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1. Introduction

4-dimensional SU(N) gauge theory at T = 0 is known to be in a single confinement phase
for 0 < β < ∞. At the same time the theory exhibits striking change in behavior over different
length scales: passage from a short distance perturbative ordered regime to a long distance non-
perturbative confining disordered regime. This behavior is quite analogous to that seen in another
well-known case, the transition from laminar to turbulent flow in hydrodynamics. Such multi-scale
problems are hard to treat. A natural framework is provided by a Renormalization Group (RG)
block-spinning procedure tracing the evolution of the system over successive scales. The ulti-
mate goal would be the construction of an exact block spinning procedure generating a trajectory
converging to the Wilsonian renormalized trajectory emanating from the critical point and off the
critical surface. Ideally, one would like to construct the action along the renormalized trajectory
itself, the so-called ‘perfect action’, which would then allow one to compute any observable at any
scale without contamination from irrelevant directions, hence no discretization effects. Despite
many efforts, this lattice gauge theorist’s Nirvana has not yet been reached.

A more modest but still sufficiently general framework is the proposal [1] to employ approx-
imate, but easily explicitly computable RG decimation transformations that can provide bounds
on specific, judicially chosen quantities. Examples of such quantities are partition functions (free
energies) and/or their ratios. The strategy then is to consider only such quantities. This eschews
the technically much more complicated construction of a general RG blocking action suitable for
any observable. Using the bounds one is able constrain the corresponding exact quantities, and by
then interpolating between the bounds obtain representations of the exact quantities under the RG
decimation evolution. Such representations of the chosen quantities can serve as order parameters
or provide other useful information which is hard to obtain by direct derivation from first princi-
ples by other means. In the following we develop this program in the case of 4-dimensional gauge
theories on the lattice.

2. Partition Function on progressively coarser lattices (longer scales)

We employ standard lattice gauge theory notations, with U denoting general group elements,
Ub bond variables, Up = ∏b∈∂ p Ub, etc. We start with some plaquette action on lattice Λ of spacing
a, for example the fundamental representation Wilson action:

Ap(U) =
β
2

χ1/2(Up) . (2.1)

The character expansion of the exponential of plaquette action is then given by

eAp(U) = ∑
j

d j Fj(β ,a)χ j(U) = F0

[

1+ ∑
j 6=0

d j c j(β )χ j(U)
]

, (2.2)

where j labels representations. Thus, for SU(2), our primary focus here, j = 0, 1
2 ,1, 3

2 , . . ., d j =

(2 j + 1). It is convenient to work in terms of the normalized coefficients c j(β ) = Fj(β )/F0(β ).
The (normalized) partition function (PF) on lattice Λ is then

ZΛ(β ) =

∫

dUΛ ∏
p

[

1+ ∑
j 6=0

d j c j(β )χ j(U)
]

≡ ZΛ

(

{c j(β )}
)

(2.3)
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For any reflection positive action one has Fj ≥ 0, hence 1 ≥ c j ≥ 0 for all j.
RG decimation We next introduce decimations to coarser lattices. We employ in particular

transformations of the ‘potential moving’ type [2].
The RG decimation process can be summarized as a set of decimation rules for each successive

step:

a → ba → b2a → ·· · → bna

Λ → Λ(1) → Λ(2) → ·· · → Λ(n)

from lattice Λ(m) of spacing bma to lattice Λ(m+1) of spacing bm+1a, starting with the original
lattice Λ = Λ(0). The rules give explicit expressions for the computation of the character expansion
coefficients at the m+1-th step given those of the m-th step:

F0(m) = F0(ζ ,b,{ci(m−1)}) (2.4)
c j(m) = c j(ζ ,r,b,{ci(m−1)}) (2.5)

The rule involves parameters ζ , r which control the amount by which the interactions of the re-
maining plaquettes after a decimation step are ‘renormalized’ to compensate for the ones that were
removed. Such decimation parameters can, in general, be chosen differently at each decimation
step. The explicit form of the recursion rules (2.4) - (2.5) need not be given here. It is only impor-
tant to note that they are given by explicit algebraic recursion relations that can be computed to any
desired accuracy.

