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The QCD static energy at short distances

1. The QCD static energy

The QCD static energy (E(r)), namely the ground state energy of a static quark and a static
antiquark separated at a distance r, is a basic object to understand the dynamics of QCD [1].
Nowadays, there exist very precise calculations in lattice QCD in the case of pure gluodynamics
(N f = 0) [2]. At long distances, it increases linearly in r, a sign of confinement, and its behavior is
well reproduced by an effective string theory [3]. At short distances, one may naïvely expect E(r) =

αE(r)/r, with αE(r) computable in perturbation theory in αs, i.e. αE(r) = ∑∞
n=0 anαn+1

s (1/r).
However, a3 turns out to be IR divergent and resummations are required to obtain a finite result [4],
as it will be discussed in the next section. In fact, a detailed renormalization group and renormalon
analysis is necessary for the perturbative calculations to match lattice results.

The QCD static energy is closely related to the potentials to be input in the Schrödinger equa-
tion which describes heavy quarkonium systems, like charmonium, bottomonium, Bc and would-
be-toponium. Its short distance behavior is relevant for the ground states of these systems, specially
for the latter.

2. The QCD static energy at short distances

As mentioned above, a calculation of E(r) in perturbation theory (PT) of αs fails starting at
three loops. The reason is that a static quark and a static antiquark can not only be in a singlet
configuration but also in an octet one. At lower order E(r) coincides with the energy of the singlet
configuration, E(r) ' Es(r) ∼ −CFαs/r < 0. The energy of the octet configuration is positive,
Eo(r) ∼ −(CF −CA/2)αs/r > 0, and hence larger. However, at higher orders virtual singlet to
octet transitions mediated by gluons of energy ∼ αs/r may occur. For these gluons, αs/r is not a
small quantity, and hence PT cannot be used [4].

We can clearly identify two relevant energy scales in the problem, 1/r, the soft scale, and αs/r,
the ultrasoft scale. For r→ 0 they are well separated, and hence effective field theories (EFT) are
expected to be useful in higher order calculations.

3. Potential Non-Relativistic QCD

The EFT which is suitable for higher order calculations of E(r) at short distances is Potential
Non-Relativistic QCD (pNRQCD) in the weak coupling regime [5, 6] (see [7] for a review). It is
obtained from the static limit of QCD, or equivalently from Heavy Quark Effective Theory for a
quark and an antiquark, by integrating out in PT gluons of energy ∼ 1/r, and leaving as explicit
degrees of freedom those of energy ∼ αs/r. Its Lagrangian reads,

LpNRQCD =
∫

d3r Tr

{
S† (i∂0−Vs(r,µ)) S + O† (iD0−Vo(r,µ))O

}

+VA(r,µ)Tr
{

O†r ·gES + S†r ·gEO
}

+

+
VB(r,µ)

2
Tr
{

O†r ·gEO + O†Or ·gE
}

+ · · ·

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
0
4

The QCD static energy at short distances

Vs, Vo,VA, VB, are matching coefficients calculable in PT in αs(1/r). Vs and Vo are the singlet and
octet potentials respectively. The status of the calculations is the following. For the singlet potential
we have,

Vs(r,µ) = −CFαs(1/r)
r

{
1 +

αs(1/r)
4π

[a1] +

(
αs(1/r)

4π

)2

[ã2]

+

(
αs(1/r)

4π

)3 [
aL

3 log µr + ã3
]

+

(
αs(1/r)

4π

)4 [
aL2

4 log2 µr + aL
4 log µr + ã4

]
+ · · ·

}
,

The one-loop coefficient a1 was calculated in [8], the two loop singlet coefficient a2 in [9]. The log-
arithmic piece of the third-order correction aL

3 was calculated in [10], whereas the non-logarithmic
piece ã3 has not been completely calculated yet. The fermionic contributions of ã3 has very re-
cently been presented in [11], and the computation of the N f independent piece is reported to be
in progress. A Padé estimate of ã3 may be found in [12]. The double logarithmic coefficient aL2

4
may be obtained from [13] and the logarithmic coefficient aL

4 was obtained in [14]. ã4 remains
unknown. For the octet potential we have,

Vo(r,µ) = − (CF −CA/2)αs(1/r)
r

{
1 +

αs(1/r)
4π

[b1]

+

(
αs(1/r)

4π

)2 [
b̃2
]
+

(
αs(1/r)

4π

)3 [
bL

3 log µr + b̃3
]

+

(
αs(1/r)

4π

)4 [
bL2

4 log2 µr + bL
4 log µr + b̃4

]
+ · · ·

}
,

The one-loop coefficient b1 = a1. The two loop octet coefficient b2 was calculated in [15]. The
logarithmic piece of the third-order correction bL

