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Chiral low-energy constants from lattice QCD

1. Introduction

The dynamics of QCD at low momenta can be described in terms of an effective theory, which
encodes the spontaneous breaking of chiral symmetry

SU(N f )L×SU(N f )R → SU(N f )V .

N f is the number of light quark flavours; we will consider both cases N f = 2,3. The effective
Lagrangian in Euclidean space can be expanded in powers of momenta as [1 – 3]

Lχ = L
(2)
χ +L

(4)
χ + · · · , (1.1)

where

L
(2)
χ =

F2

4
Tr
[
∂µU†

∂µU
]
− Σ

2
Tr
[
MU +U†M †] , (1.2)

L
(4)
χ = ∑

i
CiOi. (1.3)

U ∈ SU(N f ) represents the pseudo Nambu-Goldstone bosons degrees of freedom, and M is the
(N f ×N f ) quark mass matrix. The low-energy dynamics is parametrised by the so-called Low-
Energy-Couplings (LECs) of the effective theory, which are not determined by symmetries. At
leading order, the chiral Lagrangian involves two LECs, namely the pseudoscalar decay constant F
and the chiral condensate Σ (or equivalently B = Σ/F2) 1. At next-to-leading order, L

(4)
χ contains

10 terms for the case N f = 2 and 12 for N f = 3, with corresponding couplings

{Ci → li=1..7,hi=1..3 (N f = 2), (1.4)

{Ci → Li=1..10,Hi=1..2 (N f = 3). (1.5)

Once the LECs are fixed, chiral perturbation theory becomes a predictive framework and hence a
powerful tool for understanding the phenomenology of QCD at low dynamics. A review of recent
applications has been presented at this conference by G. Ecker [4]. Those couplings must be ideally
computed from”first principles”: from this point of view lattice QCD is a promising approach, since
-once the physical point has been reached (i.e. continuum, infinite volume limit and physical light
quark masses)-it does not introduce any model dependence.

For some decades lattice simulations have been performed far from the chiral limit and intro-
ducing simplifications such as quenching. Chiral effective theory has been then extensively used
to understand the results of lattice QCD, in particular to guide extrapolations to the chiral limit and
to estimate the volume dependence of physical observables computed on the lattice. In the past
years lattice computations experienced an important progress, due to an interplay of new theoret-
ical developments, algorithmic improvements and increasing powerful computing resources. The
effect of this progress is that now lattice unquenched simulations with N f = 2 and N f = 2+1 light
dynamical flavours are approaching domains where a reliable matching with the chiral effective
theory can be performed. Reliable in this case means that light quark masses are as close as possi-
ble to the physical value, and that different sources of systematic errors can be at least in principle
taken under control, namely finite-volume effects, lattice artifacts and renormalisation.

1In the following F , Σ and B will refer to the case N f = 2; for N f = 3 the notation F0, Σ0, B0 will be used.
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2. Low-Energy couplings from quark-mass dependence of pseudoscalar masses and
decay constants

The LECs can be extracted for instance by studying the quark-mass dependence of given
observables in lattice QCD and match it with the predictions of the chiral effective theory. In
this section I will summarize some of these predictions, in particular for the pseudoscalar decay
constants and masses. The up and down quarks are clearly sufficiently light to formulate a SU(2)
× SU(2) chiral effective theory where pions are treated as pseudo Nambu-Goldstone bosons and
Kaons and etas are integrated out. In this theory, the LECS will depend on the higher energy
scales ms,mc,mb,ΛQCD. Alternatively, one can decide to treat also the strange quark as light and
formulate a SU(3) × SU(3) effective theory, where also Kaons and etas are treated as pseudo
Nambu-Goldstone bosons and the LECs will not depend on ms anymore.

