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Among new charmonium-like states found in last severalsyda X (3872 meson is most
well-studied. TheX was first observed in the modg @t [1], with dipion originated from
the p. Later on, the state was seen in thaprt m n°(J/Pw) mode [2], so considerable isospin
violation is present. Most probable quantum numbers forX(@872 is 1*+, though 2" is
not excluded. The studies of tlig¢ym™ m mode yield the mass difference between ¥and
DD threshold of about-0.4 MeV. If the state is related to tH2°D*° threshold, one therefore
encounters a very small binding energy. Thavas searched and found in tBEDC7° mode [3],
[4] with the peak mass of about 3875 MeV, so the question wasfowhether the state observed
in theJ /@™ T mode is the same as in tR¥D°7° one.

An important step in the attempt to answer this question wesgnted in the paper [5]. The
Flatté—type parametrization both of tigym* m and D°D°r® data was developed, and it was
shown that the structure at 3875 MeV could be related toit8872 state only if theX were of
dynamical nature, however, not as a bound state, but a iatage. The analysis of the Ref. [5]
points to the strong attraction in tl¥D* channel. However, it does not allow for any conclusions
on the mechanism of this attraction, bé-ithannel exchange force or short-rasgehannel force
due to coupling of bare state to hadronic channel.

It was suggested long ago [6] that one—pion exchange coutddp®nsible for the formation
of near—threshold states in the charmonia systems. It wasrsthat the one—pion exchange is
attractive in the 1+ DD* channel, and calculations [7, 8] confirm this. In these dat@mns pions
enter in a form of a static potential. However, b€’ mass is very close to tHa°m threshold, so
that the pion can go on—shell. In this regard the doubts wasein Ref. [9] on the ability of the
one—pion exchange to provide enough binding inDDE system.

On the other hand, some admixture of a charmonium comporentd be present in the
wavefunction of theX, and this charmonium component should be dominated bﬁmg(g con-
figuration as it is somewhere close to the mass range undsidepation. An extreme scenario for
theX was suggested in [10], where a microscopic modetdor DD*) mixing was presented, with
the X generated as a virtual state in DB* channel together with thé’R; charmonium resonance.
The study of Ref. [10], while being model-dependent, reaeal very peculiar feature of theé 1
charmonium: in any reasonable quark model its couplinB®5 is very large, much larger than
for otherP—wave charmonia.

The bona fidecharmonia (such a3/, ¢/ and xc1) are known to be produced copiously in
the B — K decay, with branching fractions of several units of 4¢11]. The X is produced in
the reactionB — KX — KD®D°m® with the branching fraction of about 16, not too small in
comparison to a branching fraction fgg:; the world average for the latter is [11]

Br(B— Kxc1) = (49+0.5)-104. 1)

For a pure molecule, the branching fractBr- KX was estimated in [12] to be less tharr20So
it seems quite reasonable to assume that it isstheomponent of theX which is responsible for
the X production inB meson decay.

In the present paper the data Bn— KX(3872 are analysed in the framework &D* —
cc coupled—channel model. As shown in Ref. [13], the low—endimit of this model yields
the Flatté formulae for the scattering amplitudes. Bhe- DD differential rate in the Flatte
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approximation takes the form

dBr(B — KDDr®) 06251 1 gk

dE =082 BE @)

and theB — K" rr J/y rate is given by

dBI’(B—>K7T+7T_J/l‘U) _%irme/w(E) (3)

dE - 72m |D(E)|2
where FE)
OK1  OK2
E E—7—7+|T, E<O
D(E)={ E— Ef—%+i(g—h+@>,0<E<5 (4)
2 2 2
gke ' (E)
E— Ef+|(2 7+T 7E>5
and

5 =M(D*D*") —M(D°D*?) = 7.6 MeV,

k1= \/2u1E7 K1 = \/_2u1E7 k2=\/2u2(E—5), Ko = \/2“2(5—E).