3 was calculated in [6]. The double logarithmic
coefficient bL2

4 may be obtained from [13] and the logarithmic coefficient bL
4 has been obtained in

[16]. b̃3 and b̃4 remain unknown. For the singlet-octet and octet-octet transition potentials we have,

Vi(r,µ) = 1 +

(
αs(1/r)

4π

)[
cL

i1 log µr + c̃i1
]

+

(
αs(1/r)

4π

)2 [
cL2

i2 log2 µr + cL
i2 log µr + c̃i2

]
+ · · ·

i = A,B. cL
i1 and cL2

i2 where found to vanish in [13]. c̃i1 and cL
i2, have also been found to vanish in

[16]. c̃i2 remain unknown.
The calculation of E(r) in pNRQCD is thus divided in two steps: (i) the calculation of the

potentials, namely the matching coefficients above, and (ii) the calculation of ultrasoft loops. The
latter at NNNLO corresponds to the right most diagram in fig. 1. The outcome of the calculation
reads,

E(r) = Vs(r,µ) + [US loop](Vs,Vo,VA,µ)

3
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The QCD static energy at short distances

=

NRQCD

+   

pNRQCD

+   ...

Figure 1: The single and double lines correspond to the singlet and octet propagators respectively.

= −CFαs(1/r)
r

{
1 +

αs(1/r)
4π

[a1] +

(
αs(1/r)

4π

)2

[ã2]

+

(
αs(1/r)

4π

)3[
aL

3 log
CAαs(1/r)

2
+ ã3

]
+ · · ·

}

Note the cancellation of the factorization scale dependence µ between the potentials and the ultra-
soft contributions.

4. Renormalization Group

Since physical observables cannot depend on the factorization scale, the potentials above obey
renormalization group equations, which at NNLL read [13],





µ
d

dµ
Vs = γs(αs)V 2

A (Vo−Vs)
3 r2

µ
d

dµ
Vo = γo(αs)V 2

A (Vo−Vs)
3 r2

µ
d

dµ
VA = γA(αs)VA

µ
d

dµ
VB = γB(αs)VB

,

where the anomalous dimensions γi(αs), i = s,o,A,B are needed at order αs(µ)..

γs(αs) =−2
3

αsCF

π
, γo(αs) =− γs(αs)

N2
c −1

, γA(αs) = γB(αs) = 0

By solving the RG equations, the static energy at NNLL can be obtained [13],

E(r) = Vs(r,µ) = Vs(r,1/r) + 2
N2

c −1
N2

c
[(Vo−Vs)(1/r)]3 r2 γ (0)

os

β0
ln

αs(µ)

αs(1/r)

γ (0)
os = Nc/3, µ ∼CAαs(1/r)/2r

5. Renormalons

An important problem concerning the practical usefulness of the results above is the fact that
Vs(r,µ) does not converge well when it is calculated in the MS scheme, as illustrated in fig. 2. This
bad behavior may be interpreted as: (i) emanating from a renormalon singularity close to the origin

4
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Figure 2: Plot of r0Vs(r,µ) (y-axis) versus r/r0 (x-axis) at tree (dashed line), one-loop (dash-dotted line),
two-loops (dotted line) and three loops (estimate [12]) plus the RG expression for the ultrasoft logs (solid
line). µ = 2.5r−1

0 , r−1
0 ∼ 400MeV . Plot taken from ref. [17].

in the positive real axes of the Borel plane, or (ii) signaling that non-perturbative contributions are
important. If both interpretations are correct, one may devise a strategy to bring the calculation back
into control: (i) find the operators which may account for the non-perturbative effects, (ii) impose
that the ambiguities in the definition of the Borel transform are accounted for these operators, (iii)
reshuffle suitable contributions in the perturbative series related to the renormalon singularity into
the operators.

In our case the lower dimensional operators are those related to the residual mass term in
HQET which are inherited in pNRQCD. They can be accounted for by making the shift Vs,o(r,µ)→
Vs,o(r,µ) + Λs,o(r,µ), Λs,o(r,µ) = O(ΛQCD). The RG properties of Λs,o(r,µ) fix the renormalon
singularity, up to a normalization constant [18]. If US contributions are neglected,

Λs,o(r,µ) = constant = Ns,oΛQCD

ΛQCD = ν e
−2π

β0

1
αs(ν)

−b lnαs(ν) + b0αs(ν) +
1
2

b1αs(ν)2 + . . .

b, b1, b2, . . . are related to the coefficients of the beta function. This structure matches the ambiguity
in the definition of the following Borel integral

Is,o = ν
4π
β0

∫ ∞

0
du e
−4π

β0

u
αs(ν)

{
Rs,o

(1−2u)1+b [1 + c1(1−2u)

+c2(1−2u)2 + c3(1−2u)3 + . . .
]
+ analytical terms

}
,

By taking ν = 1/r and expanding about u = 0 this expression matches the perturbative series for
the potentials Vs,o(r,µ = 1/r). The ci are given in terms of the coefficients of the β -function. Rs,o

5
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may be obtained by expanding about u = 0

Rs,o = V BT
s,o (u)(1−2u)1+b|u= 1

2

where V BT
s,o (u) are the Borel transform of the series of Vs,o(r,µ = 1/r).

