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The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice,

using an improved gauge fixing scheme which includes the residual symmetry. This setting has

been shown to be essential in order to explain the scaling violations in the instantaneous gluon

propagator. We find that both the ghost propagator and the Coulomb potential are insensitive

to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential

is evaluated from theA0–propagator instead of the Coulomb kernel. In particular, no signs of

scaling violations could be found in either quantity, at least to well below the numerical accuracy

where these violations were visible for the gluon propagator. The Coulomb potential from the

A0-propagator is shown to be in qualitative agreement with the(formally equivalent) expression

evaluated from the Coulomb kernel.
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1. Introduction

Yang–Mills theory in the Coulomb gauge has recently drawn a renewed attention, both in the
continuum [1, 2, 3] and on the lattice [5, 4, 6, 7, 8]. This is mainly due to the fact that Gauß’
law can be resolved explicitly in this gauge, which allows for a neat Hamiltonian formulation with
the transversal part of the remaining vector potentialA⊥ as the only physical degree of freedom.
Much of the intuition and techniques from ordinary quantum mechanics can thus be carried over
to the YM case. In particular, recent variational approaches in the Schrödinger picture, based
on the notion of a weakly interacting constitutent gluon andthe Gribov–Zwanziger confinement
scenario [12], proved to be very successfull [3]; similar calculations are presently carried out in the
renormalisation flow approach.

All these continuum formulations, in one way or the other, give rise to relations between low-
order Green functions of the constituent gluonA and the Faddeev–Popov ghosts. It is therefore
important to obtain non-perturbative information on such correlators from the lattice. Careful stud-
ies of the equal–times gluon propagator, for instance, reveal strong scaling violations and a UV
behaviour at odds with simple dimensional arguments [5, 7, 6]. These surprising results reflect the
renormalisation problems for instantaneous correlators in the continuum. One possible explana-
tion of the lattice findings [9] is based on the idea that the residual gauge freedom left over by the
Coulomb condition must be fixed in such a way that it resemblesthe Hamiltonian formulation as
closely as possible.1 A careful study of the energy dependence of the gluon propagator then allows
to manipulate the data such that perfect scaling is observedeven on finite lattices.

For the confinement scenario layed out by Gribov and Zwanziger[12], the more important cor-
relators are, of course, the ghost propagator and, in particular, the Coulomb potential. Furthermore,
the ghost form factor has been shown to represent the inverseof the colour dielectric function of the
Yang–Mills vaccum [13], and is therefore of direct physicalrelevance. Initial studies of the ghost
and Coulomb propagator for the gauge groupG = SU(2) with simple Coulomb and no residual
gauge fixing [5] found no scaling violations at low momenta, but had inconclusive results about the
Coulomb string tension in the deep infrared. Moreover, these results were partially at odds with
more carefulSU(3) studies using a residual gauge fixing different from ours [11], which featured
a peculiar saddle-like behaviour in the Coulomb potential at low momenta. In the present talk, I
will report about recentSU(2) calculations of ghost form factors and the Coulomb potential, using
exactly the same gauge fixing techniques which proved essential for the resolution of the scaling
violations in the gluon propagator.

2. Gauge Fixing

Our gauge fixing procedure employs both simulated annealingand the microcanonical flip
procedure layed out in [7] as a preconditioning with subsequent (over)relaxation to complete the
gauge fixing within machine precision. To reduce the Gribov noise and bring the lattice configs
closer to the fundamental modular region, we perform up to 40restarts with random gauge transfor-
mations as starting points, and take the copy with the best minimum of the gauge fixing functional.
While this procedure proved to be important for the correct extraction of the gluon propagator in

1For the first-order formalism in the continuum, renormalisability has been proven algebraically [10].
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Figure 1: Left panel: Energy dependence of theA0–propagatorD00(p, p0) after improved Coulomb and
resiudal gauge fixing, for various spatial momenta|p|. Right panel: The equal-timesA0–propagator
D00(p,t = 0) as a function of the spatial momentum|p|.