One of the simplest but deepest predictions which can be formulated at low energy is the
so-called Gell-Mann-Oakes-Renner relation [5], which states that the square of the pion mass is
linearly proportional to the light quark mass:

M2
π = M2 = 2m̂B, (2.1)

where m̂ = (mu + md)/2. This corresponds to the leading order prediction in the effective theory.
Higher order corrections can be computed systematically. In particular for the SU(2) × SU(2)
theory one finds the NLO expressions [2]

M2
π = M2 +

M4

32π2F2 ln
(

M2

Λ2
3

)
, (2.2)

Fπ = F − M2

16π2F2 ln
(

M2

Λ2
4

)
, (2.3)

where Λ3,4 are related to the scale-independent NLO LECs l̄3,4 by the relation

l̄3,4 ≡ ln

(
Λ2

3,4

M2

)
M=139.6 MeV

. (2.4)

By matching the quark-mass dependence of Fπ and Mπ with lattice results, it is hence possible to
extract the LO LECs F and Σ (or equivalently B) and the NLO couplings l̄3, l̄4.
In this theory there is the possibility to treat Kaons as external matter fields coupled to pions,
in analogy to what is done in the heavy-light meson chiral perturbation theory. The quark mass
dependence of Kaon quantities can then be worked out explicitly in this framework [6].

In the SU(3) × SU(3) theory, the quark mass dependence of pion and Kaon masses and decay
constants is given by [3]

M2
π = 2m̂B0

{
1+ µπ −

1
3

µη +2m̂K3 +K4

}
, (2.5)

M2
K = (m̂+ms)B0

{
1+

2
3

µη +(m̂+ms)K3 +K4

}
, (2.6)

Fπ = F0 {1−2µπ −µK +2m̂K6 +K7} , (2.7)

FK = F0

{
1− 3

4
µπ −

3
2

µK −
3
4

µη +(m̂+ms)K6 +K7

}
, (2.8)
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with

µP =
M2

P

32π2F2
0

ln
(

M2
P

µ2

)
.

The Ki contain the NLO LECs:

K3 =
8B0

F0
2 (2L8−L5), K4 = (mu +md +ms)

16B0

F0
2 (2L6−L4), (2.9)

K6 =
4B0

F0
2 (L5), K7 = (mu +md +ms)

8B0

F0
2 (L4). (2.10)

In this case, the matching with lattice results allows the extraction of F0,Σ0(B0),L4,L5, (2L8 −
L5), (2L6 − L4). Moreover, the ms-dependence of the SU(2) × SU(2) LECs can be explicitly
worked out [3]

F = F0

{
1+8

M2
K

F2
0

L4−µK +O(m2
s )

}
, (2.11)

Σ = Σ0

{
1+32

M2
K

F2
0

L6−2µK −µη +O(m2
s )

}
, (2.12)

where MK is the Kaon mass in the limit mu,md → 0, M2
K = msB0. In the large-Nc limit one

finds Σ/Σ0,F/F0,B/B0 → 1, which corresponds to the so-called Okubo-Zweig-Iizuka (OZI) rule.
Paramagnetic inequalities can be invoked to predict the sign of the deviations from the OZI rule,
(F/F0−1) > 0,(Σ/Σ0−1) > 0 [7].

Lattice simulations are performed on finite boxes with volume V = L3T , and finite-volume
effects may play a relevant role. An important point is that chiral perturbation theory can be used
also to infer information about finite-size scaling of physical observables [8 – 10]. In the asymptotic
region MπL� 1, the dominant effect is of the form e−Mπ L. The finite-size effects for the pion mass
have been computed at two loops [11]; alternatively, resummations of asymptotic Lüscher formulas
[12] for pseudoscalar masses and decay constants have been investigated [13].

Lattice calculations are often performed in so-called partially quenched setup, where msea 6=
mval . It is possible to extend the effective theory formalism to this case and obtain predictions from
partially quenched chiral perturbation theory [14] which can be matched with the lattice results.

Finally, lattice simulations are performed at small but finite lattice spacing a; ideally one
should first perform a continuum extrapolation of lattice results and then match with the chiral
effective theory. In alternative, one can formulate the chiral effective theory at finite lattice spacing
by adopting the Symanzik formalism [15, 16]. The price to pay is the appearing of extra couplings
in the effective theory which have to be determined by the matching. Notice that for particular
discretizations, where flavour symmetry is broken at finite lattice spacing, for example for the so-
called staggered fermions with fourth root prescription, the limits a → 0 and m → 0 have to be
taken simultaneously. Lattice results must be then matched with the so-called staggered chiral
perturbation theory [17].

