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| discuss the recent attempts to build an effective chirgirbagian incorporating massive reso-
nance states. A useful approximation scheme to organizeso@ance Lagrangian is provided by
the largeNc limit of QCD. Integrating out the resonance fields, one recsthe usual chiral per-
turbation theory Lagrangian with explicit values for thevtenergy constants, parameterized in
terms of resonance masses and couplings. The resonanaitichory generates Green functions
that interpolate between QCD and chiral perturbation thednalyzing these Green functions,
both for large and small momenta, one gets QCD constrainth@mesonance couplings and,
therefore, information on the low-energy constants gawerthe Goldstone interactions.
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1. Chiral Symmetry

With n; massless quark flavours, the QCD Lagrangian is invarianéugibbal SU(n¢). ®
SU(ns )r transformations of the left- and right-handed quarks irdilaspace. The symmetry group
spontaneously breaks down to the diagonal subg8u(m¢), g and n? —1 pseudoscalar massless
Goldstone bosons appear in the theory, whichnfoe= 3 can be identified with the eight lightest
hadronic stateg? = {m, K, n}. These pseudoscalar fields are usually parameterizedgthtbe
3 x 3 unitary matrixU (@) = u(¢)? = exp{iA2¢?/f}.

The Goldstone nature of the pseudoscalar mesons impl@sgstonstraints on their interac-
tions, which can be most easily analyzed on the basis of agtefé Lagrangian containing only
the Goldstone modes [1, 2, 3]. The low-energy effective hagian is organized in terms of in-
creasing powers of momenta (derivatives) and quark mass€s: 5,,.%%,. At lowest order, the
most general effective Lagrangian consistent with chiyadrsetry has the form [2]:

2
%= fz (DLUTDHU + UTy + x'U), X = 2Bo (s+ip), (1.1)

where D,U =d,U —ir,U 4+ iU I, and(A) denotes the flavour trace of the mathix The external
Hermitian matrix-valued sourceg, r,, sandp are used to generate the corresponding left, right,
scalar and pseudoscalar QCD Green functions and allow typocate the explicit breaking of
chiral symmetry through the quark massses: .# + ..., .# = diag(my, My, ms). The constants
Bo and f are not fixed by symmetry requirements; one finds thatjuals the pion decay constant
(at lowest orderf = f; =923 MeV, while By is related to the quark condensate:

qQ M2 Mo Mg

(
B _ _ _ _ _ 1.2
0 f2 my+mg mstmyg ms+my 12

With only two low-energy constants, the lowest-order dhiragrangian.#, encodes in a very
compact way all the Current Algebra results obtained in ikiies.

The symmetry constraints become less powerful at highezrerd At O(p*) we need ten
additional coupling constants to determine the low-energy behaviour of the Green funst[@it

% =L1(D,U'DHU)? + L, (D, UTDLU) (DHUTDYU) + ... (1.3)

One-loop graphs with the lowest-order Lagrangigh contribute also a©(p*). Their divergent
parts are renormalized by th€, couplings, which introduces a renormalization-scale ddpace.
The chiral loops generate non-polynomial contributionghwogarithms and threshold factors as
required by unitarity, which are completely determinedwufions off and the Goldstone masses.

The precision required in present phenomenological agpdies makes necessary to include
corrections ofO(p®) [4]. This involves contributions frondZ, at one-loop and?s at two-loops,
which can be fully predicted [5]. However, ti@(p®) chiral Lagrangians contains 90 (23)
independent local terms of even (odd) intrinsic parity [5/8 The huge number of unknown
couplings limits the achievable accuracy. Clearly, furthmgress will depend on our ability to
estimate these chiral couplings, which encode the unagri@]CD dynamics.
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2. Resonance Chiral Theory

The limit of an infinite number of quark colours is a very udefiarting point to understand
many features of QCD [8, 9]. Assuming confinement, the stidynmgamics alNc — o is given by
tree diagrams with infinite sums of hadron exchanges, whickespond to the tree approximation
to some local effective Lagrangian. Hadronic loops geretatrections suppressed by factors of
1/Nc. At Nc — o, QCD has a larger symmetty (3). ® U(3)r — U (3)_+r, and one needs to
include in the matrix (¢) a ninth Goldstone boson field, tmg. Resonance chiral theory )
[10, 11, 12] provides an appropriate framework to incorpmthe massive mesonic states [13].