Hereg is the coupling constany; and i, are the reduced masses in D&D*® andD*D*~ chan-
nels respectively, and the energyis defined relative to thB°D*° threshold. The coefficient 62
in Eq. 2 corresponds to tHe*® — DO branching fraction. If one assumes the decay chain to be
B — Kx{; — KX, the parametet can be identified with the branching fracti@n— K x/;.

The termil” /2 in Eq. (4) accounts for noBD* modes, with

I (E)=rom3/9(B) + Mev e 03/ (E) + To. (5)

The " J/¢ andrt m /¢ modes were treated as in the Ref. [Bj.is the bare width of the
X4 Indeed, if there is a charmonium admixture in the wavefioncof the X, it should bring in
charmonium decay modes: radiatiyg, annihilation modes (into light hadrons), axd (3515 it
(the latter was estimated in [14] to be of order of 1 keV). B fiall width of the x¢1(3515 was a
true guide, then one expects the width of gjeto be about -2 MeV.

The data orD°DP7® and rr* 71~ J /P modes were analysed under following constraints:

e Br(B— KX) < 3.2-10°4, the limit imposed by BaBar data [15]

e #=Br(B—Kx.)=(3+7)-10"4 i.e. of the same order of magnitude as for ghe see
Eqg. 1

o No=1+2MeV

As in Ref. [5], two different assumptions on t¥D°m°® background were used. Namely,
the combinatorial background was subtracted, and the fébedbackground was taken either as
unrelated to théd°D*® mode (case A), or as completely due to B2D*® mode (case B). The
analysis was performed for the data from charBetheson decay modes only, as the signal from
neutralB—-meson decay is much less pronounced in all data sets. Tilesrage shown in Fig. 1.
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Figure 1: Upper plots: Fits to the differential rates for tie 7~ J/ channel measured by Belle [1], for
o =2 MeV (solid) andlp = 1 MeV (dashed). The best fit of Ref. [5] is shown in dotted lineawer
plots: Corresponding fits for the differential rates in BRD°m® channel measured by Belle [16]. Fits A (B)
correspond to the prescription A (B) for tB€D°m° background (see text).

With the Flatté parameters found from the fit one can make fifgeamethod suggested in
[13] to estimate the admixture of a bax§ state in the wavefunction of th€. In the Flatté limit
the probabilityw(E) to find the bare state in the wavefunction of the physicakstat

W(E) = 55 (O4O(E) + GkO(E ~ &)+ ). ©

The admixturéV of the x/; charmonium in the resonance wavefunction defined as
W= w(E)dE (7)

in presented in Table 1.

Due to the constrairr(B — KX) < 3.2- 104, with the inclusion of the extra no®D* width
the results remains similar to the ones given by the bestffiftseoRef. [5]. Due to the constraint
A < 7-107%, the fits are slightly (but not significantly) worse than thesbfits. As seen from



Charmonium content of the(8872 Yu. S. Kalashnikova

Fo,MeV | a fm W [ %-10* | Br(B— KX)-10%
A 1 -3.51-i0.80[ 0.39| 6.7 2.6
A 2 -3.38-11.30] 0.42| 7.0 2.9
B 1 -3.57-0.99] 0.39| 5.0 1.9
B 2 -3.21-1.27] 0.41| 55 2.3

Table1: The values oD°D*° scatering length, near—threshold fraction of spectral den$ity% = Br(B —
Kx{,) andBr(B — KX) for various fits.

Table 1, the real part of thB°D*0 scattering length for all fits is large nd negative, signalithe
presence of virtual state.

To conclude, the data dd®D°r® andJ/@ " modes of theX (3872 can be described in
the framework of theDD* — cC coupled—channel scheme. The admixture of the fgyestate in
the resonance wavefunction is not large, and the dominanponent appears to be t¥D*°
one. This, together with large and negative real part oftegay length, proves the dynamical
(molecular) nature of th¥(3872).
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