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1. Introduction

Nuclear physics has long been recognized as rich and complex. The origin of this complexity
has, however, been more difficult to pinpoint. About fifteen years ago a road-map was traced [1] to
link nuclear physics to QCD using effective field theory (EFT). The idea is to break the problem into
two steps: one is to calculate nuclear observables from a low-energy EFT; another is to obtain the
EFT from QCD. The second step, where great progress has been achieved recently through lattice
simulations, was addressed [2] by Paulo Bedaque at this conference. Here I focus on the first step
in its simplest context, that of few-nucleon systems. Bigger nuclear systems were discussed [3] by
Wolfram Weise. As we are going to see, complexity, at least in light-nuclear structure, is largely
due to fine-tuning.

It is a common situation that we are interested in physics at a certain momentum scale Mlo,
having only partial knowledge of the underlying theory characterized by a scale Mhi

�
Mlo. The

crucial feature of EFT that sets it apart from models is that it incorporates a consequence of the
marriage between quantum mechanics and relativity: everything that can happen will happen —at
least virtually. Therefore, interactions among the low-energy degrees of freedom take all possi-
ble forms allowed by the symmetries of the underlying theory. In separating out some degrees
of freedom as “low-energy”, we introduce an arbitrary ultraviolet momentum cutoff Λ. Model
independence requires that low-energy observables be independent of Λ —renormalization-group
(RG) invariance. Facing an infinite number of contributions to processes at momenta Q � Mlo, the
only way to make predictions is to set up an expansion in powers of Q � Mhi, referred to as power
counting. Truncating at any given order, we neglect contributions with higher powers of Q � Mhi

and Q � Λ, a breaking of RG invariance being unavoidable but sufficiently small as long as Λ �� Mhi.
Accuracy can be improved systematically by calculating higher-order contributions.

In the nuclear context, there are several relevant scales. First, QCD is characterized by an
intrinsic scale MQCD � 1 GeV, which sets the size of most hadron masses, for example the nucleon
mass mN � 940 MeV. The glaring exception is the pion, whose mass mπ � 140 MeV signals its
character as a pseudo-Goldstone boson. Pion interactions are characterized by the pion decay
constant fπ � 93 MeV � MQCD � 4π . Moreover, low-energy pions can excite a nucleon to a delta
isobar, introducing the mass-splitting scale m∆ � mN � 300 MeV. For simplicity I lump these three
lower scales together into a common scale Mnuc � 100 MeV. As we are going to see shortly, Mnuc

sets the scale of nuclear interactions —for example, the two-nucleon effective ranges rNN � 1 � Mnuc.
Still, there is a less obvious, smaller momentum scale: ℵ � 1 � aNN � 30 MeV, where aNN stands
for some average of the two-nucleon scattering lengths. The appearance of this scale, which we
will also discuss in the next section, determines much of the structure of light systems.

These multiple scales beg for multiple EFTs. Each EFT holds in a certain energy region; each,
for particular values of its parameters, is QCD in that region. For other values of the parameters,
these EFTs represent other possible underlying theories with the same symmetry pattern as QCD,
but different dynamics. Because they carry less and less imprints of QCD —the RG is a semi-
group, after all— the goal in building EFTs at lower and lower energies is not to test QCD, but
to understand the emergence of nuclear structure from QCD. The three EFTs developed so far to
deal with light nuclei are briefly discussed below. It is of course impossible to review fifteen-plus
years in twenty minutes. I will concentrate on the thread provided by fine-tuning. Other results and
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references can be found in various reviews [4, 5, 6, 7, 8].

2. Pionful EFT

The first nuclear EFT to be considered [1] is also the closest to QCD: the generalization of
chiral perturbation theory (χPT) to systems with two or more nucleons. In this EFT, Mlo � Mnuc

and Mhi � MQCD: the low-energy degrees of freedom are (non-relativistic) nucleons, pions, and
(non-relativistic) delta isobars; the symmetries, Lorentz, approximate parity, time-reversal, and
chiral. The Lagrangian is the one familiar in χPT applications to processes with one or no nucleon,
supplemented by contact interactions among nucleons and deltas. (The same ideas can be applied
[9] to other “nuclei”, such as possible hidden-charm “molecules”.)