Let us consider a chiral-invariant Lagrangian describing ¢touplings of resonance nonet
multipletsV*” (177), AV (17F), §(0**) andR,(0~*) to the Goldstone bosons. At lowest order in
derivatives the interaction Lagrangig#k, linear in the resonance fields, takes the form [10]:

LR = Z{ f (VI f ) + \/— <V|WUMUV> 2\/2 (A )
T g (SUHUL) + O (S ) + idn <P.x>}, (2.1)

where uy, =iu™D,UUT, £ = uR" Ut £u'Ru with RFR the field-strength tensors of thé
andrH flavour fields andy. = u"xu' 4+ ux'u. The resonance coupling, Gy, Fa,, C4, Cm and
dm are of O (v/Nc).

The lightest resonances have an important impact on thestewgy dynamics of the pseu-
doscalar bosons. Below the resonance mass scale, theagityaksociated with the pole of a
resonance propagator is replaced by the corresponding niomeexpansion; therefore, the ex-
change of virtual resonances generates derivative Golestouplings proportional to powers of
1/M3. At lowest order in derivatives, this gives the lartje-predictions for theD(p*) couplings
of chiral perturbation theoryx®PT) [10]:

G 3GZ cz Cg; Cm
2Li=La=) —%, Ls= ———t 5 0 Ls= =
2 e 2\ e oM 2 vz
¢y d? FR R
Lo m__ “m | — R A VML (22)
Z{zmg zmg} =35 2|V|3i 2 vz amg

All these couplings are dD(N¢), in agreement with the counting indicated in Table 1, while f
the couplings oD(1) we get: 21 —Ly=Ls=Lg=L;=0.

Owing to theU (1)a anomaly, then; field is massive and it is often integrated out from the
low-energy chiral theory. In that case, t88(3). @ SU(3)g chiral couplingL; gets a contribution
from n, exchange [2, 10]: ,

f

Ly=——. (2.3)
48M2

3. Short-Distance Constraints

The short-distance properties of the underlying QCD dywanipose some constraints on
the resonance parameters [11, 13]. At leading ordey M 1the two-Goldstone matrix element of
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i LI (Mp) | O(ND) Source | LM
2L1—Ly | —06+0.6 | O(1) | Kes, It — IIT 0
Ly 14403 | O(Nc) | Keg, mm— it | 1.8
Ls —35+11| O(N¢) | Keg, mm— mrm | —4.3
L4 —-0.3+05| O(1) Zweig rule 0
Ls 1.4+05 | O(Nc) Fx : Fr 2.1
Ls -0.2+03 | 0O(1) Zweig rule 0
L, -04+02| O(1) GMO, Ls, Lg -0.3
Lg 0.94+0.3 | O(N¢) My, Ls 0.8
Lo 6.94+0.7 | O(N¢) (% 7.1
L1o —-55+0.7 | O(N¢) T— evy —-5.4

Table 1: Phenomenological value©[p*)] of the renormalized couplings' (M,) in units of 10°3. The
large-Nc predictions obtained within the single-resonance appnation are given in the last column.

the vector current is characterized by the vector form facto

ARGyt
f2 M&i—t'

R =1+Y (3.1)

SinceRy (t) should vanish at infinite momentum transfethe resonance couplings should satisfy
Y RiGy = f2. (3.2)
|

Similarly, the matrix element of the axial current betweee &oldstone and one photon is param-
eterized by the so-called axial form fact@i(t), which vanishes dt— oo provided that

Y (2R Gy —Fy) /M = 0. (3.3)

|

Requiring the scalar form fact®S(t), which governs the two-pseudoscalar matrix element of the
scalar quark current, to vanishtat> c, one gets the constraints [14]:

4y cqcm = f2, Y Cm (Cm —Cg) /M§ =0. (3.4)

Since gluonic interactions preserve chirality, the twaapéunction built from a left-handed
and a right-handed vector quark currefilgz(t) satisfies an unsubtracted dispersion relation. In
the chiral limit, it vanishes faster thary@ whent — oo; this implies the well-known Weinberg
conditions [15]:

