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Lattice studies of the infrared behavior of gluon and ghosppgators are a key probe of confine-
ment scenarios in Yang-Mills theories. However, finitetwok effects become an important issue
as the infrared limit is approached. By considering gergrahtities — namely an associated sus-
ceptibility in the gluon case and properties of the lowgstd eigenmode of the Faddeev-Popov
matrix in the ghost case — one can derive rigorous upper amerlbounds for the propagators.
The bounds allow a better control over the extrapolatioratifde results to the infinite-volume
limit. In the case of the gluon propagator, an intuitiveistatal argument suggests a precise vol-
ume dependence for the bounds. This dependence is nicdlynsed by the lattice data, leading
to a finite gluon propagator at zero momentum. At the same, tmeenhancement of the ghost
propagator in the infrared limit seems unlikely. Our analys applied to the case of Landau
gauge and SU(2) gauge group, using the largest lattice tsizkste.
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1. Introduction

Confinement in QCD and in Yang-Mills theories in general soasated with long-range (in-
frared) effects. It is thus necessary to study the infradthiior of the theory’s Green’s functions
using nonperturbative methods. These studies include riceh@attice) as well as analytic meth-
ods and consider basic (gauge-dependent) quantities —asughuon and ghost propagators —
in order to test the predictions of the so-called confinenseaharios (see e.g. [1] and references
therein). In the case of lattice simulations, one has atsotisposal a true first-principles method,
with no uncontrolled approximations. On the other hand;egné care must be taken to extract the
true infrared behavior of the propagators from lattice dsitace significant systematic errors may
affect the extrapolations that are needed in order to getipalyresults. The most important such
errors are Gribov-copy effects— related to the fact that the relevant objects are gaugerakmt
guantities — and finite-size effects. The latter is espBcialportant in the investigation of the
infrared limit, since the smallest nonzero momentum thathmrepresented on a lattice of linear
extensiorL is proportional to IL. Thus, a sensible range of small momenta can only be properly
simulated on a very large lattice. Here, we consider cdiefié elimination of finite-size effects
through a better control of the extrapolation of our datahiinhfinite-volume limit, as described
below.

The extrapolation of gluon- and ghost-propagator dataftoiia lattice volume is a delicate
task, since the correct volume dependence of the data mdereasily inferred from the behavior
on medium-size lattices and since some quantities, sucheasero-momentum gluon propaga-
tor, are quite noisy. For these reasons it proves very helpfabtain constraints on the infrared
behavior of the propagators, as the upper and lower bourdemed here. We remark that these
bounds are valid at each lattice voluM@nd must be extrapolated to infinite volume, just as for the
propagators. The additional advantage, besides estalgliatrange of allowed values for the prop-
agators, is that the bounds are written in terms of “friehdjyantities — i.e. easier to compute,
better behaved or more intuitive than the propagators thkes It will therefore be more conve-
nient to study the volume dependence of the bounds firstdierdo assess the volume dependence
of the propagators. We describe and apply the gluon and doostds — in pureSU(2) theory
and Landau gauge — respectively in Sections 2 and 3 below.aA$e seen from our analysis,
we obtain a finite nonzero gluon propagator and a tree-l&keslghost propagator in the infrared
limit. Possible implications of these results for the cathe accepted confinement scenarios are
discussed in the Conclusions.

2. Gluon Bounds

Rigorous upper and lower bounds have been introduced if&éar the gluon propagator at
zero momentum, defined as

D(0) = m S (A0, (2.1)

1The problem of Gribov-copy effects has been extensivelgistlion the lattice [2, 3, 4, 5]. We comment briefly on
this issue in our Conclusions.
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whereﬂﬂ(p) is the Fourier transform of the gluon fiekﬁ(x) in pure SU(N;) gauge theory{-)
stands for the path integral (Monte Carlo) average; N9 is the lattice volume and we considgr
space-time dimensions. Let us define the quantity

MO) = 35T S IR0 2.2)

It is straightforward to show that this quantity is relatedt0) as
V (M(0))? < D(0) < Vd(NZ—1)(M(0)?), (2.3)

which provides us with rigorous upper and lower boundsd{®) that must be satisfied at every
volumeV. We can now try to interpret the quantitiésl(0))% and (M(0)?), to obtain perhaps an
understanding of their volume dependence. We start by gnthiat if we take the above “magneti-
zation” without the absolute value, i.e. considering

M’(0) = Wl—l) %KE(O) , (2.4)

we get a null Monte Carlo averag@vl’(0)) = 0. Because of the absolute value, the quantity defined
in Eq. (2.2) has a nonzero average at fiMtebut it should go to zero at least as fashvas’/?, as
shown in [7]. We now note tha\‘/(M(O)2> is essentially the susceptibility associated with the
magnetizationM’(0) (since the average of this magnetization is zero). Fdrdamensional spin
system one thus expects to 3¢évi (0)2> ~ const i.e. the statistical variance of the magnetization
is proportional to the inverse of the volume, a behavior kmasself-averaging At the same time,
considering the statistical fluctuations in the Monte Cadonpling ofM(0), we would expect
(M(0))? to have the same volume dependenceé\a&d)?) [6].