Corresponding to (2.4) - (2.5) the PF undergoes the transformation

ZΛ(m−1)

(

{c j(m−1)}
)

→ F0(m)|Λ
(m)| ZΛ(m)

(

{c j(m)}
)

(2.6)

There is a bulk free energy contribution resulting from the block-spinning b(m−1)a→ bma separated
out from the PF ZΛ(m) on the new lattice Λ(m). The important feature of the type of decimations
used here is that, after such a decimation step, the resulting action A p(m) in ZΛ(m) defined by

expAp(m) =
[

1+ ∑
j 6=0

d j c j(m)χ j(U)
]

(2.7)

retains the original one-plaquette form but will, in general, contain all representations:

Ap(m) = ∑
j

β j(m)χ j(U) . (2.8)

Also, both positive and negative effective couplings β j(m) will occur. If, however, the parameter
ζ = interger, all c j(m) ≥ 0. The resulting PF ZΛ(m)

(

{c j(m)}
)

then retains the original form (2.3)
and again defines a reflection positive measure on Λ(m).

Upper and lower bounds Consider the Λ(m−1) → Λ(m) decimation step with the following
choices of decimation parameters:

(a) ζ = bd−2, r = 1− ε , 0 ≤ ε < 1 ; denote the resulting coefficients by FU
0 (m) and

cU
j (m).

(b) ζ = 1, r = 1 ; denote resulting coefficients by F L
0 (m) = 1 and cL

j (m).
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Then one has

FL
0 (m)|Λ

(m)| ZΛ(m)

(

{cL
j (m)}

)

< ZΛ(m−1) < FU
0 (m)|Λ

(m)| ZΛ(m)

(

{cU
j (m)}

)

. (2.9)

Translation invariance, convexity of the free energy, and reflection positivity (positivity of character
expansion coefficients) underlie the derivation of these bounds.

Interpolation It is now natural to interpolate between the upper and lower bounds in (2.9).
Introducing a parameter α , 0 ≤ α ≤ 1, define interpolating coefficients c̃ j(m,α) and F̃0(m,α) such
that c̃ j(m,1) = cU

j (m), F̃0(m,1) = FU
0 (m); and c̃ j(m,0) = cL

j (m), F̃0(m,0) = FL
0 (m). But there is

nothing unique about any one particular such interpolation. It is in fact expedient to more generally
consider a family of such smooth interpolations parametrized by a parameter t in some interval
(ta, tb). In fact, it suffices here to introduce t as:

F̃0(m,α , t) =

{

FU
0 (m) : α = 1

FL
0 (m) : α = 0

c̃ j(n,α) =

{

cU
j (m) : α = 1

cL
j (m) : α = 0

(2.10)

Example: F̃0(m,α , t) = FU
0 (m)h(α ,t), FL

0 (m) = 1, with h(0, t) = 0, h(1, t) = 1, and, e.g., h(α , t) =

exp{−t 1−α
α }, 0 < ta ≤ t ≤ tb < ∞.

Define the corresponding interpolating Partition Function

Z̃Λ(m)(β ,m,α , t,r) = F̃0(m,α , t)|Λ
(m) | ZΛ(m)

(

{c̃ j(m,α ,r)}
)

, (2.11)

where we now also made explicit the r parameter dependence, cf. (2.4) - (2.5). Then the upper-
lower bounds statement (2.9) becomes

Z̃Λ(m)(β ,m,0, t,r) < ZΛ(m−1) < Z̃Λ(m)(β ,m,1, t,r) . (2.12)

But then, by continuity, there exist a value

0 < α = α (m)
Λ (t,r) < 1 (2.13)

such that
Z̃Λ(m)(β ,m,α (m)

Λ (t,r), t,r) = ZΛ(m−1) . (2.14)

By construction there is parametrization invariance in (2.14) under shifts in t,r, i.e. α = α (m)
Λ (t,r)

is the level surface fixed by the r.h.s. in (2.14). In particular, the derivatives ∂α (m)
Λ (t,r)/∂ t,

∂α (m)
Λ (t,r)/∂ r are completely determined by (2.14). Also, the existence of the thermodynamic

limit for the lattice system easily implies that

α (m)
Λ (t,r) = α (m)(t,r)+δα (m)

Λ (t,r) , δα (m)
Λ (t,r) → 0, |Λ| → ∞ , (2.15)

i.e. any lattice volume dependence in α (m)
Λ (t,r) is weak, and goes away in the large volume limit.

