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Effective chiral quark theories are powerful tools to assess the properties of free hadrons and
the medium modifications due to the presence of other hadrons. Much progress has been achieved
recently by using the Nambu-Jona-Lasinio (NJL) model to describe single nucleons in the Faddeev
framework, nuclear matter and finite nuclei in the mean field approximation, and the properties
of bound nucleons by combining these two aspects. In this paper we present some recent results
obtained within this approach, and discuss an interesting application to neutrino deep inelastic
scattering (DIS) on nuclear targets.

In the Faddeev approach to the NJL model[1], the nucleon is described as a bound state of a
quark and a diquark, where the scalar and axial vector diquark channels are most important and will
be included in all results presented in this paper. In the framework of the mean field approximation,
the NJL model also gives a successful description of the nuclear matter equation of state, which
includes important effects of the quark substructure of thenucleons[2]. By using the resulting
density dependent effective masses of the quark, the diquark and the nucleon, the model can be
used to calculate the properties of a nucleon in the medium[3]. The mean field approach can be
extended to describe also finite nuclei[4].

As an example of recent calculations[5] carried out in this approach, we first show the transver-
sity quark distributions in the proton in Fig.1, in comparison to recent fits[6] to Hermes, Compass
and Belle data. The calculated first moments (tensor charges) atQ2 = 0.8 GeV2 are∆Tu = 0.7 and
∆Td = −0.15, which are within the limits deduced from experiment. Together with earlier results

Q2 = 2.4 GeV2
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Figure 1: Calculated transversity quark distributions (solid lines, from Ref.[5]) in comparison to recent
fits to data (shaded areas, from Ref.[6]). The dotted lines show the calculated helicity distributions for
comparison.

obtained for the spin independent and helicity distributions[7], we can say that the model gives an
excellent description of the quark distribution functionsin the free nucleon.

The medium modifications of spin independent and spin dependent structure functions are
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usually expressed by the following EMC ratios1:

R(x) =
F2A(xA)

Z F2p(x)+N F2n(x)
,

Rs(x) =
g1A(xA)

Ppg1p(x)+Png1n(x)
.

Here we present two examples of recent calculations: Fig.2 shows the EMC ratios for the nucleus
11B, together with experimental data for the spin independentratio. It is clearly seen that the
predicted polarized EMC effect is more pronounced than the unpolarized one, and the experimental
verification of this interesting prediction is a challenging problem. As a second example[9], we
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Figure 2: EMC ratios for the nucleus11B from Ref.[4]. The experimental data for12C are from Ref.[8].

show in Fig. 3 the unpolarized EMC ratios in isospin asymmetric infinite matter for several values
of Z/N at fixed baryon density. It is seen that the EMC effect in the valence quark region first
increases as the system becomes neutron rich, and then decreases. The reason for this behavior is
that, because of the symmetry energy, the binding - and therefore also the medium modifications
- of theu quarks increases, which leads to a more pronounced EMC effect as long as theu quarks
dominate the structure function on account of their bigger charge. This is in contrast to the case
of proton rich matter, where the EMC effect always decreaseswith increasing isospin asymmetry.
As an interesting application of this result, we discuss thefollowing “Paschos-Wolfenstein (PW)
ratio”[11] for inclusive DIS of neutrinos and antineutrinos from iron, which was measured in 2002
by the NuTeV collaboration[12]:

RPW =
σ (νFe→ νX)−σ (νFe→ νX)

σ (νFe→ µ−X)−σ (νFe→ µ+X)
=

NC
CC

.

