

PoS

Charmonium content of the X(3872)

Yu. S. Kalashnikova* Institute of Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow, Russia E-mail: yulia@itep.ru

Scenario for the X(3872) is considered in which the state is generated dynamically in the $DD^* - c\bar{c}$ coupled–channel scheme. Flattè analysis of the data is presented, and the admixture of the 2^3P_1 charmonium in the X wavefunction is estimated

PACS: 12.39.-x, 13.25.Jx, 14.40.Gx

8th Conference Quark Confinement and the Hadron Spectrum September 1-6 2008 Mainz, Germany

*Speaker.

Among new charmonium-like states found in last several years the X(3872) meson is most well-studied. The X was first observed in the mode $J/\psi\pi^+\pi^-$ [1], with dipion originated from the ρ . Later on, the state was seen in the $J/\psi\pi^+\pi^-\pi^0(J/\psi\omega)$ mode [2], so considerable isospin violation is present. Most probable quantum numbers for the X(3872) is 1⁺⁺, though 2⁻⁺ is not excluded. The studies of the $J/\psi\pi^+\pi^-$ mode yield the mass difference between the X and $D^0\bar{D}^{*0}$ threshold of about -0.4 MeV. If the state is related to the $D^0\bar{D}^{*0}$ threshold, one therefore encounters a very small binding energy. The X was searched and found in the $D^0\bar{D}^0\pi^0$ mode [3], [4] with the peak mass of about 3875 MeV, so the question was put of whether the state observed in the $J/\psi\pi^+\pi^-$ mode is the same as in the $D^0\bar{D}^0\pi^0$ one.

An important step in the attempt to answer this question was presented in the paper [5]. The Flattè-type parametrization both of the $J/\psi\pi^+\pi^-$ and $D^0\bar{D}^0\pi^0$ data was developed, and it was shown that the structure at 3875 MeV could be related to the X(3872) state only if the X were of dynamical nature, however, not as a bound state, but a virtual state. The analysis of the Ref. [5] points to the strong attraction in the $D^0\bar{D}^{*0}$ channel. However, it does not allow for any conclusions on the mechanism of this attraction, be it *t*-channel exchange force or short-range *s*-channel force due to coupling of bare state to hadronic channel.

It was suggested long ago [6] that one-pion exchange could be responsible for the formation of near-threshold states in the charmonia systems. It was shown that the one-pion exchange is attractive in the $1^{++} D\bar{D}^*$ channel, and calculations [7, 8] confirm this. In these calculations pions enter in a form of a static potential. However, the D^{*0} mass is very close to the $D^0\pi^0$ threshold, so that the pion can go on-shell. In this regard the doubts were cast in Ref. [9] on the ability of the one-pion exchange to provide enough binding in the $D\bar{D}^*$ system.

On the other hand, some admixture of a charmonium component should be present in the wavefunction of the *X*, and this charmonium component should be dominated by the $2^{3}P_{1}\chi'_{c1}$ configuration as it is somewhere close to the mass range under consideration. An extreme scenario for the *X* was suggested in [10], where a microscopic model for $c\bar{c} - DD^{(*)}$ mixing was presented, with the *X* generated as a virtual state in the $D\bar{D}^{*}$ channel together with the $2^{3}P_{1}$ charmonium resonance. The study of Ref. [10], while being model-dependent, revealed a very peculiar feature of the 1^{++} charmonium: in any reasonable quark model its coupling to $D\bar{D}^{*}$ is very large, much larger than for other *P*-wave charmonia.

The *bona fide* charmonia (such as J/ψ , ψ' and χ_{c1}) are known to be produced copiously in the $B \to K$ decay, with branching fractions of several units of 10^{-4} [11]. The X is produced in the reaction $B \to KX \to KD^0 \bar{D}^0 \pi^0$ with the branching fraction of about 10^{-4} , not too small in comparison to a branching fraction for χ_{c1} ; the world average for the latter is [11]

$$Br(B \to K\chi_{c1}) = (4.9 \pm 0.5) \cdot 10^{-4}.$$
 (1)

For a pure molecule, the branching fraction $B \to KX$ was estimated in [12] to be less than 10^{-5} . So it seems quite reasonable to assume that it is the $c\bar{c}$ component of the X which is responsible for the X production in B meson decay.