So starting from original lattice, iterating this process of successive decimation and interpo-
lation between upper and lower bounds one obtains an exact integral representation of the PF on

4
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progressively coarser lattices:

ZΛ(β ) = ZΛ

(

{c j(β )}
)

= F̃0(1,α (1)
Λ (t1), t1)

|Λ(1)| ZΛ(1)

(

{c̃ j(1,α (1)
Λ (t1,r1),r1)}

)

= · · ·

=
[ n

∏
m=1

F̃0(m,α (m)
Λ (tm,rm), tm)|Λ|/bdm

]

ZΛ(n)

(

{c̃ j(n,α (n)
Λ (tn,rn),rn)}

)

. (2.16)

The representation is given in terms of the accumulated bulk free energy contributions from the
a → bna decimations, and a PF on the final lattice Λ(n) with a single plaquette effective action of
the form (2.8). It should be noted that the action in this representation at different scales is, by
construction, such as to reproduce the original exact free energy on the l.h.s. It is not implied that
the same action can give an exact representation for other quantities, though, for some, it may give
a good approximation. This implements the program sketched in section 1.

3. Partition function in the presence of external center flux

Let V denote a coclosed (i.e. closed on the dual lattice) set of plaquettes completely winding
around the periodic lattice in the d − 2 directions normal to, say, the x1, x2 directions. Shift the
plaquette action (2.1) by a a non-trivial element τ (‘twist’) of the group center on every plaquette
in V . For SU(2) this amounts to flipping the sign: τ = −1 ∈ Z(2). Let Z (−)

Λ denote the PF with
twisted action on V .

The twist amounts to a discontinuous (singular) gauge transformation on the configurations
in the partition function which is multivalued in the center - so, for SU(N), it is single-valued
in SU(N)/Z(N); i.e. it introduces a π1(SU(N)/Z(N)) = Z(N) vortex. The set V represents the
topological obstruction to having single-valuedness everywhere. It is easily shown that, as indicated
by the notation, Z(−)

Λ does not depend on the shape or location of V , but only the presence of the
center vortex flux rendered topologically stable by being wrapped around the lattice (torus) in the
chosen directions.

Such twisted partition functions can be used for defining order parameters (section 4). The
above development can now be carried through also in the presence of the twist. It is more conve-
nient to actually work with the quantity Z+

Λ = (ZΛ +Z(−)
Λ )/2. Proceeding as in the previous section

one obtains the analogous representation:

Z+
Λ =

[ n

∏
m=1

F̃0(m,α+(m)
Λ (tm,rm), tm)|Λ|/bdm

]

Z+
Λ(n)

(

{c̃ j(n,α+(n)
Λ (tn,rn),rn)}

)

(3.1)

Z+
Λ(n) =

1
2

[

ZΛ(n)

(

{c̃ j(n,α+(n)
Λ (tn,rn),rn)}

)

+Z(−)

Λ(n)

(

{c̃ j(n,α+(n)
Λ (tn,rn),rn)}

)]

, (3.2)

where, again,

α+(m)
Λ (t,r) = α (m)(t,r)+δα+(m)

Λ (t,r) , δα+(m)
Λ (t,r) → 0, |Λ| → ∞ (3.3)

As seen from (3.1), the external flux presence does not affect the bulk free-energy contributions
(trivial characters) that resulted from successive blockings. Also, it should be noted that, as indi-
cated by the notation, the α+(m)

Λ (t,r) fixed at each successive step m = 1, . . . ,n in this representation

5
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are a priori distinct from the α (m)
Λ (t) in the representation (2.16) for ZΛ(β ). This is because they

are fixed by an independent procedure involving a distinct quantity. It is easily seen, however, that
any discrepancies between α+(m)

Λ (t) and α (m)
Λ (t) can only occur in the lattice-size dependent parts

δα+(m)
Λ (t), δα (m)

Λ (t). This assumes that the same family of interpolations is used in (2.16) and
(3.1). In general, one may of course make different choices of interpolation in the two cases.