In several recent lattice studies with N f = 2 dynamical fermions the quark mass dependence of
Mπ and Fπ has been matched with SU(2)× SU(2) chiral perturbation theory in order to extract F , Σ,
l3, l4. The relevant parameters of these simulations are summarised in Table 1: the discretization
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Collaboration Dirac operator a (fm) Mπ (MeV) Mπ,minL

CERN-TOV [19] Wilson +O(a) impr. 0.052-0.072 (MK) & 380 3.2 -3.6
ETM [20, 21] Wilson TM 0.065-0.1 (Fπ ) & 265 3.2-3.6

JLQCD/TWQCD [22] Neuberger 0.12 (r0) & 290 2.9

Table 1: Simulation parameters of recent N f = 2 computations.

Collaboration Dirac operator a (fm) Mπ (MeV) Mπ,minL

MILC [23, 24] Staggered 0.06-0.18[Fπ ] & 240 4
NPLQCD [25] Domain Wall + Staggered 0.13 [r0] & 290 3.7

RBC/UKQCD [26] Domain Wall 0.11 [MΩ] & 330 4.6
PACS-CS [27] Wilson + O(a) impr. 0.09 [MΩ] & 160 2.3

Table 2: Simulation parameters of recent N f = 2+1 computations. r0 is the so-called Sommer scale [28].

adopted, the lattice spacing (in parenthesis the quantity that has been used to fix the scale), the
pseudoscalar meson masses and the volume in terms of the quantity MπL.
One of the main outcomes of these studies is that M2

π is nearly a linear function of m̂, as predicted
by the GMOR relation, up to relatively large masses (of the order of ms/2). A further common
conclusion is that for Mπ . 450 MeV lattice results seem compatible with prediction of the chiral
effective theory at NLO. CERN-TOV and JLQCD pointed out however that for Fπ NNLO effects
may be significant and this could affect the systematic uncertainty on the determination of l̄4.

Several collaborations are performing lattice calculations with 2+1 dynamical flavours, i.e.
with two light (degenerate) quarks and one heavier quark (which is usually fixed at the physical
strange mass ms). In analogy to the N f = 2 case, we report the relevant simulation parameters in
Table 2 2. The MILC data have been analysed using SU(3) × SU(3) (partially quenched) rooted
staggered chiral perturbation theory including analytic NNLO and NNNLO terms. The NPLQCD
collaboration adopted Domain Wall valence quarks and staggered sea quarks, and fitted the data
using continuum chiral perturbation theory at NLO and (partial) NNLO. RBC/UKQCD adopted
a partially quenched setup, while PACS-CS used only unitary points. These two collaborations
matched their results for pseudoscalar masses and decay constants with SU(3) × SU(3) effective
theory at NLO and observed poor convergence of the perturbative series around the physical strange
quark mass. On the other hand, the NLO SU(2) × SU(2) analysis seems to yield more reliable
results.
The results obtained for the LECs are all summarized in the Tables 3, 4, 5, 6.

3. Other approaches to determine LECs on the lattice

3.1 LECs from ε-regime simulations

On a finite volume V = L3T with L � 1/ΛQCD, different chiral regimes can be distinguished.

2Another collaboration has recently published results for hadron masses obtained with 2+1 lattice simulations [18].
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Approaching the chiral limit by keeping MπL� 1 (like already mentioned in Section 2) defines the
so-called p-regime, where finite-volume effects are exponentially suppressed, while mass-effects
are dominant. Alternatively, one can approach the chiral limit by keeping µ = mΣV . O(1); this
defines the so-called ε-regime [8, 9], where the Compton wavelength associated to the Nambu-
Goldstone bosons is larger than the linear extent of the box, MπL < 1. In this case the power
counting is reorganised such that mass effects are suppressed, while finite-volume effects are en-
hanced and become polynomial in L−2. One of the consequences of the rearrangements is that,
at a given order in the effective theory, less LECs appear with respect to the p-regime, and the
predictions are less “contaminated” by higher order unknown couplings. For instance, the NLO
predictions of given correlation functions contain only the LO couplings: F , Σ (F0,Σ0) can then be
extracted by matching the finite-size scaling of correlators computed on the lattice with the predic-
tions of the effective theory.
As an example, the pseudoscalar and axial correlators at NLO can be written as (for N f = 2) [29]

CP(t) =
1
L3

∫
d3~x〈P(x)P(0)〉= Σ

2
[

aP +
T

F2L3 bPh1

( t
T

)]
, (3.1)

CA(t) =
1
L3

∫
d3~x〈A0(x)A0(0)〉=

F2

V

[
aA +

T
F2L3 bAh1

( t
T

)]
, (3.2)

where h1(τ) = 1
2

[(
τ − 1

2

)2− 1
12

]
, and aP,bP,aA,bA are dimensionless functions of µ , L, T .

