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1. Introduction

The color confinement in QCD is an explanation of the physics phenomenon that color charged
particles are not observed. However, there is no analytic proof that QCD should be color confining,
the reasons for quark confinement may be somewhat complicated. There exist different suggestions
about the origin of confinement, e.g., [1]. One of the earliest suggestion is the Analytic Confine-
ment (AC) based on the assumption that the QCD vacuum is realized by the self-dual vacuum gluon
field [2]. Particularly, a nonzero self-dual homogenous gluon field Bµ(x) with constant strength
provides the vacuum of the quark-gluon system and makes the quark and gluon propagators entire
analytic functions [3]. However, direct use of these propagators encounters complex formulae and
cumbersome estimations. On the other hand, the conventional perturbation theory cannot be used
at low energy, where the most interesting and novel behavioris expected. Different nonperturbative
approaches have been proposed to deal with the long distanceproperties of QCD, such as chiral
perturbation theory, QCD sum rule, heavy quark effective theory, lattice QCD simulations, coupled
Schwinger-Dyson equation model etc. Along outstanding advantages these approaches have also
obvious shortcomings. Dealing with the two body relativistic bound state problems one should use
a relativistic approach, e.g., the Bethe-Salpeter equation (BSE) [4].

The calculations of hadron mass characteristics on the level of experimental data precision still
remain among the unsolved problems in QCD due to some technical and conceptual difficulties.
In such a case, it is useful to investigate the correspondinglow-energy effective theories and phe-
nomenological models. Earlier we studied a ’toy’ model of interacting scalar ’quarks’ and ’gluons’
that demonstrated a qualitatively correct description of the mass spectrum of the two- and three-
particle bound states [5, 6]. Below we extend this investigation by taking into account the spin,
color and flavor degrees. Our goal is to suggest a model describing hadrons as relativistic bound
states in terms of quarks and gluons and to calculate simultaneously the mass spectra of light and
heavy mesons, the decay constantsfπ and fK , and the lowest glueball mass.

2. The model

Because of the complexity of QCD, it is often prudent to examine simpler systems exhibiting
similar characteristics first. Consider a simple relativistic quantum-field model of quark-gluon
interaction assuming that the AC takes place. The model Lagrangian reads[7]:

L = −1
4

(

FA
µν −g fABC

A
B

µ A
C

ν
)2

+∑
f

(

q̄a
f

[

γα ∂α −mf +gΓC
αA

C
α

]ab
qb

f

)

, (2.1)

whereA C
α - gluon field,FA

µν = ∂µA A
ν − ∂νA A

µ , qa
f - quark triplet with colora, flavor f and mass

mf ; g - the coupling strength andΓC
α = iγα tC.

We restrict the consideration within the ladder BSE that is sufficient to estimate the spectra of
two-quark and two-gluon bound states with reasonable accuracy [6, 7]. The path integrals defining
the leading-order contributions to the two-quark and two-gluon bound states read:

Zqq̄ =
∫ ∫

D q̄Dqexp

{

−(q̄S−1q)+
g2

2
〈(q̄ΓA q)(q̄ΓA q)〉D

}

, (2.2)

ZA A =
〈

exp
{

−g
2

( fA A F)
}〉

D
, 〈(•)〉D =

∫

DA e−
1
2(A D−1A )(•) . (2.3)
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The structure of the QCD vacuum is not well established and one encounters difficulties by
defining the explicit quark and gluon propagator at the confinement scale. The Green’s functions in
QCD are tightly connected to confinement and are ingredientsfor hadron phenomenology. On the
other hand, the matrix elements of hadron processes are integrated characteristics of the propaga-
tors and vertices. Therefore, taking into account the correct global symmetry properties and their
breaking by introducing additional physical parameters may be more important than the working
out in detail. Consider the quark and gluon (in Feynman gauge) propagators:

S̃ab
µν(p̂) = δ ab

{

i p̂

m2
f + Λmf

+
1± γ5 ω(mf /Λ)

mf

}

µν

exp

{

−
p2+m2

f

2Λ2

}

,

D̃AB
µν(p) = δµνδ AB 1

p2 exp
(

−p2/4Λ2) , (2.4)

wherep̂ = pµγµ andω(z) = (1+z2/4)−1. These entire analytic functions in Euclidean space rep-
resent approximations to the propagators calculated in [3]. The sigh± in the quark propagator
means the self- and antiself-dual modes of the vacuum fields.The model parameters are: the cou-
pling constantαs

.
= g2/4π, the confinement scaleΛ and the quark masses{mu = md,ms,mc,mb}.

Further we allocate the one-gluon exchange term between colored bi-quark currents and isolate
the color-singlet combination. Then, we perform a Fierz transformation(iγµ)δ µν(iγν ) = ∑JCJ ·
OJ OJ for OJ

.
= {I , iγ5, iγµ ,γ5γµ , i

2[γµ ,γν ]} and pass to relative co-ordinates in the center-of-mass
system. By introducing a system of orthonormalized functions {UN} and expanding the bi-quark
nonlocal current on the basis we can perform explicit integration over the quark fields and rewrite
path integral (2.2) in terms of auxiliary meson fieldsBN(x)

Zqq̄ → Z =
∫

∏
N

DBN exp

{

−1
2

(

BN

[

1+
4g2CJ

9
(
√

DUNTr[OJSOJS]
√

DUN)

]

BN

)

−Wres[BN]

}

,

whereWres[BN] describes the interaction between mesons. We introduce an hadronizationAnsatz
and identifyBN(x) with mesons carrying quantum numbersN = {J, ℓ,nr , f1, f2}.