4. Order parameters

The vortex free-energy order parameter is defined as the ratio of the twisted to the untwisted
PF:

exp(−FΛ(β )) =
Z(−)

Λ
ZΛ

. (4.1)

Its behavior serves to characterize the various possible phases [3]. With Lµ denoting the length of
the lattice in the µ-direction, let A = L1L2 and L = L3 · · ·Ld . Then

FΛ(β )) ∼ const L ⇐⇒ Higgs
FΛ(β )) ∼ const L/A ⇐⇒ Coulomb

FΛ(β )) ∼ const L exp(−ρ A) ⇐⇒ Confinement

One may now represent (4.1), or equivalently, the quantity Z+
Λ /ZΛ, on successively decimated

lattices by inserting our exact representations (3.1) and (2.16) in the numerator and denominator.
Now, according to (2.15), (3.3), the α+(m)

Λ (t,r) and α (m)
Λ (t,r) in these representations differ only by

quantities δα+(m)
Λ (t,r), δα (m)

Λ (t,r) which vanish as |Λ| →∞. Still, to be able to use these represen-
tations to extract the behavior of (4.1) sufficiently accurately, one needs to account for these small
discrepancies. This can be done in various ways by utilizing the (independent) parametrization
invariance present in (3.1) and (2.16). One way proceeds in two steps as follows.

First, one may use the independent invariance under the parametrizations shifts in the repre-
sentations in numerator and denominator to explicitly cancel the bulk free energy pieces generated
at each decimation step. After the first decimation step one has

Z+
Λ

ZΛ
=

F̃0(1,α+(1)
Λ (t+1 ,r1), t

+
1 )|Λ

(1)|

F̃0(1,α (1)
Λ (t1,r1), t1)|Λ

(1)|

Z+
Λ(1)

(

{c̃ j(1,α+(1)
Λ (t+1 ,r1))}

)

ZΛ(1)

(

{c̃ j(1,α (1)
Λ (t1,r1))}

) (4.2)

with independent parameters t1, t+1 . Starting from some common value t1 = t+1 , one may shift t1 to
a new nearby value such that

F̃0(1,α (1)
Λ (t1,r1), t1) = F̃0(1,α+(1)

Λ (t+1 ,r1), t
+
1 ) (4.3)

Proceeding in this way in n−1 successive decimation steps one has:

Z+
Λ

ZΛ
=

Z+
Λ(1)

(

{c̃ j(1,α+(1)
Λ (t+1 ,r1))}

)

ZΛ(1)

(

{c̃ j(1,α (1)
Λ (t1,r1))}

)

6
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=
F̃0(2,α+(2)

Λ (t+2 ,r2), t
+
2 )|Λ

(2)|

F̃0(2,α (2)
Λ (t2,r2), t2)|Λ

(2)|

Z+
Λ(2)

(

{c̃ j(2,α+(2)
Λ (t+2 ,r2))}

)

ZΛ(2)

(

{c̃ j(2,α (2)
Λ (t2,r2))}

) = · · ·

=
Z+

Λ(n−1)

(

{c̃ j(n−1,α+(n−1)
Λ (t+n−1,rn−1),rn−1)}

)

ZΛ(n−1)

(

{c̃ j(n−1,α (n−1)
Λ (tn−1,rn−1),rn−1)}

) . (4.4)

This process is possible provided α (m)(t) ≤ 1− δ for some lattice-size independent δ > 0, which
can be shown to ensure that ∂α (m)/∂ t > η > 0 for some lattice-size independent η . A sufficient
condition for this is to set

rm = 1− ε
1+βeff(m−1)

, (4.5)

where
βeff(m) = −

∂ 2

∂θ 2 ln
[

1+ ∑
j 6=0

d j c̃ j(m)χ j(θ)
]

θ=0
(4.6)

for some small ε ∼ 10−6.
Having arrived at (4.4) with n large enough, perform next one more decimation step to get

Z+
Λ

ZΛ
=

Z+
Λ(n−1)

ZΛ(n−1)

=
F̃0(n,α+(n)

Λ (tn,rn), tn)|Λ
(n)|

F̃0(n,α (n)
Λ (tn,rn), tn)|Λ

(n)|

Z+
Λ(n)

(

{c̃ j(n,α+(n)
Λ (tn,rn))}

)