Not everything is just a trivial extension, though. There are two related, new issues. First,
contributions to nuclear amplitudes exist where intermediate states differ from initial states only in
the kinetic energies of nucleons, which are of

���
Q2 � MQCD � —in contrast, in hadronic processes

generic intermediate states have energies of
���

Q � . Contributions from unitarity cuts are thus in-
frared enhanced [1] and typically of

���
MQCDQ � 4π � . Since one-pion exchange is of

���
1 � M2

nuc � ,
ladder contributions need to be resummed in low partial waves —in the two-nucleon case, l � 2
[10]. (Inverse factors of angular momentum l suppress loop contributions in high waves.) As a
consequence, poles can appear in T matrices for momenta Q � 4πM2

nuc � MQCD � Mnuc � 100 MeV,
or equivalently for binding energies B � Q2 � mN � M2

nuc � MQCD � 10 MeV. Nuclei thus arise natu-
rally within EFT as a consequence of the existence of the scale Mnuc � MQCD associated with pion
physics.

The infrared-enhanced contributions come from states with no pions or deltas. Hence it is
convenient to define [1] a potential as the sum of Feynman diagrams that are nucleon irreducible.
The estimate of the sizes of pion-exchange contributions to the potential is similar to that done in
χPT with at most one nucleon, and the long-distance nuclear potential thus has [1] an expansion in
Q � MQCD from an increasing number of pion exchanges. The main pieces of the long-range poten-
tial have been calculated [1, 4, 5] —for example, the two-pion-exchange three-nucleon potential
is a modification [11] of the popular Tucson-Melbourne potential— and incorporated in more tra-
ditional approaches, such as the Nijmegen phase-shift analysis [12], where they partially replace
heavy-meson exchanges.

The second new issue is the size of fermion contact interactions. Until we have a solution for
low-energy QCD, the best we can do is dimensional analysis constrained by RG invariance: one
looks at the change in the contribution from an arbitrary loop under a natural variation in cutoff
—that is, a variation by a factor of

���
1 � , say 2 or 1/3— and demands that the size of the contact in-

teractions of the same form be at least of the same size. In χPT with at most one nucleon, where all
loops are (except in small windows of phase space) perturbative, the corresponding counterterms
scale with inverse powers of MQCD in a reasonably simple form, dubbed naive dimensional analysis
[13]. For two or more nucleons there is (for l � 2 in two-body subsystems) an infinite number of
leading-order loops, encapsulated in a Schrödinger equation with the one-pion-exchange potential,
which behaves as 1 � f 2

π r3 at short distance r. The non-perturbative renormalization of such singular
potentials can also be dealt with by looking at natural cutoff variations in the Schrödinger equation.
Surprisingly, in all waves where the singular potential is attractive, the counterterms depend on Λ
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Figure 1: Dependence of the two-nucleon 3S1 scattering length a
3S1 (left panel) and deuteron binding energy

Bd (right panel) on the pion mass mπ . The solid lines are results [17] from an incomplete sub-leading-order
EFT calculation, where mπ in the one-pion-exchange potential was varied. The dots are quenched lattice
data [19].

in a limit-cycle-like fashion [14, 15], and their sizes are effectively driven by the scale appearing in
the singular potential, rather than Mhi. In the nuclear case this scale is fπ , and thus certain contact
interactions are larger [16, 17, 10] than expected on the basis of naive dimensional analysis. For-
tunately one can show [15] that the size of sub-leading contact interactions relative to the leading
ones can still be estimated using naive dimensional analysis, and, together with the sub-leading
pieces of the long-range potential, can be treated in perturbation theory in scattering amplitudes.
The end result is that at each order RG invariance demands more contact interactions [16, 17, 10]
than assumed in earlier work. (For a dissenting view, see Ref. [18].)

Much attention has been dedicated to this EFT, although predominantly in its original ver-
sion [1]: many encouraging results for scattering and bound states have been obtained [4, 5] and
certainly many more are to come. Here I will mention only the appearance of fine-tuning.