The simple statistical argument presented above sugdestsboth (M(0))? and (M(0)?)
should show a volume dependence &a¥ ,limplying (for d > 2) a much stronger approach to
zero than the limiting behavior fovl(0) obtained in [7] and mentioned earlier. On the other hand,
the suppression with/Y is compensated by the volume factor for both bounds in Eg).(Zon-
sequently, if this suggested behavior for the suscetéslis verifiedD(0) converges to a nonzero
constant in the infinite-volume limit. Note that the boundl€g. (2.3) apply to any gauge and that
they can be immediately extended to the dagp) with p # 0.

We have investigated the volume dependence of the boungsifeiSU(2) gauge theory in
Landau gauge, considering physical lattice volumes of ugfto~ (27 fm)*. We find remarkably
good agreement with the predictegMLbehavior for(M(0))? and(M(0)?), as can be seen in plots
and tables in Ref. [6]. More precisely, by fitting the two gtitées to 1/VY we get the exponents
o respectively 0.995(10) and 0.998(10). Analogously, atyaisafor theSU(3) case (considering
somewhat smaller volumes) yields the exponents 1.058(®)1a066(6) [8]. A similar behavior
is also obtained by a study introducing a modified gaugedixirocedure (in order to check for
possible Gribov-copy effects) [9]. Finally, a finite nonaegluon propagator has been recently
obtained using improved actions and anisotropic lattid€g. [ We remark that this behavior has
also been clearly observed on very large latticesdifil3, 6] but not in 21 [12, 6].
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3. Ghost Bounds

Rigorous lower and upper bounds for the ghost propadatp) were proposed in [13]. We
recall thatG(p) is given by the inverse of the Faddeev-Popov (FP) ma#fixand that an infrared
enhancement oB(p) with respect to the tree-level ghost propagaigp) ~ p~2 is generally ex-
pected as a sign of confinement. By straightforward calimnat— independent of the ones per-
formed in the gluon case — we can establish bounds for thet ginopagator. In Landau gauge,
for any nonzero momentum, one finds

1 1

S |@min(a, p) < G(p) < — (3.1)

a - )\min ’
whereAnin is the smallest nonzero eigenvalue of the FP operatoand Jmin(a, p) is the corre-
sponding eigenvector. Note that the upper bound is indeperaf the momentunp. If we now
assume\min ~ L= and G(p) ~ p~2~%¢ at smallp, we have that 2- 2k < v, i.e.v > 2, is a neces-
sary condition for the infrared enhancemenGgp). A similar analysis can be carried out [14] for
a generic gauge condition. Consider the Gribov re@omwhere all eigenvalues o7 are positive.

In the infinite-volume limit, entropy favors configurationsar the Gribov horizo@Q (whereAmin
goes to zero). Thus, inequalities such as (3.1) can tellargifshould expect an enhancem@p)
when the Boltzmann weight gets concentrdted Q.

Our study in theSU(2) Landau case [13], using the very large lattices mentioneterpre-
vious section, suggests that< 2 (for d = 4). This tree-level-like behavior is confirmed if one
considers the dressing functigtG(p). Indeed, the data for the dressing function can be well
fitted by a— blog(1 -+ cp?) [13], supportingk = 0. This is also observed id = 3. Ford =2
enhancement is observed, with a behaviop~2¢ andk between 0.1 and 0.2 [12, 13].

4. Conclusions

By using rigorous upper and lower bounds to constrain thraiiafl behavior of gluon and ghost
propagators, we obtain a finite nonzero gluon propagata@ratrmomentum and an essentially con-
stant ghost dressing function in the infrared limit. Thessuits seem to contradict the commonly
accepted confinement scenarios of Gribov-Zwanziger anad¥Q®jgna [16]. However, as pointed
out in [17], the above results are not completely in disages® with the Gribov-Zwanziger ap-
proach. In particular, it has been recently shown [18] tistigithe Gribov-Zwanziger approach,
i.e. by restricting the functional integration to the GritregionQ, one can also obtain ind3and
4d a finite nonzero gluon propagator and a tree-level-like ghaspagator in the infrared limit. It
is interesting that the same approach cannot be appliecktadthase [19]. Let us also note [17]
that even though the Gribov-Zwanziger and the Kugo-Ojimdioement scenarios seem to predict
similar infrared behavior for the propagators, it is notclaow to relate the (Euclidean) cutoff at
the Gribov horizon to the (Minkowskian) approach of Kugan@y [20].

Similar results for the gluon and ghost propagators areirmddeby various groups using very
large lattice volumes [21], both in tf&J(2) and in theSU(3) cases. [The equivalence between the

2For example, in @ Maximally Abelian gauge one sees thatin goes to zero at large volume but the ghost propa-
gator stays finite at zero momentum [15].
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infrared propagators iBU(2) andSU(3) gauge theories can be seen e.qg. in [22].] Of course, one
should also recall that the regi@his actually not free of Gribov copies and that the configorati
space should be identified with the so-called fundamentalutao region/A. On the other hand,
the restriction to\ and the numerical verification of the Gribov-Zwanziger stemare separate
issues [17]. Indeed, this scenario is based on the resfriofithe configuration space to the region
Q, which includes/\. Finally, as explained in [2], the restriction o can only make the ghost
propagator less singular, as confirmed by recent lattice [$&t
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