ZΛ(n)

(

{c̃ j(n,α+(n)
Λ (tn,rn))}

) . (4.7)

Now seek a value tn = t∗Λ(rn) such that

α (n)
Λ (t∗Λ,rn) = α+(n)

Λ (t∗Λ,rn) ≡ α∗(n)
Λ (rn) . (4.8)

This is equivalent to seeking a solution (α , t) (for given r) to the system of two simultaneous
nonlinear equations

−F̃0(n,α , t)−
1

|Λ(n)|
lnZ+

Λ(n)(α , t)+
bd

|Λ(n−1)|
lnZ+

Λ(n−1) = 0

−F̃0(n,α , t)−
1

|Λ(n)|
lnZΛ(n)(α , t)+

bd

|Λ(n−1)|
lnZΛ(n−1) = 0 . (4.9)

Let us first see heuristically why, in the case of SU(2), we know that this system indeed has
a solution. Computation of the flow of the upper bound coefficients cU

j (m), i.e. evaluation of the
flow at α = 1, leads to the strong coupling confining regime with a string tension which is lower
compared to that obtained, by simulation, in the exact theory. This is in fact evident from the
direction of flow set from weak coupling by the beta functions for the exact versus the α = 1 case
(with ε = 0 or ε > 0). The limit α = 0, on the other hand, corresponds to a superconfining limit.
In other words, the following relation is seen numerically to hold

[

Z(−)

Λ(n)(α)

ZΛ(n)(α)

]

α=0

>
Z(−)

Λ
ZΛ

>

[

Z−
Λ(n)(α)

ZΛ(n)(α)

]

α=1

.

It follows that there is an α ∗ in between such that Z(−)
Λ /ZΛ = Z(−)

Λ(n)(α∗)/ZΛ(n)(α∗), which, by (4.7),
is equivalent to a solution of (4.9).

7
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To solve the system (4.9) from first principles we employ a technique of monotone iteration.
Let

x = (t,α) ∈ D ⊂ R2, F(x) = ( f1, f2) : R2 → R2 .

We seek solution to: F(x) = 0.
Consider the sequence of points xk(λ0) iteratively obtained from

dxk(λ )/dλ = −[1+λF,x(xk)]
−1 ·F(xk)

xk(0) = xk−1(λ0), x1(0) = x0 k = 1,2, . . . . (4.10)

Note that each function xk(λ ) solving (4.10) is a solution to the homotopy

Ψ(xk,λ ) ≡ (xk − xk(0))+λ F(xk) = 0 . (4.11)

If M is a matrix, by M ≥ 0 we mean that all its elements are non-negative. One now has the
following result:
If: (i) F(x0) < 0; (ii) [1+λ F,x]

−1 ≥ 0 for λ ∈ [0,λ0] and all x ∈ D,
then the sequence of points obtained from (4.10) is monotonically increasing [4]. Hence, it will be
convergent if it stays within D for bounded D. This is assured if at least one component of F is
positive on ∂D. It is then converging to a solution x∗ = (t∗,α∗) of F(x) = 0.

The above conditions are satisfied in the case of the system (4.9) for n large enough and
appropriate choice of the class of parametrization functions h. This then provides a constructive
proof of the existence of solutions to the system (4.9), or equivalently to (4.8). Thus, from (4.7),
the end result is

Z(−)
Λ
ZΛ

=
Z(−)

Λ(n)

(

{c̃ j(n,α∗(n)
Λ )}

)

ZΛ(n)

(

{c̃ j(n,α∗(n)
Λ )}

) . (4.12)

(4.12) is the desired result that allows one to compute the vortex free energy. Indeed, the coef-
ficients in terms of which the PF’s in (4.12) are given are bounded by the upper bound coefficients
cU

j (n), which, by straightforward evaluation of the decimation rules, flow into the strong coupling
regime:

c̃ j(n,α∗(n)
Λ ) ≤ cU

j (n) → 0 for n → ∞. (4.13)

Hence one can compute the r.h.s. of the exact representation (4.12) in the convergent strong cou-
pling expansion. There are several immediate consequences:

• Confining behavior is the result for any initial β since cU
j (n) → 0 for n → ∞ for any initial

β .