> (RE—F&) = 2, > (MGR; —MAFZ) =0. (3.5)
| |

The two-point correlators of two scalar or two pseudoscalarents would be equal if chirality
was preserved. For massless quafkss pp(t) vanishes as /1> whent — oo, with a coefficient
proportional toas (qqqrg) ~ as(qg)? ~ asB3. Imposing this behaviour, one gets [16]:

8% (ch—dn) =% Y (cmM§ —diM7) = 3mas f4/4. (3.6)
|
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4. Single-Resonance Approximation

Let us approximate each infinite resonance sum with the fiestom-nonet contribution. This
is meaningful at low energies where the contributions fraghér-mass states are suppressed by
their corresponding propagators. The resulting shotidee constraints are matching conditions
between an effective theory below the scale of the secomhagse multiplets and the underlying
QCD dynamics. With this approximation, Egs. (3.2), (3.3) 48.5) determine the vector and
axial-vector couplings in terms &fiy and f [11]:

Fv =2Gy = V2Fa = V2T, Ma = V2My . (4.1)
The scalar [14] and pseudoscalar parameters are obtamad3:4) and (3.6) [13]:
Cm=Cd = V20m = /2, Mp = v2Ms (1—8)Y2. (4.2)

The last relation involves a small correctiod ~ 37asf?/M3 ~ 0.08as, which we can neglect
together with the tiny effects from light quark masses.
Inserting these predictions into Egs. (2.2), one finallysgat O(p*Nc) xPT couplings, in

terms ofMy, Mg and f:
1 f2

1
2Li=Ly="log=—-ZLlio==— 4.3
1 2 4 9 3 10 8M\2/7 ( )
3f2  f2 f2 3f2
La= -5 + o Ls=—+5, 8= Zonra (4.4)
8M7  8M3 ZAVE: 32M3

The last column in Table 1 shows the results obtained With= 0.77 GeV,Ms = 1.0 GeV and

f =92 MeV. Also shown is the 7 prediction in (2.3), takingM,, = 0.80 GeV. The agreement
with the measured values is a clear success of the INggapproximation. It demonstrates that the
lightest resonance multiplets give indeed the dominantritirtions at low energies.

Corrections induced by RT couplings quadratic in the resonance fields have beendmnesi
[17, 18]. Although they slightly modify some of the previawdations, the general pattern remains
so that allO(p*Nc) xPT couplings are still successfully determined in termsesbnance masses
and the pion decay constant. The possible effect of moréoceXot and I~ resonance exchanges
has been analyzed recently. The short-distance constrilintinate any possible contribution to
theL; couplings from 1~ exchange and only allow a tiny*2 contribution toLs, L} = 0.16-1073,
which is negligible compared to the sum of vector and scalatributions [19]. This small tensor
contribution had been previously obtained in the SU(2) th¢20].

The study of other Green functions provides further matghkinnditions between the hadronic
and fundamental QCD descriptions. Clearly, it is not pdssib satisfy all of them within the
single-resonance approximation, since QCD requires amt@fiumber of massive states. A useful
generalization is the so-callddinimal Hadronic Ansatzwhich keeps the minimum number of
resonances compatible with all known short-distance caimé$ for the problem at hand [21].

5. Determination of O(p®) Low-Energy Couplings

The most general KT Lagrangian contributing to th®(p®) xPT couplings has been recently
constructed in Ref. [12]. A priori the Lagrangian containieray list of possible operators, includ-
ing terms with one Q(p*)], two [O(p?)] and three O(p°)] resonance fields. Many of them can



Low-Energy Constants fromyR

be eliminated, using the equations of motion, field redéding and algebraic identities. The func-
tional integration of the resonance fields has been contjletetaining the largeNc resonance
contributions to allo(p®) xPT couplingsC; in terms of resonance parameters. Those low-energy
constants which don't get any resonance contribution haen bidentified and useful relations
among different couplings have been obtained. Howeverethemain still many unknown res-
onance parameters which require a further investigatioshoft-distance QCD constraints. A
complete matching between QCD angRhas not yet been achieved at this order.

