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1. Introduction

Yang-Mills theories are the cornerstone of the standard model. These theories are formulated

in terms of a highly redundant set of variables, due to the local gauge symmetry of the action. In

case of Yang-Mills theories with matter, the variables are the gauge fields Aµ(x) and the matter

fields Q(x). The calculation of physical observables is hampered by the fact that these fields are

not directly related to physical particles. This can be easily seen from the fact that they transform

non-trivially under gauge transformations Ω in the gauge group G :

Aµ(x) → AΩ
µ (x), Q(x) → Ω(x)Q(x). (1.1)

Gauge invariance tells us that we can work with any representative of the gauge orbit {AΩ
µ (x)|Ω(x) ∈

G }. A common method of choosing a unique representative is through the global maximum of a

given gauge fixing action:

Sfix[A
Ω] → global maximum for Ω =: ΩFMR[A]. (1.2)

The set of these representatives is free of Gribov copies and (after suitable boundary identifications)

is called the fundamental modular region:

{

AΩ
µ (x) |Ω = ΩFMR[A]

}

. (1.3)

It has been known for a long time [1] that a physical electron state |Q〉 can only be obtained if the

bare state Q(x)|0〉 is properly dressed by a photon cloud:

|Q〉 = h[A]Q(x)|0〉 , h[AΩ] = h[A]Ω† . (1.4)

The latter equation specifies the dressing property which ensures the gauge invariance of |Q〉. The

choice of a a dressing is not unique. They may differ e.g. by a gauge invariant factor without

spoiling the dressing property in (1.4). One particular way to construct a dressing is to use gauge

fixing:

h[A] = ΩFMR[A] . (1.5)

We call this definition dressing from the fundamental modular region. Under the assumption that

there is a unique global maximum, it can be easily shown that this definition satisfies the dressing

property:

h[AΩ] = ΩFMR[AΩ] = ΩFMR[A]Ω† = h[A]Ω† .

The disadvantage of this definition is that it relies on an explicit realisation of gauge fixing. While

the Faddeev-Popov method [2] works in perturbation theory, it fails non-perturbatively, leading to

Green functions being in indeterminate form [3, 4, 5]. This is because in non-Abelian theories the

gauge fixing condition has multiple solutions Ω(x). This was first elucidated by Gribov for the

case of Coulomb gauge [6], and since then has been known as the Gribov problem. One might

argue that in a purely numerical approach using lattice regularisation there is no need to resort to a

gauge fixing condition: one might find the unique representative on the gauge orbit by seeking the

global maximum of the gauge fixing action (1.2) using advanced algorithms. While this approach

is conceptually correct, it is not feasible: it can be shown that locating the global maximum is
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equivalent to solving a spin-glass problem which is beyond the scope of the numerical techniques

currently available.

In order to bypass the Gribov problem, we recently proposed [7] combining the alternative

construction of the gauge invariant partition function by Parrinello and Zwanziger [8, 9, 10] with

the technique of gauge invariant projection initiated by Polyakov and Susskind [11, 12, 13]. This

leads to our integral dressing construction of gauge invariant trial states, which we will describe

below. We will also describe the “ice-limit”, in which we recover the dressing from the FMR

without having to construct the FMR explicitly. As an initial application, we employ the integral

dressed trial states to calculate the static interquark potential.

2. Integral dressing

In the following, we will adopt lattice regularisation. The gauge fields Aµ(x) are represented

by group valued links Uµ(x). Rather than realising the dressing property (1.4) by gauge fixing, we

define the integral dressing [7]

h[U ] =
∫

DΩ Ω(x) exp{κ Sfix[U
Ω]}, (2.1)

where κ plays the role of a gauge fixing parameter. Using the gauge invariance of the Haar measure,

we easily verify the dressing property (G ∈ G ):

h[UG] =
∫

DΩ Ω(x) exp{κ Sfix[U
ΩG]} =

∫

D [ΩG] [ΩG] G† exp{κ Sfix[U
ΩG]} = h[U ]G†.