the deep infrared [7], the ghost correlators exhibit a much weeker dependence on the quality of
gauge fixing. This can be clearly seen in the left panel of fig. 2: The value of the ghost propagator
at the lowest diagonal momentum̂p = (1,1,1) is only very slightly suppressed as the numbern of
Gribov restarts is increased, and the optimum is already reached forn as low asn≈ 2..3. All this
is in constrast to the corresponding findings for the gluon propagator, where a 20% effect was seen
that required up ton = 40 for saturation.

The second important ingredient is the residual gauge fixing. To make contact with the Hamil-
tonian approach in Weyl gauge, we would like to put the spatial averageu(t) = L−3∑xU0(t,x)

to unity. However, periodic boundary conditions only allowus to makeu(t) time-independent,
u(t) ≡ U0 = const. In the infinite volume limit (and in praxis also forL ≥ 32), U0 approaches
unity. Although this only enforces∂0U0 = 0 on the spatial average, theA0–propagator is, within
statistical errors, independent of energy (see left panel of fig. 1). In the right panel of fig. 1, we thus
plot only the instantaneousA0–propagator which is strongly enhanced in the infrared. This result
will be related to the Coulomb potential below.

3. Results

The right panel of figure 2 shows our results for the ghost propagator and its form factor,

G(p) = 〈 c̄(−p)c(p)〉 = L−3 ∑
x

eipx 〈M(x,0)−1 〉 ≡
d(|p|)

p2 (3.1)

whereM ≡ (−∇D) is the Faddeev–Popov operator and the ghost form factord(p) measures the
deviation from the perturbative result. The form factor is infrared enhanced, which agrees with the
horizon conditiond−1(0) = 0 necessary in the Zwanziger confinement criterion [12]. Ourinfrared
exponentκ ≈ 0.22 for the divergenced(p)∼ 1/(p2)κ is slightly smaller than the one obtained with
naive gauge fixing [5], but agrees well with recent improved studies inSU(3) [11].

Even more directly related to the confinement problem is the so-called Coulomb potentialVc,
i.e. the response of the gluon vacuum to static colour charges. Since the constituent gluonA and
its wave functional are gauge-dependent,Vc is not directly the physical potential between static
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Figure 2: Left panel: The ghost propagator at the lowest diagonal momentump̂ = (1,1,1) as a function of
the number of Gribov copies considered in the Coulomb gauge fixing. (Note the scale on they–axis.) Right
panel: The ghost form factord(p) as a function of the spatial momentum|p|.

quarks (as extracted from Wilson loops or Polyakov lines), but an upper bound,Vc(r) ≥ 4
3 V(r).

This implies that there is no confinement without Coulomb confinement [12], but a linear Coulomb
potential may persist even in the deconfined phase.

Formally,Vc(r) can be computed in one of two equivalent ways,

Vc(|x−y|) = 〈A0(t,x)A0(t,y)〉 = g2 〈
(

M
−1 ·∆ ·M−1)

x,y 〉 . (3.2)

The formal equivalence of these two expressions can be shownin the first order formalism upon
explicitly resolving Gauß’ law [10, 14]. This leaves possible renormalisation issues aside and
the lessons learned from the scaling violations in the gluonpropagator indicate that some caution
is required when connecting bare instantaneous correlators. Of course, theA0–propagator is nu-
merically much simpler than the complicated Coulomb kernelinvolving two inversions of the FP
operator.