SomeO(p®) xPT couplings have been already determined by studying amppate set of
three-point functions [22, 23, 24, 25, 26, 27]. For instartice analysis of thé/ AP) Green function
allows to derive the values [12, 25]:

c 23V +4M7) f2 Cor f2(4M3 4 5M3Z) f2
- VIV 16M2M2 ' 27 7 MMz 3amEmz
f2(M2 + M3 + M2MZ f2 f2
Cor = A 2 Ces=~ma T avzmz &
5 5 \ 9 2V vHYP
f2(3M2 + 2M f
Coo = (4n/f4M2 0, Co0= gvamz -
VYA Vv HYP
From a similar analysis of th(SPP Green function, one obtains [12, 26]:
f2 3f2 f2/ 1 1)\? f2 f2
Cio=——— Cu=-—gt+-—|—5——5 Cag=—5 ——. 5.2
S VT S 16Mg+16<M§ Mé) R VT VE (5:2)

The couplingsCy, andCz4 govern the amount of SU(3) breaking in tKg form factor at zero
momentum transfer and, therefore, have important imptinatin the determination d¥,,s| [26].

6. Subleading 1/N¢ Corrections

The largeNc limit provides a very successful description of the low+gyedynamics [13].
However, we are still lacking a systematic procedure torpe@ate contributions of next-to-leading
order (NLO) in the ¥Nc counting. The first efforts concentrated in pinning downrifest relevant
subleading effects, such as the resonance widths whicHategihhe corresponding poles in the
meson propagators [28], or the role of final state interastim the physical amplitudes [14, 28,
29, 30].

More recently, methods to determine the low-energy cotstaiyPT at the next-to-leading
order in I/Nc have been developed [17, 18, 31, 32]. This is an importanei$&cause the de-
pendence of thg PT couplings with the renormalization scale is a subleadiffiect in the ¥Nc
counting. Since the usual resonance-saturation estirhates been performed &l — o, they
are unable to control the renormalization-scale deperaehthe low-energy couplings (at which
value ofu the estimates apply?).

Quantum loops including virtual resonance propagatorsttate a major technical challenge.
Their ultraviolet divergences require higher-dimenslooaunterterms, which could generate a
problematic behaviour at large momenta [32]. Thus, it ieseary to investigate the short-distance
QCD constraints at the next-to-leading order jfiNg. A first step in this direction was achieved
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through a one-loop calculation of the vector form factorhia Ry T [32], which demonstrated that
the matching with the underlying QCD dynamics strongly ¢aiss the ultraviolet behaviour of
RxT, determining the renormalized couplings needed for thitiqular calculation. This fact ap-
pears to be quite general [33] and has been further corrtdzbthrough a recent investigation of
the full one-loop generating functional that arises froiTRvith only one multiplet of scalar and
pseudoscalar resonances [34].

Using analyticity and unitarity, it is possible to avoid &dichnicalities associated with the
renormalization procedure, reducing the calculation @-twop Green functions to tree-level di-
agrams plus dispersion relations [17, 18]. This allows tdeustand the underlying physics in a
much more transparent way. In particular, the subtle ctato®is among many unknown renormal-
ized couplings found in [32] and the relative simplicity bétfinal result can be better understood
in terms of the imposed short-distance constraints.

As an example, let us consider the difference between thievand axial-vector two-point
functionsly _a(t) = Myv(t) — Maa(t). Its low-energy behaviour is dictated [T [2, 5, 35]:

22 r re) /s —t
16Cg7 (1) — 22 <§ —In P)

r 5 —t

+0(NY),

(6.1)
with o = —1/4 and I’éL7) = —Lg(n)/2. The couplingsf?, Lip and Cg7 are of O(N¢), while
10 and Ty /12 are of O(NQ) and represent a NLO effect. The terni?2t contains the pole
generated by the Goldstone-boson exchange. In the Idgglmit, My _a(t) receives in addition
tree-level contributions from vector and axial-vector lexeges, which are easily computed within
RxT. Expanding the RT expression in powers of momenta, one recovers the resereahange
predictions for the low-energy couplingiso andCg7 in Egs. (4.3) and (5.1).