The RS-scheme is defined by subtracting the terms in the potentials which emanate from the
renormalon singularity at some fix value of ν at each order in PT [19]. These are indeed constant
contributions which can be reshuffled in a residual mass term. This scheme greatly improves the
convergence of the potential, as shown in fig. 3.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Figure 3: Plot of r0(VRS(r)−VRS(r′)+Elatt.(r′)) (y-axis) versus r/r0 (x-axis) at tree (dashed line), one-loop
(dash-dotted line), two-loops (dotted line) and three loops (estimate) plus the RG expression for the ultrasoft
logs (solid line) compared with the lattice simulations Elatt.(r). We set ν = µ = 2.5r−1

0 and r′ = 0.15r0

(r−1
0 ' 400MeV.). Plot taken from ref. [17].

However, the analysis above only holds up to two loops. Beyond two loops Λs,o(r,µ) develope
non-trivial anomalous dimensions due to US effects [16],

µ
d

dµ
Λs =−2

αsCF

π
V 2

A r2 [(Vo−Vs)(1/r)]2 (Λo−Λs)

µ
d

dµ
Λo =

2
N2

c −1
αsCF

π
V 2

A r2 [(Vo−Vs)(1/r)]2 (Λo−Λs)

These equations can be solved leading to

Λs(r,µ) = NsΛQCD + 2CF(No−Ns)ΛQCD r2 [(Vo−Vs)(r)]2
(

2
β0

lnαs(µ)

)

Λo(r,µ) = NoΛQCD−
1

Nc
(No−Ns)ΛQCD r2 [(Vo−Vs)(r)]2

(
2
β0

lnαs(µ)

)

6
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The QCD static energy at short distances

The renormalon singularity then becomes

Is,o = ν
4π
β0

∫ ∞

0
du e
−4π

β0

u
αs(ν)

{
Rs,o

(1−2u)1+b [1 + c1(1−2u)

+c2;s,o(1−2u)2 + c3;s,o(1−2u)3 + . . .+ d1;s,o(1−2u)2 ln(1−2u)

+ · · ·]+ analytical terms

}
,

where c2, c3, . . . are now different for singlet and octet, and depend on the US anomalous dimen-
sions. Note also that d1 introduces a new singularity with a logatithmic term.

6. NNNLL calculation

The excellent agreement with lattice data observed in fig. 3 seems to imply that going beyond
NNLL is totally unnecessary. However, a calculation exists in the literature which suggest that
the NNNLL anomalous dimension for the singlet potential is very large [20], which makes the
NNNLL calculation worth addressing. After a closer look at the problem, it turns out that the
results provided in [20, 14] are essentially all one needs, from a computational point of view, to put
forward the NNNLL expression, as we shall see in the following.

First of all, by analysing the structure of higher orders in the multipole expansion in pNRQCD,
one can see that no contribution to the next order of the singlet anomalous dimension arises from
that source. Hence, it can be read off the results from [14],

γs(αs) = −2
3

αsCF

π

(
1 + 6

αs

π
B
)
, B =

−5N f +CA(6π2 + 47)

108

The octet anomalous dimension requires in principle an independent two loop calculation if at-
tempted in a covariant gauge, as the one used in [20]. However, carrying out this calculation is
not necessary. Indeed, both the single and octet anomalous dimensions in pNRQCD are gauge
invariant quantities. If one chooses the A0 = 0 gauge, the diagrams which enter the caculation of
the octet anomalous dimension are exactly the same as the ones which enter the calculation of the
singlet one, and hence both anomalous dimensions are related by trivial color factors,

γo(αs) =−γs(αs)/(N2
c −1)

We also need the anomalous dimensions γA(αs) and γB(αs), and the finite pieces of VA and VB,
at next order. However, we can prove them zero with the following argument. The anomalous
dimensions are related to single IR logarithms which arise in the matching calculation, and, of
course, the finite pieces of VA and VB are also obtained in such a calculation. If we attempt this
calculation in the Coulomb gauge, we immediatly see that there is no O(αs) contribution, and
hence the finite pieces of VA and VB are zero at the required order. Concerning the IR divergences
at O(α2

s ), they can only arise fron the diagram in fig. 4. However, this diagram only has a linear
IR divergence, and hence induces no contribution to the anomalous dimensions.