Gauge invariant dressings for multi-quark trial states may be defined similarly, e.g. for a quark–

antiquark trial state we make the ansatz

|trial〉 := Q†(y) h(2)[U ](y,x) Q(x) |0〉, h(2)[U ] :=

∫

DΩ Ω†(y) Ω(x) exp{κ Sfix[U
Ω]}. (2.2)

Let us briefly discuss the strong gauge fixing limit κ → ∞. In this case, the total contribution to the

integral in (2.2) arises solely from the domain where Sfix attains its global maximum. In this case,

we recover the dressing from the FMR:

h(2)[U ] ∝ Ω†
FMR

(y) Ω
FMR

(x), |FMR〉 := lim
κ→∞

|trial〉. (2.3)

As an illustrative example, we consider axial dressing by choosing

Sfix[U
Ω] = ∑

x

1

Nc

trUΩ
3 (x) ≤ Nx , (2.4)

where Nx is the number of lattice cites, and Nc is the number of colours of the gauge group. The

key observation is that the upper bound in (2.4) can be saturated exactly: letting Cx denote the

straight line joining the points (x1,x2,1,x4) and (x1,x2,x3,x4), we find ΩFMR(x) = ∏Cx
U3(x) in

the strong gauge fixing limit of κ → ∞. The integral dressing (2.3) for a quark at x and an antiquark

at y = x+ r e3 then becomes

h(2)[U ](y,x) = ∏
Cxy

U3(x), (2.5)
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Figure 1: Illustration of the ice-limit (left panel) and the static potential from Coulomb dress trial states

(right panel).

where Cxy is the straight line between x and y. Relation (2.5) and the corresponding trial state have

an intuitive interpretation: h(2) is just the Polyakov line between the points x and y, so the trial state

is made gauge invariant by joining the quark and antiquark with a thin gluonic string.

The static quark antiquark potential V (r) can be obtained by calculating the expectation value

of the (Euclidean) time evolution operator using the FMR trial state:

〈trial|e−HT |trial〉
T large
−→ |〈2|trial〉|2 e−V (r)T , 〈FMR|e−HT |FMR〉 = W (r,T ). (2.6)

In the case of the axial dressing, we recover the standard approach to the static potential using

rectangular Wilson loops W (r, t). Although we have not encountered here a Gribov problem in

the case of axial dressing, its disadvantage is that the overlap |〈2|trial〉|2 is poor and even vanishes

when the lattice regulator is removed [14, 15].

3. Dressing from the Coulomb gauge FMR - the ice-limit

A much better overlap is observed if Coulomb gauge fixing is employed [14]:

Sfix[U
Ω] = ∑

k,x

1

Nc

trUΩ
k (x) , k = 1 . . .3. (3.1)

Using the definition of the integral dressing and heavy quark propagation, the expectation value

(2.6) can be written as [7]:

〈trial|e−HT |trial〉 ∝

∫

DUµ DΩ . . . exp{κSfix[U
Ω]} . (3.2)

Note the order of the integration: the Ω integration is done before the link Uµ integration. With

this ordering, we recover the Gribov problem in the large-κ limit, since for a given background
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field Uµ(x), the Ω-path integral may be viewed as a spin-glass partition function with a metric

Uµ(x). However, using the explicit gauge invariance of our approach, the order of integration can

be exchanged, and the U integral becomes independent of Ω (for details see [7]),

〈trial|e−HT |trial〉 ∝

(

∫

DΩ

)

∫

DUµ . . . exp{κSfix[U ]}. (3.3)

Changing the order of integration solves the Gribov problem: the limit κ → ∞ can thus be taken

analytically, as the dominant contributions to the integral now arise from maximising (3.1) with

respect to U rather than Ω. The solution is clearly to take U = 1, i.e.

Sfix[U ]
Uµ
→ max =⇒ Uk(~x, t) = 1 for t = 0 and t = T . (3.4)

The limit κ → ∞ implies that the link fields Uµ on the time-slices t = 0 and t = T are frozen

to perturbative vacuum levels. We have therefore called this the ice-limit. An illustration of the

ice-limit together with our numerical results for V (r) can be found in figure 1 – a linearly rising

interquark potential clearly emerges.
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