In this EFT the pion mass can be varied, as long as mπ � MQCD. Thus EFT parameters
can be fitted to lattice results at sufficiently small pion masses. The idea is illustrated in Fig.
1, where the triplet two-nucleon scattering length a

3S1
NN and the deuteron binding energy Bd in an

incomplete sub-leading order [17] are shown together with old, quenched lattice data [19]. We can
see that generically, as indicated by dimensional analysis, aNN � 1 � Mnuc and Bd � M2

nuc � MQCD.
However, a larger scattering length, or equivalently a smaller deuteron binding energy, arises from
the seemingly accidental proximity between the observed mπ and the critical m

�

π
�
MQCD � � 200

MeV where the deuteron goes unbound. (Because of this fine-tuning, details of this figure depend
considerably on sub-leading parameters that cannot at present be obtained from experimental data
—for discussions and newer versions of Fig. 1, including unquenched lattice results, see Refs.
[20, 2].)

The similarity with cold-atom systems under a varying magnetic field is striking: QCD seems
to be near a Feshbach resonance where the role of magnetic field is played by the pion mass. This
of course does not explain why the quark masses are such that mπ is close to a quantity mostly
determined by MQCD. But it does provide a mechanism to understand the emergence of a new
momentum scale ℵ ��� 1 � mπ � m

�

π �Mnuc � Mnuc.
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3. Pionless EFT

The emergence of bound states at momenta Q � ℵ � Mnuc makes it interesting to consider an
EFT where Mlo � ℵ and Mhi � Mnuc. In this simpler EFT even pions and deltas can be integrated
out in favor of contact interactions among nucleons; the relevant symmetries are just Lorentz and
approximate parity and time-reversal. Since all that remains is contact interactions constrained
by space-time symmetries, the EFT can be easily generalized [8] to atoms with large two-body
scattering lengths.

Infrared enhancement is also present here, but the potential is merely a sum of delta functions
and its derivatives. If the leading interactions scale with inverse powers of ℵ, they need to be
iterated and lead to bound states with binding momenta Q � ℵ [21]. Also like in the pionful
theory, renormalization requires care because of the singular character of the interactions. In the
two-body system, the delta-function strengths depend on Λ in relatively simple ways. Corrections
are treated in perturbation theory, and one can show [21] that the two-body amplitude is equivalent
to the effective-range expansion. In systems with three or more bodies, things are more interesting
and the virtues of EFT more evident. Some observables can be calculated to high order before new
parameters appear —so-called low-energy theorems. For example, nucleon-deuteron scattering in
the S3 � 2 channel can be postdicted [22] with QED-like precision. In the S1 � 2 channel, on the other
hand, non-perturbative renormalization requires a three-body force already at leading order, which
lies on a limit cycle [23] —just like two-nucleon contact interactions in the pionful theory. It has
been conjectured [24] that QCD is indeed near an infrared limit cycle.

Considerable success has been achieved for bound states and scattering in systems with A � 4
nucleons [4, 6], which we can take as an indication that these systems are governed by the fine-
tuned scale ℵ. But nuclei get denser as A increases, so it is likely that at some point binding
momenta reach Mnuc. How far in A can we go with this EFT? Building heavier nuclei starting from
inter-nucleon interactions is in fact a major thrust of current nuclear physics. The difficulty is that,
for a given computational power, growth in A can only be achieved by a reduction in number of
one-particle states included in the calculation. Here, like with quarks and gluons, the numerical
solution requires, in addition to an ultraviolet momentum cutoff Λ, also an infrared momentum
cutoff λ to generate a discrete one-particle basis. One such possibility is formulating [25] the EFT
in a lattice of finite size L and spacing a, when λ � 1 � L and Λ � 1 � a. Another, more suitable for
an eventual connection with the successful, traditional shell model, is to formulate [26] it instead
within a harmonic oscillator of length b � 1 ��� mNω and a maximum number of shells Nmax, when
λ � 1 � b and Λ ��� � Nmax � 3 � 2 � � b. This method is known in nuclear physics as the No-Core
Shell Model (NCSM) [27].