• Fixing the resulting string tension κ(β ,n) implies a relation between n and β = 2/g2.

• Now zero coupling g = 0 is a fixed point of the decimations. This implies that to reach
any fixed value of the string tension (equivalently, some given value of cU

j (n)’s) requires
n → ∞ ⇐⇒ β → ∞. In other words one necessarily has

g(a) → 0 for a → 0 , (4.14)

i.e. asymptotic UV freedom, as an essentially qualitative feature of the decimation flow.

8
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Other groups SU(3): This is rather similar to SU(2) except for the modifications due to
the Z(3) center. The important point is that upper and lower bounding flows are known to be
qualitatively similar to the SU(2) case. Therefore, the same general picture is expected.

U(1): The same development can be applied to U(1). Here, however, one encounters a cru-
cial difference. Starting from weak coupling (initial β large enough), the flow under successive
decimation with (4.5) hits a fixed point. The process leading to (4.4) thus never reaches the strong
coupling regime. The need for ε > 0 to reproduce the original system at each stage can actually be
seen from the detailed analysis of the decimation flows at ε = 0 [5].

Mass gap By known inequalities relating the vortex free energy to the Wilson loop [6], con-
fining behavior for vortex free energy implies area law for the Wilson loop. It also implies the
existence of mass gap. Consider the correlator of two Wilson lines located at points x and y. If the
length of the line is LW , by a similar argument as in [6], confining vortex free energy gives

〈

Wx Wy

〉1/LW

Λ
≤ exp[−ρ |x− y|] (4.15)

as |Λ| → ∞, |x− y| → ∞, i.e. exponential clustering of Wilson line correlators. Furthermore, since,
by reflection positivity,

〈

Wx

〉

Λ
≤

〈

Wx Wy

〉1/2
, (4.16)

(4.15) implies absence of ‘magnetization’ (vanishing of Wilson line expectation), i.e. absence of
breaking of Z(2) global symmetry. This, as it is well-known, is an alternative criterion for being in
the confining phase.

Center confinement It is an old result that “if the center confines, the whole group confines”
[7]. This interesting sufficiency criterion, however, as originally derived, applies to the scale at
which the theory is defined, i.e. lattice spacing (UV regulator). It is thus not useful in the physically
interesting cases of weak short distance coupling. E.g. for SU(N), the center Z(N) is non-confining
at weak coupling.

Such a result, however, would be useful if obtained at an effective action level at the appropri-
ate scale. This is in fact another old idea, a Z(N) gauge theory as an effective theory for the SU(N)

theory at large distances [8].
It is now possible to derive the corresponding statement using our representations of the parti-

tion functions on coarser lattices: if the center confines on a sufficiently coarser lattice than the one
on which the gauge theory is originally defined, the theory confines.

Now, the PF of any Z(N) lattice gauge theory can be exactly rewritten as the PF of (d − 2)-
dimensional objects conserved mod N, i.e. Z(N) vortices. Thus the result implies that percolation
of sufficiently ’fat’ center vortices is sufficient for confinement in SU(N) gauge theory (N = 2,3).

5. Summary

A framework was developed that utilizes approximate but explicitly computable RG decima-
tion transformations to constrain the behavior of the exact theory. This has many potential appli-
cations. We applied it to the derivation of exact integral representations of the PF with or without
external center flux on successively coarser lattices, i.e. longer scales. These were then used to
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examine order parameters, in particular the vortex free energy which is built out of such partition
functions. Applied to the case of the SU(2) gauge theory, confinement at T = 0 emerges for any
initial coupling once the approximate bounding decimations possess this property. The extension
to SU(3) should be straightforward since the same qualitative flow under the bounding decima-
tions is known to occur. In contrast, application to U(1) leads to a fixed point preventing flow from
the weak coupling to the strong coupling regime. Some other applications, such as the existence
of mass gap and the sufficiency of center confinement in the confining phase of SU(2) were also
briefly considered. Application of the formalism to 2-dimensional spin models, in particular the
Heisenberg SU(2) model, and combining with Monte Carlo RG, are among several other possi-
ble applications not considered here. It would be very desirable to develop usable RG decimation
schemes for interacting fermions that could then be used in a similar framework. No such schemes,
however, are presently available.
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