Here it is understood that all cross sections are integratedover the Bjorken variablex, and the
notations NC and CC stand for the neutral current and chargedcurrent weak processes. This ratio

1HereF2A, F2p, andF2n are the spin independent structure functions of the nucleuswith A = Z+N, the proton, and
the neutron, andg1A, g1p, andg1n are the corresponding spin dependent quantities.x is the Bjorken variable for the
nucleon, andxA = x AMN

MA
is the Bjorken variable for the nucleus, multiplied by the mass numberA. The quantitiesPp

andPn are the polarization factors (expectation values of the spin operator) of protons and neutrons in the nucleus.
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ρ = ρp + ρn = 0.16 fm−3
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Figure 3: Spin independent EMC ratios for infinite matter at fixed baryon density for several ratiosZ/N.
The data points are the extrapolations of nuclear DIS to the limit of isospin symmetric nuclear matter[10].

can be expressed in terms of nuclear valence quark distributions as follows[13]:

RPW =

∫ A
0 dxA xA (αuA(xA)+ βdA(xA))
∫ A

0 dxA xA
(

dA(xA)− 1
3uA(xA)

)
, (1)

whereα = 2
3

(

1
4 −

2
3 sin2 ΘW

)

andβ = 2
3

(

1
4 −

1
3 sin2 ΘW

)

depend on the Weinberg angleΘW.
If uA(x) = dA(x), the PW ratio measures the Weinberg angleΘW:

RPW
N=Z
−→

1
2
−sin2ΘW . (2)

After applying the standard “isoscalarity corrections” onthe level of parton distributions in free
nucleons, the value deduced from the experiment wasRPW = 0.272 [12], which would translate
into sin2ΘW = 0.228 on account of Eq.(2). This is different from the StandardModel value[13] of
sin2ΘW = 0.223, and this descrepancy is often called the “NuTeV anomaly” 2 [14].

It is important to note, however, that because of the isospinasymmetry of the target nucleus the
simple connection betweenRPW and the Weinberg angle is lost. Because the differenceuA−dA is in
general medium dependent, the standard “isoscalarity corrections”, which are based on free parton
distributions, may be insufficient. In fact, if we use our medium modified quark distributions,
which led to the results of Fig.3, forZ/N = 26/30, apply the same naive isoscalarity corrections
as in the NuTeV analysis, and use Eq.(1) with the Standard Model value of the Weinberg angle, we
obtain the ratioRPW = 0.273. This is very close to the value deduced from the NuTeV experiment,
which indicates that the measured PW ratio is actually consistent with the Standard Model value of
sin2ΘW. We can thus conclude that the isospin dependence of the in-medium quark distributions
largely removes the “anomaly”.

Finally, we wish to discuss an extension of the model to describe also fragmentation functions.
By using crossing symmetry and charge conjugation, it is possible to establish a formal relation
between the spin independent distribution function of a quark q in a hadronh

f h
q (x) =

1
2∑n

δ (p−x− p− + pn−)〈p|ψ |pn〉γ+〈pn|ψ |p〉 ≡ Θ(1−x)F(x) ,

2The precise values are sin2 ΘW = 0.2277± 0.0013± 0.0009 determined by the NuTeV group, compared to
sin2ΘW = 0.2227±0.0004 of the Standard Model, which indicates a 3σ discrepancy.
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and the spin independent fragmentation function of a quarkq into a hadronh

Dh
q(z) =

z
6

1
2 ∑n

δ (
p−
z

− p−− pn−)〈p, pn|ψ |0〉γ+〈0|ψ |p, pn〉 .

This relation, which has been derived originally from the hadronic tensors for the inclusive and
semi-inclusive processes[15], can be expressed as

Dh
q(z) = −Θ(1−z)

z
6

F(x =
1
z
) .

(If h is a boson, there is no minus sign in the above equation.) Thisindicates thatf h
q andDh

q are
essentially one and the same function, defined in different regions of the variable. This result would
allow a straight forward method to extend our calculations of distribution functions to fragmenta-
tion functions. More detailed investigations[16], however, show that this formal connection has
several severe limitations: (i) The regularization schemeused for the distribution functions cannot
be extended in a straight forward way to the fragmentation functions. (ii) TheQ2 evolution gives
rise to a logarithmic singularity atx = 1, which is essentially an infrared singularity due to the
vanishing gluon mass. (iii) Multiple fragmentation processes, as discussed in the framework of the
jet model of Field and Feynman [17] are important so that the light cone momentum of the frag-
menting quark is completely transfered to hadrons. The detailed analysis of these points, together
with numerical results, will be presented in a future publication [16].
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