Using the NCSM we were able [26] to push the solution of the pionless EFT beyond A � 4.
The three leading-order parameters were fitted at each Λ and λ to the deuteron, triton, and alpha-
particle ground-state energies, and the energies of the 4He first-excited state and of the6Li ground
state were postdicted. Results [26] for the 4He first-excited-state energy are shown in Fig. 2 for
various values of Λ and ω . Convergence for Λ � ∞ indicates correct renormalization, and the
experimental value [28] is reproduced within 10% in the limit ω � 0. Results [26] for 6Li are
analogous, but they are about 30% off experiment. Since this is the expected size of sub-leading
terms, we cannot say that we are seeing a failure of the pionless EFT. We are currently extending

5



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
3
0

Nuclear Physics from QCD U. van Kolck

100 200 300 400

20

25

30

35 1
2
3
4
5
6

4
He

Eg.s.

Eex(0
+; 0)

E
x
(0

+
;0

)

� ���
��

~ω

~ω = 1
~ω = 1
~ω = 2
~ω = 3
~ω = 4
~ω = 5
~ω = 6

Λ = 100
Λ = 200
Λ = 300
Λ = 400
Λ = 500

λ =
√

Mn~ω

Λ ���
	���

Nmax = 4
Nmax = 6
Nmax = 8

Nmax = 10
Nmax = 12
Nmax = 14
Nmax = 16

6
4

0 1 2 3 4 5 6

20

25

30

35

40

45

50
100
150
200
300
400
500 0 0.3 0.6 0.9

18.0
19.0
20.0
21.0
22.0

4
He

Eg.s.

Eex(0
+; 0)

E
x
(0

+
;0

)

� ���
��

~ω ���������

~ω = 1
~ω = 1
~ω = 2
~ω = 3
~ω = 4
~ω = 5
~ω = 6

Λ = 100
Λ = 200
Λ = 300
Λ = 400
Λ = 500

λ =
√

Mn~ω

Λ
Nmax = 4
Nmax = 6
Nmax = 8

Nmax = 10
Nmax = 12
Nmax = 14
Nmax = 16

��� �

6
4

Figure 2: Dependence of the first 4He excitation energy Ex ! 0 " ;0 # on the ultraviolet momentum cutoff Λ
(left panel) and on the infrared energy cutoff h̄ω (right panel). The points are the leading-order results [26]
at the values of h̄ω (left panel) and Λ (right panel) given in the legends in MeV. The (color) solid lines are
simple extrapolations. The (black) dashed lines are the limits h̄ω $ 0 (left panel) and Λ $ ∞ (right panel).
In the insert (right panel) we see the variation at small h̄ω , compared to the experimental value [28] given
by the (black) dotted line.

the calculation to higher orders, will consider heavier nuclei, and will eventually apply the same
method to the pionful EFT.

4. Halo/Cluster EFT

Even those powerful computational methods will run out of steam at some A. If we want to
understand the structure of heavier nuclei we likely need to develop other EFTs. As a step in this
direction, we can look at a class of nuclear systems, which are sufficiently shallow for a cluster of
nucleons to behave coherently. These are systems near thresholds for break-up into nucleons and
clusters. When nucleons orbit around a core, the system is called a halo, but other cluster systems
might have several cores. These systems are characterized by two scales: the energies of core
excitation Ec and of separation Es � Ec. Classic examples involve alpha-particle cores, for which
Ec � 20 MeV: 6He, where Es � 1 MeV for break-up into two nucleons and one alpha particle, and
the Hoyle state of 12C, where Es � 0 % 3 MeV for break-up into three alpha particles. If µ is the
reduced mass, typically � µEs � ℵ, while � µEc &� Mnuc is a harder scale. Given that the alpha
particle itself can, apparently, be described by the pionless EFT, it is not clear where this separation
of scales comes from —perhaps factors of A.

