the multiple scattering expansion is
the color dipole (CD) cross section operatorΣ̂(4)(C) for the interaction of thēbc̄bc– system with a
free nucleon. HereC is a collective label for the relevant impact parameters.Σ̂(4)(C) is a matrix in
the space of possible color–singlet states (within a chosencoupling–scheme),|RR̄〉= |(bc)R(b̄c̄)R̄〉.
It has been obtained for all the cases of practical interest:

• DIS: γ∗ → qq̄ =⇒ 1
︸︷︷︸

1

+ 8
︸︷︷︸

N2
c

• Open charm:g→ cc̄ =⇒ 1
︸︷︷︸

1(Nc−suppressed)

+ 8
︸︷︷︸

N2
c

• Forward dijets:q→ qg =⇒ 3
︸︷︷︸

Nc

+6+15
︸ ︷︷ ︸

Nc×N2
c

• Central dijets:g→ gg =⇒ 1
︸︷︷︸

1(Nc−suppressed)

+8A +8S
︸ ︷︷ ︸

N2
c

+10+10+27+R7
︸ ︷︷ ︸

N2
c×N2

c

.

The color algebra was performed forSU(Nc), we labelled the pertinent representations mostly by
their SU(3) dimensions. For concrete applications a large–Nc expansion is helpful, and we also
indicated the sizes of representations at largeNc. There emerges a systematics which leads to a
notion of universality classes of observables.

The crucial step is now to decompose the free–nucleon CD cross section operator into a color
rotation/excitation which represents the cut Pomeron, andthe elastic part, which corresponds to
the color singlet exchange two–gluon exchange with a nucleon in the amplitude, and represents the
uncut Pomeron:

Σ̂(4)(C) = Σ̂(4)
ex (C)

︸ ︷︷ ︸

color rotation/excitation

+ Σ̂(4)
el (C)

︸ ︷︷ ︸

color diagonal

(2.2)

It is important to realize, that the cut and uncut Pomeron parts ofΣ̂(4)(C) separately are infrared
sensitive, and depend explicitly on a nonperturbative parameter, the CD cross section for a large
dipoleσ0.

Returning to the nuclear problem, we obtain, for example forthe four–partonS–matrix from
Glauber–Gribov theory:

S(4)

b̄c̄cb
(C) = ∑

k

S(4,k)
b̄c̄cb

(C) = exp
[

−
1
2

TA(b)
(
Σ̂(4)

ex (C)+ Σ̂(4)
el (C)

)]

, (2.3)
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whereTA(b) is the well–known nuclear thickness function. Now, the sought–for multipartonS–
matrix for the final state withk color excited nucleons can be obtained from thek-th order term of
the expansion of (2.3):

S(4,k)
b̄c̄cb

(C) = (−1)k
∫ 1

0
dβk . . .

∫ 1

0
dβ1 G0(1−βk,C)Γ̂ex(C)G0(βk−βk−1,C) . . . Γ̂ex(C)G0(β1,C)

+δk,0G0(1,C) , (2.4)

where
G0(β ,C) = θ(β )exp

[

−β
1
2

TA(b)Σ̂(4)
el (C)

]

, Γ̂ex(C) =
1
2

TA(b)Σ̂(4)
ex (C) . (2.5)

Here the parameterβ has the meaning of a dimensionless depth inside the nucleus.Notice that
the nestedβ–integration arises due to the fact thatΣ̂(4)

ex andΣ̂(4)
el do not commute. This underlines

the fact that the nucleus cannot be treated in terms of a classical field of the target as a whole.
Furthermore, an expansion of the exponential inG0 would give rise to the familiar alternating sign
expansion of uncut multipomeron absorptive corrections. Ultimately, the contributions fromG0’s
can be regrouped into effective coherent distortions of thelightcone wave–function for thea→ bc
transition. This is a typical manifestation of the physics of large coherence lengths.

3. Nuclear unintegrated glue and its properties

After we have established all ingredients of the calculation in impact parameter space, let us
move on to the momentum space formulation. Here the central quantity is the nuclear unintegrated
glue. We remind the reader, that in the coherent breakup of pions into dijets, the diffractive final
state consist of a back–to–back dijet in which the large transverse momenta of jets are taken from
gluons exchanged with the target nucleons [14]. Thus the diffractive amplitude, or theS–matrix of
a qq̄–dipole, serves as a good definition of the collective nuclear unintegrated glue:

Φ(b,x,p) =

∫
d2r

(2π)2 Sqq̄(b,x,r)exp[−ipr] = exp[−νA(b)]δ (2)(p)+ φ(b,x,p) , (3.1)

HereνA(b) = σ0(x)TA(b)/2 is the nuclear opacity. At the boundary valuex = xA, one can derive
a useful representation of the collective nuclear unintegrated glue in terms of the free-nucleon
unintegrated gluon structure function (we use a notationf (x,p) ∝ p−4∂G(x,p2)/∂ log(p2)):

φ(b,xA,p) = ∑
k

wk
(
νA(b)

)
f (k)(p) , f (k)(p) =

∫
[ k

∏d2pi f (pi)
]
δ (2)(p−∑pi) , (3.2)

and

wk
(
νA(b)

)
=

νk
A(b)

k!
exp[−νA(b)] . (3.3)

Clearly, we observe here once more the equivalence between the 1975–parton fusion description
of nuclear shadowing [15] and the unitarization of the colordipole–nucleus interaction [16].

