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1. Factorization and SCET

Our ability to provide precise theoretical predictions for high-energy processes in particle
physics heavily relies on the concept of factorization, i.e. the systematic separation of dynami-
cal effects from short and long distances. Especially for strong interactions – if factorization holds
– the effects of heavy particles and/or highly virtual radiative corrections can be calculated in per-
turbative Quantum Chromodynamics (QCD), while the long-distance physics of light quarks and
gluons can be encoded in (process-independent) hadronic matrix element of composite operators,
which can be further studied using non-perturbative methods. A general feature of factorization
is the appearance of a factorization scale µ that relates the infrared (IR) divergences, appearing in
loop corrections to short-distance amplitudes/cross sections, and the ultraviolet (UV) divergences
of composite operators defining the long-distance matrix elements, such that the scale dependence
cancels to any given order in perturbation theory.

A particularly interesting situation arises in processes like, for instance, B → Xsγ , where Xs

denotes a hadronic jet containing a light strange quark with energy of order mb/2 and invariant mass
of order

√
ΛQCDmb. Here, the infrared divergences of the short-distance b→ sγ vertex corrections

can be identified as coming from quarks and gluons being either soft (|kµ | ∼ ΛQCD) or collinear
to the hadronic jet (kµ ‖ pµ

X ). The interactions of the b-quark with soft degrees of freedom can
be expanded in the small parameter ΛQCD/mb, and the remaining non-analytic dependence on the
b-quark mass mb can be calculated within the well-known heavy-quark effective theory (HQET).
The presence of additional collinear modes leads to new phenomena [1]:

• The b→ s form factors contain Sudakov double logarithms ln2(p2
X/m2

b).

• The propagation of a collinear quark in the soft background is described by a jet function.

• The partial rate depends on the residual momentum of the b-quark, which is encoded in a
so-called shape function (SF), i.e. the parton distribution function (PDF) for the B-meson.

Again, the expansion in 1/mb can be formalized in terms of an effective theory, SCET [2, 3]. To
this end, one includes separate field operators for soft and collinear modes, with soft-collinear
vertices being multi-pole expanded according to the power-counting of momenta/wave-lengths in
the different light-cone directions [4]. The short-distance coefficient functions and the jet function
can be calculated by perturbative matching calculations. The renormalization-group (RG) running
in SCET resums the large Sudakov logarithms between the hard scale (mb) and the jet scale (|pX |)
[5], where one finally matches onto (non-local) HQET operators that define the b-quark PDF.

2. SCET applications

While SCET originally has been designed to discuss factorization in inclusive and exclusive
B-decays, it has also led to some new insights in collider physics applications. This includes the
traditional field of QCD jet physics and parton showers (which is discussed in more detail by
Christian Bauer in these proceedings), as well as resummation effects in high-energy electroweak
processes. In the following, I will present a personal selection of recent results, illustrating the main
SCET activities for B-decays and collider physics (a good overview can also be obtained from the
talks presented at the recent SCET workshop 2008 [6]).
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2.1 Inclusive B decays

Factorization theorems (see e.g. [7 – 10]) play a key role in the determination of the CKM
matrix element |Vub| from inclusive semi-leptonic B → Xu`ν decays, as well as for tests of the
Standard Model in rare penguin decays B → Xsγ . In the former, one becomes sensitive to the SF
when applying the constraint EX −|~pX | ≤ ∆ < M2

D/MB , in order to suppress the background from
b→ c`ν decays. In the latter, one is experimentally restricted to sufficiently large photon energies,
which again implies large recoil energy to the hadronic jet.1 In both cases, one ends up with a
factorization theorem for the decay spectrum, which schematically reads

dΓ∼ H · J⊗S . (2.1)

Here H denotes the hard function, obtained from a QCD matching calculation, which is presently
known to NNLO accuracy for b → u`ν [12], and for the dominant part of b → sγ [13] (see also
[14]). Furthermore, J represents the universal jet function in SCET, whose NNLO expression (for
massless quarks) has been derived in [14] (for massive quarks, the NLO jet function has been given
in [15], see also [16]). It is convololuted with a soft function, S, which denotes the b-quark SF
in HQET, whose 2-loop evolution has been studied in [17]. Sub-leading SFs, entering at the level
of 1/mb corrections, have been classified in [18]. We should also mention that SF-independent
relations between B → Xsγ and B → Xu`ν can be obtained by appropriately re-weighting the ex-
perimental decay spectra, with weight functions determined from the perturbative short-distance
functions in the factorization theorem [19].