In the present paper the data on $B \to KX(3872)$ are analysed in the framework of $DD^* - c\bar{c}$ coupled-channel model. As shown in Ref. [13], the low-energy limit of this model yields the Flattè formulae for the scattering amplitudes. The $B \to D^0 \bar{D}^0 \pi^0$ differential rate in the Flattè

approximation takes the form

$$\frac{dBr(B \to KD^0 \bar{D}^0 \pi^0)}{dE} = 0.62 \mathscr{B} \frac{1}{2\pi} \frac{gk_1}{|D(E)|^2},\tag{2}$$

and the $B \to K \pi^+ \pi^- J/\psi$ rate is given by

$$\frac{dBr(B \to K\pi^+\pi^- J/\psi)}{dE} = \mathscr{B}\frac{1}{2\pi}\frac{\Gamma_{\pi^+\pi^- J/\psi}(E)}{|D(E)|^2},\tag{3}$$

where

$$D(E) = \begin{cases} E - E_f - \frac{g\kappa_1}{2} - \frac{g\kappa_2}{2} + i\frac{\Gamma(E)}{2}, & E < 0\\ E - E_f - \frac{g\kappa_2}{2} + i\left(\frac{gk_1}{2} + \frac{\Gamma(E)}{2}\right), & 0 < E < \delta\\ E - E_f + i\left(\frac{gk_1}{2} + \frac{gk_2}{2} + \frac{\Gamma(E)}{2}\right), & E > \delta \end{cases}$$
(4)

 $\Gamma(\mathbf{F})$

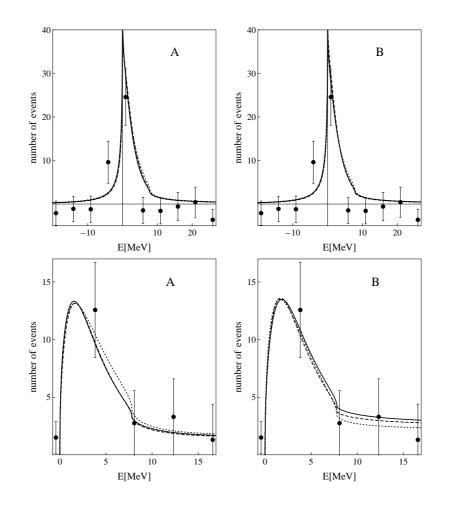
and

$$\delta = M(D^+D^{*-}) - M(D^0\bar{D}^{*0}) = 7.6 \text{ MeV},$$

 $k_1 = \sqrt{2\mu_1 E}, \quad \kappa_1 = \sqrt{-2\mu_1 E}, \quad k_2 = \sqrt{2\mu_2(E-\delta)}, \quad \kappa_2 = \sqrt{2\mu_2(\delta-E)}$

Here g is the coupling constant, μ_1 and μ_2 are the reduced masses in the $D^0 \bar{D}^{*0}$ and $D^+ D^{*-}$ channels respectively, and the energy E is defined relative to the $D^0 \bar{D}^{*0}$ threshold. The coefficient 0.62 in Eq. 2 corresponds to the $D^{*0} \rightarrow D^0 \pi^0$ branching fraction. If one assumes the decay chain to be $B \rightarrow K \chi'_{c1} \rightarrow KX$, the parameter \mathscr{B} can be identified with the branching fraction $B \rightarrow K \chi'_{c1}$.

The term $i\Gamma/2$ in Eq. (4) accounts for non- $D\bar{D}^*$ modes, with


$$\Gamma(E) = \Gamma_{\pi^+\pi^- J/\psi}(E) + \Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) + \Gamma_0.$$
(5)

The $\pi^+\pi^- J/\psi$ and $\pi^+\pi^-\pi^0 J/\psi$ modes were treated as in the Ref. [5]. Γ_0 is the bare width of the χ'_{c1} . Indeed, if there is a charmonium admixture in the wavefunction of the *X*, it should bring in charmonium decay modes: radiative $\psi\gamma$, annihilation modes (into light hadrons), and $\chi_{c1}(3515)\pi\pi$ (the latter was estimated in [14] to be of order of 1 keV). If the full width of the $\chi_{c1}(3515)$ was a true guide, then one expects the width of the χ'_{c1} to be about 1 - 2 MeV.

The data on $D^0 \bar{D}^0 \pi^0$ and $\pi^+ \pi^- J/\psi$ modes were analysed under following constraints:

- $Br(B \rightarrow KX) < 3.2 \cdot 10^{-4}$, the limit imposed by BaBar data [15]
- $\mathscr{B} = Br(B \to K\chi'_{c1}) = (3 \div 7) \cdot 10^{-4}$, i.e. of the same order of magnitude as for the χ_{c1} , see Eq. 1
- $\Gamma_0 = 1 \div 2 \text{ MeV}$

As in Ref. [5], two different assumptions on the $D^0 \bar{D}^0 \pi^0$ background were used. Namely, the combinatorial background was subtracted, and the rest of the background was taken either as unrelated to the $D^0 \bar{D}^{*0}$ mode (case A), or as completely due to the $D^0 \bar{D}^{*0}$ mode (case B). The analysis was performed for the data from charged *B*-meson decay modes only, as the signal from neutral *B*-meson decay is much less pronounced in all data sets. The results are shown in Fig. 1.