In any case, we can formulate an EFT for such halo/cluster systems, where Mlo � � µEs and
Mhi � � µEc. Its structure is analogous to the pionless EFT, with the addition of a field for the core.
In order to determine the strengths of contact interactions in this EFT, we have at first considered
two-body systems: nucleon and alpha particle [29], and two alpha particles [30]. Neither system
has a bound state, but they both have non-trivial low-energy physics in the form of resonances at
Q � ℵ. In proton-alpha and alpha-alpha scattering the Coulomb interaction has to be incorporated
explicitly. Resonances and Coulomb can be handled in EFT, with some technical developments.
For reviews and references, see Refs. [6, 7].

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
0
3
0

Nuclear Physics from QCD U. van Kolck

 90

 120

 150

 180

 0  1  2  3

δ 0
 [
d
e
g
re

e
s]

ELAB [MeV]

LO
NLO

ERE fit
Afzal et.al.

Figure 3: Two-alpha S-wave, Coulomb-corrected phase shift δ0 as a function of the laboratory energy ELAB.
The EFT results [30] in leading and next-to-leading order are given by the (blue) dotted and (red) solid lines,
respectively. The empirical values [31] are the (black) solid circles with error bars, while an effective-range
fit [30] is given by the (black) dash-dotted line.

In Fig. 3 I present the leading- and next-to-leading-order EFT results [30] for the two-alpha S-
wave phase shift —with purely Coulombic interactions removed— in comparison with empirical
values [31]. The rapid rise at low energy represents a resonance, which has well measured [32]
energy ER � 92 % 07 � 0 % 03 keV and width Γ

�
ER � � 5 % 57 � 0 % 25 eV. In leading order the EFT has two

parameters, which we fitted to these quantities; the energy dependence of the scattering amplitude
is a postdiction. In next order, there is a third parameter which we fitted to improve the energy
dependence. As one can observe, a good, converging description of this system is achieved.

What is remarkable is the amount of fine-tuning required for such a description. The Coulomb
scale for both scattering length and effective range is half the Bohr radius, about 2 fm. Coulomb
indeed provides an energy dependence of the expected size; however, the strong interaction pro-
duces an energy dependence that cancels it within 10% [30]. In order to produce a resonance at
the low energy where it is observed, another factor, 100, appears and the energy-independent part
of the amplitude has to have a scattering length aαα � � � 1 % 92 � 0 % 09 ��� 103 fm [30]. We are thus
effectively looking at a fine-tuning by a factor of 1000! Note that it is different from the one seen
previously, which did not involve Coulomb. The Hoyle state of 12C has long been considered [33]
an example of fine-tuning, but the fine-tuning is already mind-boggling in the simpler two-alpha
system. It remains to be seen if in the EFT framework the Hoyle state arises naturally from the
two-alpha interactions found in the two-alpha system.

5. Conclusion

Many of us are prejudiced to think that fine-tuning does not happen. However, I have argued
that at least part of the complexity found in nuclear physics is rooted in fine-tuning. In the process
of uncovering this fine-tuning, quite a number of other cool features surfaced in nuclear EFTs, such
as limit cycles and wide universality.
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As discussed above, there is a natural reason for nuclei to be shallow with respect to the
intrinsic QCD scale —natural in the sense that it appears in the pionful EFT from the scales of
spontaneous chiral symmetry breaking. Yet, the deuteron and other light nuclei are somewhat
closer to being unbound than expected, which can be traced to an apparent accident: the value of
the pion mass is close to a critical value. One can go a long way in explaining properties of light
nuclei by incorporating this fine-tuning in the pionless EFT. In this context, nucleons are just cold
fermions near a Feshbach resonance.

As if that was not enough, in alpha-alpha scattering in the halo/cluster EFT further fine-tuning
seems to arise between strong and electromagnetic interactions: not one in three or four, as in the
pion mass, but one in a thousand! Again the fine-tuning can be incorporated in the EFT, but its
origin remains elusive.

EFT provides a context for emergence. And in QCD quite a lot emerges...

Acknowledgments. I thank my collaborators, particularly Renato Higa and Ionel Stetcu, for their
insights into much of the work reported here.
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