2.1.1 The B-meson shape function

For the community of this workshop, the perhaps most interesting ingredient is the B-meson
SF, which is defined via the light-cone matrix element (with HQET fields hv)

Ŝ(ω̂ = Λ̄−ω) = 〈B|h̄v δ (ω− in ·D)hv|B〉 , (n2 = 0, n · v = 1, Λ̄ = mB−mb) . (2.2)

The SF has support for 0≤ ω̂ ≤∞, where large values of the light-cone momentum ω̂ are described
by a radiative tail which can be calculated in perturbation theory. Experimentally, the SF can be
directly constrained by the measured photon spectrum in B→ Xsγ decays (via the above factoriza-
tion theorem). In addition the moments of the B→ Xc`ν spectra determine the HQET parameters
Λ̄,µ2

π , . . ., which in turn constrain the moments of the SF in a given factorization scheme. For
instance, the authors of [10] propose a model-parametrization for the SF at low input scales

Ŝ(ω̂,µ0) =
N
Λ

(
ω̂

Λ

)b−1

exp
(
−b

ω̂

Λ

)
+

αs

π
× [radiative tail] , (2.3)

where N is a normalization factor, and the free parameters (b,Λ) can be related to Λ̄ and µ2
π . An

example is plotted in Fig. 1(a). The ansatz can be compared to the B→ Xsγ spectrum predicted by
the factorization formula.

An alternative approach has recently been proposed in [20]. One starts with the perturbative
result for the partonic SF, Ŝpart.(ω̂,µ0) = δ (ω̂)+ αs

π
[· · ·], and generates model SFs via

Ŝ(ω̂,µ0) :=
∫

dk Ŝpart.(ω̂− k,µ0) F̂(k) . (2.4)

1Cuts on the jet mass MX also induce SF-sensitivity in B→ Xs`
+`− [11].
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Figure 1: (a) Model SF at low input scale µ0 = 1 GeV and after evolution (solid lines, figure taken from
[10]). For the meaning of the dotted curves and further details, see section 9.2 in [10]. (b) Photon spectrum
in B→ Xsγ resulting from different profile functions in (2.4). Figure taken from [20].

The profile function F̂(k) can be directly normalized to HQET parameters and expanded in terms
of suitable basis functions; examples are shown in Fig. 1. This procedure is expected to be ad-
vantageous for systematic studies of theoretical uncertainties in global fits to B→ Xsγ spectra and
B→ X`ν moments.

2.1.2 Theoretical limitations in B→ Xsγ

In the theoretical discussion of the B→ Xsγ spectrum, a particular complication arises due to
the fact that the weak effective Hamiltonian contains operators that contribute in a different way
to the hadronization process, namely the chromomagnetic operator O8(b → sg), and the 4-quark
operators O1−6(b → sqq̄). At sub-leading order in the 1/mb expansion this leads to qualitatively
new effects, where the photon does not couple directly to the short-distance b→ s transition. This
requires a new type of factorization theorem, which involves a new jet function in the direction
opposite to pX , as well as new soft functions from operators that are non-local with respect to two
light-cone directions [21]. On the one hand, these effects are difficult to estimate (the vacuum
insertion approximation leads to corrections of order 5%). On the other hand, they provide a
potential mechanism for the observation of CP violating effects, and the leading mechanism for
isospin asymmetries between decays of charged and neutral B-mesons in this channel.