The strong Ward identities in Coulomb gauge [10] imply that the special combination in mo-
mentum space

p2Vc(p) ∼ g2(p) (3.3)

is a renormalisation group invariant which can be taken as a definition of the running coupling con-
stant. Simulations with differentβ should thus fall on top of each other without further multiplica-
tive renormalisation. We have tested this conjecture for numerous values ofβ on relatively small
164 lattices. (On 324 lattices, we have only been able to complete the analysis of the complicated
Coulomb kernel for a single value ofβ ). Theβ–invariance was much better for theA0–correlator,
whileVc constructed from the Coulomb kernel still showed noticablescaling violations. At present,
it is not known whether these deviations are pure numerical or finite volume effects, or if they have
any more significant meaning. (Similar observations were made in ref. [11]). Simulations with
improved statistics on larger lattices have to be conductedto resolve this issue.

Finally, the most direct approach to the confinement issue isgiven by the expression

p4Vc(p) . (3.4)
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Figure 3: Left panel: The combinationp4Vc(|p|) with the Coulomb potentialVc extracted from theA0–
propagatorD00(p,t = 0). Right panel: The same quantity, withVc extracted from the Coulomb kernel.

From the Fourier transformation of a linear potential,Vc(r) = σc r, it is readily seen that

p4Vc(p) → 8πσc , |p| → 0.

The Coulomb string tensionσc is an upper bound for the real string tensionσ extracted from
Wilson loops. Previous and current lattice studies are inconclusive as to whetherσc = σ , since the
approach to|p| → 0 is not as uniform as expected: Early simulations without improved/residual
gauge fixing saw a slight but noticeable rise in the quantity (3.4) below|p| ≈ 1GeV, which seemed
compatible withσc/σ anywhere in the range 1. . .3. More recent computation for the gauge group
G = SU(3) prefer a valueσc/σ ≈ 1.6, but the extrapolation to zero momentum is again uncertain
due to a peculiar "bump" in the quantity (3.4) at momenta between 0.1. . .1GeV.

Our result on aV = 324 lattice in figure 3 using all improved gauge fixing techniquesgive
reliable results (for cylinder cut momenta) only down to|p| ≃ 0.5GeV. In this range, the results for
(3.4) are compatible withVc computed either from theA0–propagator or from the Coulomb kernel.
The latter result show a more pronounced plateau at the smallest momenta, which is reminiscent
of the slight rise observed in [5]. However, the numerical data can equally well be fitted with
a constant. (Vc from the A0–propagator is compatible with the Coulomb kernel results within
statistical errors). For both definitions ofVc, we do not see the "bump" reported forSU(3) in
ref. [11]. While the approach to a constant seems promising,better statistics and larger lattices are
required for a reliable extrapolation ofσc/σ .

4. Conclusion

The computation of ghost correlators and the Coulomb potential in G = SU(2) show qualita-
tive agreement with continuum calculations in the variational approach [2, 3]. The scaling viola-
tions observed previously for the equal-times gluon propagator D(p) have no counter part in the
ghost correlators studied here. In particular, the dependence on the Gribov noise and the details of
the improved gauge fixing are negligable. Likewise, the residual gauge fixing, which is essential
for the resolution of the scaling violations inD(p), seems to have little or no influence on the ghost
propagator or Coulomb potential, even when the latter is extracted from the theA0–propagator.
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Our residual gauge fixing removes the energy dependence onA0 not only in the spatial aver-
age, but effectively for arbitraryA0–correlators. There is thus no issue with renormalisation and
the results for the instantaneousA0–correlators resemble the ones with unfixed residual symmetry.
(Similar observations are made for the ghost propagator andthe Coulomb potential as extracted
from the Coulomb kernel.) It is therefore not surprising that our findings agree with other calcula-
tions, even if these fixed the Coulomb gauge naively, or left the residual symmetry unfixed.

The statistics in the deep infrared are not sufficient to makereliable quantitative extrapolations
for the Coulomb string tensionσc, or the Coulomb form factorf (p) whose infrared behaviour is
an important ingredient in the variational approaches [2, 3]. We intend to improve on this and
accumulate data for 324 lattices with variousβ , andA0–correlators on even larger lattices. These
results will be published in a forthcoming paper.
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