As a consequence of the above, the RG equations keep the same structure as at NNLL and can
be solved,

7
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Figure 4:

Vs(r,µ) = Vs(r,1/r) + 2
N2

c −1
N2

c
[(Vo−Vs)(r)]3 r2 γ (0)

os

β0

{
ln

αs(µ)

αs(1/r)
+

(
− β1

4β0
+

γ (1)
os

γ (0)
os

)[
αs(µ)

π
− αs(1/r)

π

]}

Vo(r,µ) = Vo(r,1/r)− 2
N2

c
[(Vo−Vs)(r)]3 r2 γ (0)

os

β0

{
ln

αs(µ)

αs(1/r)
+

(
− β1

4β0
+

γ (1)
os

γ (0)
os

)[
αs(µ)

π
− αs(1/r)

π

]}

γ (0)
os = Nc/3, γ (1)

os = 2NcB

Λs(r,µ) = NsΛQCD + 2CF(No−Ns)ΛQCD r2 [(Vo−Vs)(r)]2
(

2
β0

lnαs(µ) + η0αs(µ)

)

Λo(r,µ) = NoΛQCD−
1

Nc
(No−Ns)ΛQCD r2 [(Vo−Vs)(r)]2

(
2
β0

lnαs(µ) + η0αs(µ)

)

η0 = 1
π

(
− β1

2β 2
0

+ 12B
β0

)

In order to give a consistent formula for E(r) we still need to specify how to count ΛQCD with
respect to αs/r. We choose,

1
r
� αs

r
� ΛQCD ∼ α2

s

r
Then at LO we have,

E(r) = V LO
s (r).

At NLO,
E(r) = V NLO,RS

s (r;ν) + NsΛQCD

where NsΛQCD is an arbitrary constant. At NNLL we have,

E(r) = V NNLL
s (r,µ) + NsΛQCD

V NNLL
s (r,µ) is the RG result with initial condition V NNLO,RS

s (r;ν), µ ∼CAαs(1/r)/2r. Finally at
NNNLL we have

E(r) = V NNNLL
s (r,µ) +USLO[µ ] + ΛNNLL

s (r,µ)

where Ns,oΛQCD are arbitrary constants. USLO[µ ] stands for the ultrasoft contribution arising from
the leftmost diagram in fig. 1 and V NNLL

s (r,µ) is the RG result with initial condition V NNNLO,RS
s (r;ν).

Note that two arbitrary constants are necessary at this order in order to account properly for non-
perturbative contributions which compete with the weak coupling calculations. This freedom is
crucial for the consistency with lattice data displayed in fig. 5

8
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Figure 5: Plot of ro(Vs + Λs) as a function of r/r0 and the lattice data (red points). The dotted blue curve
is tree level, the dot-dashed magenta curve is one-loop, the dashed brown curve is two-loops plus leading
ultrasoft logarithm resummation and the solid green curve is three-loops (Padé estimate) plus next-to-leading
ultrasoft logarithm resummation.

7. Applications

For the NNNLL results above to hold, αs/r� ΛQCD is required. For charmonium, bottomo-
nium and Bc the US scale (∼αs/r) is too low and these results are not expected to be useful beyond
NNLL. Note, however, that the NNLL result holds even in the case αs/r ∼ ΛQCD, since only the
UV behavior of the US contributions is required, and hence it is expected to be useful for the ground
states of those systems.

The NNNLL result provides a key ingredient for a precision calculation of the t- t̄ production
cross section at the ILC. This process will allow for a very accurate extraction of the top quark
mass, a crucial parameter for standard model calculations. The NNLO result for this process has
been available for some time [21]. The proper treatment of the renormalon was crucial to get a
stable position for the would-be 1S pole. Partial results of NNLL show that the shape of the cross-
section becomes much more stable after the log resummations [22]. Partial results at NNNLO also
exists [23], and eventually a renormalon and RG analysis of these results may become necessary,
for which the NNNLL result above already provides a non-trivial ingredient.

8. Conclusions

The QCD static energy is now essentially known at NNNLL accuracy [16], the only missing
ingredient being the N f = 0 piece of the three loop singlet potential, which is in progress [11].
Reaching this level of precision, which includes renormalization group and renormalon analysis,
would be unthinkable without a heavy use of effective field theory techniques in pNRQCD. The
agreement with lattice data is excellent, and such a level of precision may eventually be relevant
for an accurate extraction of the top quark mass at the ILC.
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