2.2 Exclusive B decays

SCET applications in exclusive B decays reveal some new aspects compared to the inclusive
case. First of all, it has to be realized that the decay into a few light energetic hadrons (with
mass m2 ∼ O(Λ2)) is power-suppressed compared to the production of a generic jet (with mass
m2

X ∼ O(Λmb)), since it requires a particular fine-tuning in the phase space of the B-meson spec-
tator system. A related subtlety arises from so-called endpoint divergences which prevent the
complete (perturbative) factorization of soft and collinear modes (with small invariant mass∼m2).
Factorization theorems for exclusive heavy-to-light amplitudes thus take the generic form [22]

Ai(B→MM′) = ξM ·T I
i ⊗φM′ +T II

i ⊗φB⊗φM⊗φM′ + . . . , (2.5)
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Figure 2: LCDA for Λb as a function of ω = ω1 +ω2 and u = ω1/ω for different scales. Figure from [38].

where M,M′ denote light mesons in the final state.2 Here T I,II
i are short-distance functions, where

the T II
i further factorize into a hard and an exclusive jet function (including spectator scattering),

but the T I
i do not [25, 28]. Furthermore, ξM denotes a universal form factor for B→M transitions,

and φM,B are light-cone distribution amplitudes (LCDAs) for light and heavy hadrons. Again, 1/mb

corrections introduce new factorizable and non-factorizable terms. Recent perturbative calculations
include NNLO corrections to T I

i in non-leptonic B decays [29], NLO spectator scattering in non-
leptonic B decays (T II

i ) for tree amplitudes [30] and the leading penguin amplitudes [31], as well
as O(α2

s ) corrections from Oγ

7 and Og
8 in B → V γ decays [32]. Below, let us again have a closer

look at the non-perturbative ingredients related to b-hadrons in the factorization formula (2.5).

2.2.1 Light-cone distribution amplitudes for b-hadrons

2-particle LCDAs for B-mesons are defined from non-local matrix elements in HQET [33]

〈0|q̄(z)β [z,0]hv(0)α |B(v)〉 (z2 = 0) (2.6)

(see also [24]) where [z,0] is a gauge link. It can be expressed in terms of two functions φ
±
B (ω,µ),

where ω represents the light-cone momentum of the spectator quark. The 1-loop evolution ker-
nel for φ

+
B has been derived in [34]. Of particular importance is the inverse moment 〈ω−1〉+B

which appears in the LO expression for T II
i in (2.5). Its value has been estimated from QCD sum

rules [35], yielding 〈ω−1〉+B
∣∣
µ=1 GeV = (2.15±0.5)/GeV, and from a moment analysis [36], which

results in 〈ω−1〉+B
∣∣
µ=1 GeV = (2.09±0.24)/GeV. General properties of the B-meson LCDAs (evo-

lution equations, equations-of-motion constraints, radiative tail) can also be verified by assuming
a non-relativistic bound state at low scales, and explicitly calculating radiative corrections from
relativistic gluon exchange [37].

Recently, also a systematic study of LCDAs for Λb baryons appeared [38]. The 3-particle
LCDAs are functions of the light-cone momenta ω1,2 for the two spectator quarks. The evolution
equation for the “leading-twist” LCDA contains a piece related to the Lange-Neubert kernel [34]
which generates a radiative tail when either of the two momenta ω1,2 is large, and a piece related
to the ERBL kernel [39], which redistributes the momenta within the spectator di-quark system.
Modelling the leading LCDA at low scales with the help of sum rules, one obtains the shapes
illustrated in Fig. 2.