Figure 1: Upper plots: Fits to the differential rates for the $\pi^+\pi^- J/\psi$ channel measured by Belle [1], for $\Gamma_0 = 2$ MeV (solid) and $\Gamma_0 = 1$ MeV (dashed). The best fit of Ref. [5] is shown in dotted line. Lower plots: Corresponding fits for the differential rates in the $D^0 \bar{D}^0 \pi^0$ channel measured by Belle [16]. Fits A (B) correspond to the prescription A (B) for the $D^0 \bar{D}^0 \pi^0$ background (see text).

With the Flattè parameters found from the fit one can make use of the method suggested in [13] to estimate the admixture of a bare χ'_{c1} state in the wavefunction of the X. In the Flattè limit the probability w(E) to find the bare state in the wavefunction of the physical state is

$$w(E) = \frac{1}{2\pi |D(E)|^2} (gk_1 \Theta(E) + gk_2 \Theta(E - \delta) + \Gamma).$$
(6)

The admixture W of the χ'_{c1} charmonium in the resonance wavefunction defined as

$$W = \int_{-20MeV}^{20MeV} w(E)dE \tag{7}$$

in presented in Table 1.

Due to the constraint $Br(B \to KX) < 3.2 \cdot 10^{-4}$, with the inclusion of the extra non– DD^* width the results remains similar to the ones given by the best fits of the Ref. [5]. Due to the constraint $\mathscr{B} < 7 \cdot 10^{-4}$, the fits are slightly (but not significantly) worse than the best fits. As seen from

	Γ_0 , MeV	<i>a</i> , fm	W	$\mathscr{B} \cdot 10^4$	$Br(B \to KX) \cdot 10^4$
А	1	-3.51-i0.80	0.39	6.7	2.6
А	2	-3.38-i1.30	0.42	7.0	2.9
В	1	-3.57-i0.99	0.39	5.0	1.9
В	2	-3.21-i1.27	0.41	5.5	2.3

Table 1: The values of $D^0 \overline{D}^{*0}$ scattering length *a*, near-threshold fraction of spectral density $W, \mathscr{B} = Br(B \to K\chi'_{c1})$ and $Br(B \to KX)$ for various fits.

Table 1, the real part of the $D^0 \overline{D}^{*0}$ scattering length for all fits is large nd negative, signalling the presence of virtual state.

To conclude, the data on $D^0 \bar{D}^0 \pi^0$ and $J/\psi \pi^+ \pi^-$ modes of the X(3872) can be described in the framework of the $D\bar{D}^* - c\bar{c}$ coupled-channel scheme. The admixture of the bare χ'_{c1} state in the resonance wavefunction is not large, and the dominant component appears to be the $D^0\bar{D}^{*0}$ one. This, together with large and negative real part of scattering length, proves the dynamical (molecular) nature of the X(3872).

Acknowledgments

This research was supported by the "Rosatom" State Corporation of Russian Federation, by the grants RFFI-05-02-04012-NNIOa, DFG-436 RUS 113/820/0-1(R), and NSh-4961.2008.2,

References

- [1] S.K. Choi et al [Belle Collaboration], Phys. Rev. Lett. 91 (2003) 262001.
- [2] K. Abe et al [Belle Collaboration], arXiv:hep-ex/0505037.
- [3] G. Gokhroo et al [Belle Collaboration], Phys. Rev. Lett. 97 (2006) 162002.
- [4] B. Aubert et al [BaBar Collaboration], Phys. Rev. D 77 (2008) 011102.
- [5] C. Hanhart, Yu.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Phys. Rev. D 76 (2007) 034007.
- [6] M.B. Voloshin and L.B. Okun, JETP Lett. 23 (1976) 333.
- [7] N.A. Tornqvist, Phys. Rev. Lett. 67 (1991) 556.
- [8] E.S. Swanson, Phys. Lett. B 588 (2004) 189.
- [9] M. Suzuki, Phys. Rev. D 72 (2005) 114013.
- [10] Yu.S. Kalashnikova, Phys. Rev. D 72 (2005) 034010.
- [11] C. Amsler et al, Phys. Lett. B 667 (2008) 1.
- [12] E. Braaten, M. Kusunoki, Phys. Rev. D 71 (2005) 074005.
- [13] V. Baru et al, Phys. Lett. B 586 (2004) 53.
- [14] S. Dubynskiy and M.B. Voloshin, Phys. Rev. D 77 (2008) 014013.
- [15] B. Aubert et al [BaBar Collaboration], Phys. Rev. D 74 (2006) 011106R.
- [16] G. Majumder, http://belle.kek.jp/belle/talks/ICHEP2006/Majumber.ppt.