AtNLOin 1/Nc, My _a(t) contains one-loop contributions from two-body exchande&3aid-
stone bosons and heavy resonances, which give rise toialetagtivergences. However, these loop
corrections can be fully determined from their finite absiggocontributions, through dispersive
relations. The ultraviolet behaviour is then parameteriteough the corresponding subtraction
constants, which are fixed by the short-distance QCD bebavexuiring the correlator to van-
ish faster than At? at infinite momentum. The contributions from the dominamt, 7V, A,
1S and 1P exchanges have been computed in Ref. [18]. It is remarkable imposing a good
short-distance behaviour for the corresponding vectoreaaal-vector spectral functions, one fully
determines the relevant contributing form factors withia single resonance approximation. The
low momentum expansion of the resultiily, _a(t) correlator reproduces Eq. (6.1), with explicit
values forl} () andCg7( ) which only depend on the resonance masses and the pion detay ¢
stant. The logarithmic dependence with §T renormalization scale is fully reproduced through
the Goldstone loops. The resulting predictions for the tweo-€nergy constants as functions of the
XPT renormalization scale are shown in Fig. 1. At the refezestalely = 770 MeV, one gets the
numerical values [18]:

Lio(to) = (—4.4+£0.9)-10°3, Ch (o) = (39+£1.4)-103GeV 2,  (6.2)

where the uncertainties reflect the present errors asedaith the input resonance masses. These
numbers are in very good agreement with the recent and meespiO(p®) phenomenolog-
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Figurel: NLO predictions (solid gray bands) fof (1) (left) andC,(u) (right, 1/ f2 units), compared to
the LO estimates (dashed) and the result from Ref. [36] éddtobtained with Pade approximants.

ical determination of these constants frandecay data:L},(to) = (—4.06+0.39) - 10~ and
Ch,(Ho) = (4.894+0.19) - 103 GeV 2 [37].

The difference between the scalar and pseudoscalar twb-joictions,Ms_p(t) = Msdt) —
Mpp(t), has been also analyzed withinyR at the NLO, in a completely analogous way [17].
Once more, the short-distance QCD constraints are able #il figlevant resonance couplings in
terms of the pion decay constant and resonance masses. ffegpomding low-energy expansion
of Ms_p(t) provides then a determination of theT couplingsLg(u) andCig(u) at the NLO in
1/Nc, keeping full control of the renormalization-scale depemzk. At the reference scale, one
gets the values [17]:

L5(uo) = (0.6+£0.4)-1073, Chg(tlo) = (0.3+0.8)- 10 3GeV 2. (6.3)

The predicted value fdtg is in good agreement with th@(p®) phenomenological determination
L%(to) = (0.62+0.20) - 1073 [38].

7. Summary

The 1/Nc expansion provides a useful bridge between short and Istgrdies and a powerful
power-counting parameter. The strong dynamichlat— c corresponds to the tree approxima-
tion to some local effective Lagrangian (with an infinite ruen of degrees of freedom). x\H
constitutes an appropriate effective Lagrangian impleatem of the largeNc world, incorporat-
ing the chiral symmetry constraints. It allows to obtainfusapproximations to the QCD Green
functions, in terms of a finite number of meson fields, whicteipolate betweexPT and the
underlying QCD theory.

Integrating out the heavy resonance fields one recoversvagtergies the¢PT Lagrangian
with explicit values of the chiral couplings in terms of resoce parameters. Since the short-
distance properties of QCD impose stringent constraintherRx T couplings, it is then possible
to extract information on the low-energy constanty BiT.

Truncating the infinite tower of meson resonances to the owktes with 0, 0*+, 17~
and 1** quantum numbers one gets a very successful prediction @th&Nc) xPT couplings in
terms of only three parametengl,, Ms and the pion decay constaht This provides a theoretical
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understanding of the role of resonance saturation in logrggnphenomenology, which has been
recently extended t®(pd).

Hadronic loops generate corrections suppressed by fastdtgNc, which can be analyzed
within RxT. The short-distance QCD constraints turn out to be cruaiarder to control the
ultraviolet behaviour of the effective theory; togethetiwanalyticity and unitarity, they allow to
determine the Green functions at the NLO ifiNg. Taking the low-energy limit, it is then possible
to pin down thexPT couplings at NLO and, therefore, to control their chiedarmalization-scale
dependence. Only a few explicit calculations have been dgng now, with very successful
results. Further progress is to be expected in the neaief{39.
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