2The case with photons and/or lepton-pairs in the final state can be described in a similar way [23 – 27].
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2.2.2 The universal form factors ξM

The universal form factors ξM are factorization-scale and scheme-dependent quantities. In a
simple physical factorization scheme [24], one identifies ξM with one of the B→M transition form
factors in QCD, and uses standard non-perturbative methods (QCD light-cone sum rules, lattice)
to estimate their size. An alternative way is to use a definition in SCET [25], which for decays into
light pseudoscalars P with large recoil-energy E reads

〈P(E)|ξ̄WcYshv|B(v)〉µ = 2E ξP(E,µ) , (2.7)

where ξ is a collinear light-quark field in SCET, and the Wilson lines Wc and Ys appear to render the
definition invariant under independent collinear and soft gauge transformations. A non-perturbative
estimate of the so-defined form factors can be obtained from sum-rules based on correlation func-
tions in SCET [40]. The correlators again factorize into a perturbative kernel and light-cone dis-
tribution amplitudes for the B-meson. For instance, considering the correlator with an axial-vector
current to interpolate a (massless) pion, one obtains at tree-level,

Π
(0)(ω ′,µ) = fBmB

∫
∞

0
dω

φ
−
B (ω,µ)

ω−ω ′− iη
, (2.8)

which provides the leading term in the sum rule (see also [41])

mb fπ ξπ(E,µ) =
1
π

∫
ωs

0
dω

′ e−ω ′/ωM Im
[
Π(ω ′,µ)

]
, (2.9)

where ωs = s0/2E is a threshold parameter characterizing the onset of the continuum, and ωM =
M2/2E is the Borel parameter. As for any sum-rule calculation, the intrinsic uncertainties of the
procedure have to be estimated by a carefully defined optimization procedure for the sum-rule pa-
rameters, together with an evaluation of sub-leading effects from higher-order radiative and 1/mb-
corrections. At present, the SCET sum-rule results [40] include O(αs) corrections, but no power-
suppressed effects, and typically have relative uncertainties of order 25%, where a significant part
of the error stems from the poor knowledge of the B-meson decay constant and the LCDA φ

−
B .

2.3 Collider applications

SCET cannot only be applied to B-decays, but also helps to systematically study radiative
corrections for other high-energy processes involving soft and collinear modes. In particular, at
LHC energies, electro-weak (EW) corrections involving Sudakov logarithms have generic size

α

4π sin2
θW

ln2 [
s/M2

W,Z
]
∼ 15% (@

√
s∼ 4 TeV)

and are thus important for precision measurements [42]. In the following I will discuss two exam-
ples: (i) The resummation of EW Sudakov logarithms [43], where the effective-theory approach
substantially simplifies the discussion for the spontaneously broken SM gauge group (for appli-
cations to other high-energy processes see also [44]). (ii) Dynamical threshold enhancement in
Drell-Yan production [45] (see also [46]), where an effective soft scale appears due to the strong
fall-off of the parton distribution functions as x→ 1.

6
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2.3.1 Electroweak Sudakov logarithms

The Sudakov form factor is defined by the on-shell matrix element of some 2-particle operator,
F(s = (p1 + p2)2) = 〈p1, p2|O|0〉. As usual, the space-like form factor FE(Q) = F(s = −Q2) is
obtained from analytic continuation. In SCET it can be constructed from a sequence of matching
calculations with subsequent RG running, with the general result [43]

lnFE(Q) = C(Q)+
∫ M

Q

dµ

µ

(
ΓcuspLQ + γ

)
+D(M)+

∫
µ

M

dµ

µ

(
Γ̃cuspLQ + γ̃

)
. (2.10)

Here C(Q) is a matching coefficient at the high scale Q, whose leading terms has the structure

C(µ) =
3

∑
i=1

αi(µ)Ci
F

4π

[
−L2

Q +#LQ +#
]
+O(α2

i ) (2.11)

where LQ = ln Q2

µ2 , and i = 1..3 refers to the three SM gauge group factors with Ci
F being the

corresponding Casimirs. The numerical coefficients (#) depend on the spin of the two particles.
Notice that C(Q) does not depend on the gauge-boson masses. The RG-running between the high-
energy scale Q and the EW gauge-boson mass scale M ∼ MW,Z is controlled by the anomalous
dimension, which has a universal part, the cusp anomalous dimension related to the Sudakov double
logarithms, Γcusp = 4 ∑