Furthermore, in the ε-regime topology plays a relevant role [30]: observables may be defined at
fixed value of the topological charge, and the dependence on this charge should be also reproduced
by the chiral effective theory.
This strategy has been applied recently in two studies. JLQCD [31] computed mesonic correla-
tion functions at fixed topology in the ε-regime using the Neuberger Dirac operator with N f = 2
dynamical quarks. A. Hasenfratz and collaborators [32] adopted improved Wilson fermions com-
bined with the reweighting technique. The results obtained for F and Σ are reported in the summary
Table 3 (8,9). The two-point functions computed in [32] have been recently reanalysed in [33] in-
cluding the leading O(a2) correction inferred via the so-called Wilson chiral perturbation theory
applied to the ε-regime [33, 34], finding small corrections with respect to the continuum results.

Two-point mesonic functions have been computed in the effective theory also in the case of
non-degenerate quark masses, and in particular in the case where some quarks are in the p-regime
and others in the ε-regime [35 – 37]. This may offer new possibilities to extract the LECs from
lattice data.

3.2 LECs from eigenvalues distribution

At LO in the ε-expansion, the partition function is equivalent to the one of a chiral Random
Matrix Theory (RMT) [38 – 41]; it follows that RMT reproduces the same microscopic spectral
density ρS(ζ ,µ) of the chiral effective theory, in terms of two dimensionless variables ζ = λΣV
and µ = mΣV , where λ represents the eigenvalues of the Dirac operator. Moreover, one can extract
the probability distributions of single eigenvalues [42 – 44]; hence it is possible to match the QCD
low-lying spectrum of the Dirac operator 〈λk〉QCD with the expectation values 〈ζk〉RMT (where
k = 1,2.. labels the eigenvalues) in order to extract the chiral condensate Σ. This method has been

6
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applied by many authors; the results obtained by the JLQCD/TWQCD collaboration [45] an by
DeGrand and collaborators [46] are reported in Table 3 (10,11).

This framework can be extended such that the spectrum of the Dirac operator is sensitive also
to the pseudoscalar decay constant F at LO in the effective theory [47]. This strategy has been
adopted by DeGrand and collaborators [48], yielding the results reported in Table 3 (12).

In another recent work [49] it is shown that the quark condensate can be extracted from suitable
(renormalizable) spectral observables defined in the p-regime, for instance the number of Dirac
operator modes contained in a given interval. The method has been used on Wilson lattice QCD
and the result for the condensate is also given in Table 3 (6). In correlation to this, an interesting
development from the side of the effective theory has been investigated in [50], where the quark
condensate and the spectral density of the Dirac operator have been computed by using a technique
which is able to smoothly connect p- and ε-regimes.

3.3 LECs from form factors

The pion electromagnetic form factor, defined as

〈π+(p′)|Vµ |π+(p)〉= (p+ p′)µFππ
V (q2) (3.3)

with q2 = −Q2 = (p− p′)2, can be matched with the predictions of the chiral effective theory. In
particular, at NLO it turns out to be related to the LEC l6 for the SU(2) × SU(2) theory [2] and
to L9 in the SU(3) × SU(3) case [51]. The pion electromagnetic form factor has been computed
on the lattice and compared with chiral effective theory by the RBC/UKQCD collaboration [52]
and by the ETM collaboration [53], using the lattice parameters already given in Tables 1, 2. The
latter performed a NNLO chiral fit, which -by using as input the experimental value of the scalar
pion radius- allowed the extraction of F,Σ, l̄1, l̄2, l̄3, l̄4, l̄6. We report some of the results in Tables 3,5.
Moreover, an exploratory study of the scalar form factor has been presented by the JLQCD/TWQCD
collaboration at the last lattice conference [54].