We come to the first of unitarity cutting rules in momentum space. Firstly, there holds a
proportionality of the nuclear unintegrated glue and the quasielastic inclusive single quark cross
section:

dσ(qA→ qX)

d2bd2p
= φ(b,xA,p) , (3.4)
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Figure 2: Multiple convolution of the free nucleon unintegrated glue(including gluon propagators) atx =

0.01. Observe the emergence of the plateau in higher convolutions.

and secondly, thek–th order term in the expansion (3.2) ispreciselythe topological cross section
for the quark–nucleus scattering withk color excited nucleons in the final state atx = xA:

dσ (k)(qA→ qX)

d2bd2p
= wk

(
νA(b)

)
f (k)(p) , (3.5)

3.1 Nuclear unintegrated glue: salient features

Before proceeding to the more complex dijet observables, let us collect a few salient features
of the collective nuclear glue, which follow from the representation (3.2) [14]. Firstly, for soft
gluon momenta (smallp), the collective glue develops a plateau of the form (see Fig.2)

φ(b,xA.p) ∼
1
π

Q2
A(b,xA)

(p2 +Q2
A(b,xA))2

, (3.6)

where the width of the plateau is the saturation scaleQ2
A(b,xA) ∼ 4π2

Nc
αS(Q2

A)G(x,Q2
A)TA(b), and

G(x,Q2) is the collinear gluon structure function of a nucleon.

For the hard tailp2
∼> Q2

A, one obtains a Cronin–type antishadowing of the glue per bound
nucleon:

φ(b,xA,p)

νA(b)
= f (xA,p)

[

1+
γ2

2
·

αS(p2)G(xA,p2)

αS(Q2
A)G(xA,Q2

A)
·
Q2

A(b,xA)

p2

]

, (3.7)

whereγ ∼> 2 is the exponent of the hard tail off (x,p) ∝ αS(p2)/p2γ . A remarkable fact about these
large and smallp2 behaviours is that they are predicted without any soft parameter. Furthermore, re-
garding its small–x dependence, it can be shown [9] thatφ(b,x,p) fulfills the Balitsky–Kovchegov
[17] equation.

6
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4. Topological cross sections for dijet processes

Let us finally demonstrate our cutting rules on the more involved example of dijets in the
current fragmentation region in DIS. The nonlineark⊥–factorization expression for the differential
cross section, reads (we omit the possible diffractive finalstate):

(2π)2dσA(γ∗ → q(p)q̄(Q−p))

d2bdzd2pd2Q
=

1
2

TA(b)
∫ 1

0
dβ

∫

d2q1d2q f (q)
∣
∣
∣ψ(β ,z,p−q1)−ψ(β ,p−q1−q)

∣
∣
∣

2

×Φ(1−β ,b,Q−q1−q)Φ(1−β ,b,q1) . (4.1)

Here we omitted to show the argumentxA. Φ(1−β ,b,q) is the nuclear unintegrated glue taken for
the opacity(1− β )νA(b), and the light–cone wave function of the virtual photon coherently dis-
torted over a sliceβ of the nucleus is given by a convolution over transverse momentaψ(β ,z,p) =

(Φ(β )⊗ψ)(p). Now, the unitarity cutting rule is easily stated: to obtainthe partial cross section
with k color excited nucleons in the final state, substitute in the nonlineark⊥–factorization formula
(4.1) (we skip all arguments except transverse momenta):

Φ(p1)Φ(p2) → ∑
i, j

δ (k−1− i − j)wi w j f (i)(p1) f ( j)(p2) . (4.2)

A few comments: we witness in this formula the emergence oftwo types of cut Pomerons. One, of
the color excitation type, which is related to the transition of theqq̄ dipole into the color octet state,
and another one of the color rotation type – once in the color octet, quark and antiquark scatter
independently in the remaining slice of the target. Any regeneration of the initial color singlet state
is large–Nc suppressed [3], yet of course explicitly calculable. The two types of cut Pomerons are
but a technical manifestation of the multichannel propertyof the intranuclear evolution problem.
In fact this property makes much of the standard Glauber–AGKlore from old–fashioned hadronic
models inapplicable to pQCD, see for example [8, 18].

Let us turn to an interesting feature of topological cross sections for single particle spectra.
When integrating the expression for thek–cut Pomeron dijet cross section over the transverse mo-
mentum of one of the jets, we realise, that the factorsw j of the spectator parton do not cancel out.
Notice that the cancellation of spectator interactions is an important ingredient of the pQCD factor-
ization theorems – indeed it relies on the fact that we sum over all final states. Interestingly, we can
recover the quark contribution through a peculiar resummation over backward multiplicities [8].

5. Summary/Outlook

At small–x, strongly absorbing targets, like heavy nuclei, introducea new scale into the pQCD
description of hard processes, the saturation scale. In such a regime, the conventional lineark⊥
factorization breaks down, and is replaced by the new concept of nonlineark⊥ factorization. We
have demonstrated how the nonlineark⊥ factorization formulas for single– and dijet processes give
rise to the corresponding expressions for topological cross sections. First steps for phenomenolog-
ical apllications to DIS structure functions have been taken [18]. Of particular interest will be the
analysis of quenching of forward jets inpA andγ∗A processes. Obviously there must be an extra
flow of energy from the forward region to the nuclear hemisphere, depending on the added activity
due to color excited nucleons.
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