3
i=1

αiCi
F

4π
+O(α2

i ), and a conventional part γ .
Similarly, D(M) is the matching coefficient arising from integrating out the massive gauge

bosons in the SM, where the effective-theory construction automatically takes care of the correct
incorporation of gauge-boson mixing,

D(µ) =
αem

4π

(T3− sin2
θW Qem)2

sin2
θW cos2 θW

×
[
−L2

MZ
+2LMZ LQ−

5π2

6
+ #LMZ +#

]
+

αem

4π

T 2− (T3)2

sin2
θW

×
[
−L2

MW
+2LMW LQ−

5π2

6
+ #LMW +#

]
+ . . . (2.12)

A subtle point to notice is the (single-logarithmic) dependence of the low-energy matching coef-
ficient on the high-energy scale via LQ, which can be traced back to the appearance of end-point
singularities in individual diagrams [43]. Finally, the RG-running in the SCET below the scale M
(via Γ̃cusp and γ̃) is obtained by replacing ∑αiCi

F → αsC
(3)
F +αem Q2

em (for QCD ⊗ QED).

2.3.2 Dynamical threshold enhancement in Drell-Yan production

The DY cross section in the threshold region, z = M2/ŝ→ 1, can be approximated as

dσ thr.

dM2 ∝ ∑
q

e2
q

∫ dx1

x1

dx2

x2
θ [ŝ−M2]C(z,M; µ f )

[
fq/N1(x1; µ f ) fq̄/N2(x2; µ f )+(q↔ q̄)

]
, (2.13)

where M2 is the invariant mass of the DY-pair, x1,2 are the parton momentum fractions, and ŝ =
x1x2s is the partonic c.o.m. energy. For small values of (1− z), we may further factorize [45],

C(z,M; µ f ) = H(M,µ f )S(
√

ŝ(1− z); µ f ) , (2.14)

in order to separte the effects associated to the hard scale, M2 ∼ ŝ, set by the partonic sub-process;
the hard-collinear scale, (1−z)M2, related to the virtuality of the colliding partons; and a soft scale,

7
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Figure 3: Convergence of the DY K-factor at threshold: dashed lines refer to the fixed-order calculation
(from bottom to top: LO, NLO, NNLO); solid lines to the corresponding resummed result (taken from [45]).

(1−z)2M2, related to the invariant mass of the hadronic remnants. In particular, assuming a simple
parametrization for the quark PDFs at large momentum fraction, fq/N(x)

∣∣
x→1 = Nq (1− x)bq , one

can show that DY-production at threshold is dominated by d-quarks (which have the largest value
of bq), and the resummed K-factor can be written in analytic form, from which one deduces the
appearance of an effective soft scale [45],

µs ∼
M (1−M2/s)
2+bd +bd̄

≈ M (1−M2/s)
13

. (2.15)

As expected, the perturbative convergence of the K-factor is significantly improved compared to
the fixed order results, see Fig. 3.

3. Summary

Soft-collinear effective theory helps: to separate dynamical effects related to different energy-
momentum scales appearing in processes involving soft and energetic (but low-virtuality) parti-
cles; to establish the corresponding factorization theorems; to define/identify process-independent
non-perturbative input parameters/functions; and to resum large logarithms in RG-improved per-
turbation theory. Among the most important applications in inclusive B-decays are the precise
determination of |Vub| from B → Xu`ν and SM precision tests in B → Xsγ (see section 2.1). Fac-
torization theorems in exclusive decays reduce the non-perturbative input to universal transition
form factors and process-independent LCDAs, which can be studied by standard non-perturbative
methods (section 2.2). Finally, SCET can be used for systematic studies of radiative corrections
in collider processes, like EW Sudakov effects, Drell-Yan production at threshold (section 2.3),
and also top-quark jets [16], 4-Fermion Production near WW -threshold [47], and traditional QCD
applications in jet physics and parton showers [3].
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