4. Summary and Conclusions

In Tables 3, 4, 5, 6 we summarize the results for the low-energy couplings obtained through
lattice simulations.

In particular, Table 3 collects the results for the LO LECs, both from p-regime and ε-regime
studies. The first error is statistical, while the following uncertainties (if present) are systematic.
Although errors are still quite sizeable, the general agreement among the different determinations
is reassuring. PACS-CS results for the condensate Σ point towards larger values with respect to
other collaboration: notice however that in that case perturbative renormalization has been used
and systematic errors may be important. Table 4 shows the ratios F/F0, Σ/Σ0; large deviations
from 1 would indicate strong violations of the OZI rule. More precise determinations are needed
for these observables in order to draw a definitive conclusion.

Table 5 summarizes the results for the SU(2) × SU(2) NLO constants l̄3, l̄4, l̄6. For some of the
lattice simulations with N f = 2+1, we report both values obtained through a direct SU(2) × SU(2)
fit and by converting SU(3) × SU(3) into SU(2) × SU(2) LECs by means of chiral perturbation

7
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Collaboration N f F (MeV) F0 (MeV) Σ1/3 (MeV) Σ
1/3
0 (MeV)

(1) ETM [20, 21] 2 86.03(5) 267(2)(9)(4)
(2) JLQCD/TWQCD [22] 2 79.0(2.5)(0.7)

(+4.2
−0.0

)
235.7(5.0)(2.0)

(+12.7
−0.0

)
(3) MILC [24] 2+1 278(1)

(+2
−3
)
(5) 242(9)

( +5
−17
)
(4)

(4) RBC/UKQCD [26] 2+1 81.2(2.9)(5.7) 255(8)(8)(13)
(5) PACS-CS [27] 2+1 90.3(3.6) 83.8(6.4) 309(7) 290(15)
(6) Giusti, Lüscher[49] 2 276(3)(4)(5)
(7) ETM [53] 2 86.6(4)(7) 264(2)(5)

(8) JLQCD[31] 2 87.3(5.6) 239.8(4.0)
(8) A. Hasenfratz et al[32] 2 90(4) 248(6)
(10) JLQCD[45] 2 251(7)(11)
(11) DeGrand et al[46] 2 282(10)
(12) DeGrand, Schaefer[48] 2 84(5) 234(4)

Colangelo, Dürr [58] phen. 86.2(5)

Table 3: Summary of lattice results for LO couplings. The condensate Σ is evaluated in the MS scheme at
the scale µ = 2 GeV. The upper part (1-7) collects results obtained by matching lattice QCD with the chiral
effective theory in the p-regime, while the bottom part (8-12) summarizes results obtained in the ε-regime.
The last row is the estimation from a phenomenological analysis.

theory. Also in this case the good agreement is encouraging. Lattice data for l̄3, l̄4 agree also
with phenomenological estimates [2, 55]. The phenomenological impact of the LECs l̄3, l̄4 on the
s-wave pion scattering length aI

0(I = 0,2) has been recently discussed by H. Leutwyler [56].
Finally, Table 6 shows the lattice results for SU(3) × SU(3) NLO constants L4, L5 and the

combinations (2L6 −L4), (2L8 −L5), at the scale Mρ = 770 MeV. These values can be compared
with phenomenological estimates reported in [57]. In this case the situation is less clear, since
it has been pointed out that SU(3) × SU(3) chiral fits may not be appropriate to describe lattice
results obtained with N f = 2 + 1. Notice that in order to extract SU(3) × SU(3) couplings, lattice
simulations with N f = 3 light flavours would be more appropriate.

To conclude, important progress occurred in lattice QCD simulation in the past years. Un-
quenched computations are reaching pion masses as light as 200 MeV, lattice spacings around
a ∼ 0.07 fm and spatial extends larger than 4 fm, moving towards the “physical point”. This will
allow a precise matching with the chiral effective theory and a deep understanding of low-energy
properties of strong interactions. By decreasing systematic uncertainties, systematic errors become
a very important issue and have to be carefully studied, namely by controlling the continuum ex-
trapolation, the finite-volume effects, the renormalisation and the uncertainty coming from higher
orders in the chiral effective theory. LECs obtained with independent methods and different dis-
cretizations tend to point at uniform results within the errors, giving encouraging perspectives for
the future.
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