Meson ground states. Note, the diagonalization of the kinetic part on the basis{UN} is equiv-
alent to the solution of the ladder BSE:

4g2CJ

9
(
√

DUNTr[OJSOJS]
√

DUN) = δNN′ λN(−p2) ,

where the polarization kernel reads

λN(−p2)
.
=

4g2CJ

9

∫∫

dxdy
√

D(x)
∫

d4k
(2π)4 e−ik(x−y)Tr

[

OJS̃
(

k̂+ ξ1p̂
)

OJS̃
(

k̂−ξ2p̂
)]

√

D(y) .

It is convenient to use the renormalized form:

(UN[1+ λN(−p2)]UN) = (UN[1+ λN(M2
N)− λ̇N(M2

N)[p2 +M2
N]UN)

.
= (UR[p2 +M2

N]UR) .

In relativistic quantum field theory a stable bound state ofn massive particles shows up as a pole
in the S-matrix with a center of mass energy. Accordingly, the meson mass may be derived from
equation [7]:

1+ λN(M2
N) = 0, p2 = −M2

N . (2.5)
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Below we consider the meson ground states (ℓ = 0,nr = 0), the pseudoscalar (P : JPC = 0−+)
and vector (V : JPC = 1−−) mesons. The quark constituent masses{mud,ms,mc,mb} and coupling
constantαs have been fixed to fit exactly the meson massesMπ(138 MeV), Mρ(770), K(495),
J/Ψ(3097) andϒ(9460) while Λ has been estimated to describe reasonably the weak decay con-
stantsfπ and fK (see below). Finally, we fix the following values of model parameters:

αs = 0.53114, Λ = 413.1 MeV, mud = 228.5 MeV,

ms = 301.2 MeV, mc = 1305.3 MeV, mb = 4608.1 MeV. (2.6)

By using these parameters we calculate mass spectra of the pseudoscalar and vector mesons given
in Fig. 1 in comparison with experimental data from PDG-2006. The relative error of our estimate
does not exceed∼ 4 per cent in the whole range of meson masses (from 140MeV up to9.5GeV).
For ω andΦ mesons we use the quark-flavor basis mixing scheme with angleθV = 76.5◦. Note,

JPC = 0−+ MP JPC = 0−+ MP JPC = 1−− MV JPC = 1−− MV

π(138) 138 ηc(2979) 3017 ρ(770) 770 D∗
s(2112) 2063

K(495) 495 B(5279) 5450 ω(782) 776 J/Ψ(3097) 3097
η(547) 547 Bs(5370) 5529 K∗(892) 899 B∗(5325) 5577
D(1870) 1855 Bc(6286) 6462 Φ(1019) 1017 ϒ(9460) 9460
Ds(1970) 1964 ηb(9300) 9435 D∗(2010) 1954

Table 1: Estimated masses of the ground-state mesons compared with experimental data (in units of MeV).

the valueαs = 0.53114 is obtained to fit theπ meson mass, therefore, it is in agreement with the
prediction of the QCD running couplingαQCD ∼ 0.4÷0.7 in the low-energy region (see, e.g., [8]).

Weak decay constants. An important quantity in the meson physics is the weak decaycon-
stant. For the pseudoscalar mesonsfP is defined by the following current-meson duality formula

i fP pµ = 〈0|JA(0)|UR(p)〉 , (2.7)

whereJA is the axial vector part of the weak current. Accordingly, weestimate

i fP pµ =

√
2g
3

∫

dk
(2π)4

∫

dxe−ikx UR(x)
√

D(x) Tr
{

iγ5S̃
(

k̂+ ξ1p̂
)

γ5γµ S̃
(

k̂−ξ2p̂
)}

.

With optimal values for{mu,ms,αs,Λ} (2.6) we calculate the weak decay constants of light mesons

fπ = 117 MeV, fK = 178 MeV. (2.8)

Compare our estimates with the latest data [9, 10]

fπ = 130.7±0.1±0.36MeV, fK = 159.8±1.4±0.44MeV.

Glueball lowest state. Glueballs are the most unusual particles predicted by the QCD but not
found experimentally yet [11]. Pure two-gluon bound statesare the most studied gluonic systems
in the literature. Recent lattice calculations, QCD sum rules, ’tube’ and constituent glue models
predict that the lightest glueball has quantum numberJPC = 0++ (scalar) [12]. In quenched lattice
QCD the lightest glueball is a scalar object with a mass of (1.66±0.05) GeV [13].
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Consider a two-gluon scalar bound state within ladder BSE method. By omitting details of
similar intermediate calculations (see previous section)we obtain the final analytic expression for
the lowest-state glueball mass:

MG = 2Λ
[

ln

(

αcrit

αs

)]1/2

, αcrit
.
=

3π(3+2
√

2)2

8
. (2.9)

Our purpose is to describe simultaneously different sectors of low-energy particle physics.
Therefore, we use the parameters (αs = 0.53114, Λ = 413.1 MeV) optimal for the meson ground-
state spectra (2.6) and weak decay constants (2.8). With these parameters we calculate the lowest-
state (scalar) glueball mass

MG = 1718 MeV. (2.10)

Our estimate (2.10) is in reasonable agreement with prediction 1750(50)(80) MeV for the mass
of the lightest glueball from quenched QCD [14]. The most recent quenched lattice estimate with
improved action favors a scalar glueball mass close toMG = 1710±50±58 MeV [15].

In conclusion, we have considered a simple relativistic quantum field model of interacting
quarks and gluons confined analytically. Our guess about thestructure of the quark-gluon interac-
tion in the confinement region was proved to be correct and thesimple forms of the quark and gluon
propagators resulted in quantitatively correct estimatesfor three different sectors of the low-energy
particle physics, the glueball and meson spectra as well as the weak decay constants.
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