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1. Introduction

Heavy-light mesons, like theD-mesons, are interesting bound states of quantum chromody-
namics (QCD). They are interesting because to a good approximation they can be described as
one-body bound states, since the charmc quark is much heavier than the lightu and d quarks,
a feature that simplifies tremendously their mathematical treatment. They are also interesting for
studying chiral symmetry in medium. The light quarks are sensitive to temperature and baryon
density and studies of the propagation ofD mesons in hadronic matter [1] can provide valuable
information on possible changes of chiral symmetry in medium. However, as emphasized in re-
cent publications [2, 3], before one can hope to extract reliable information on chiral changes in-
medium, it is necessary to understand the interaction ofD mesons with nucleons in free space. In
these publications, the free-space interaction ofD mesons with nucleons was studied in the context
of a hybrid model, where the long-distance part of the interaction was described by meson-baryon
exchange, and the short-distance part was described by quark-gluon-interchange in the context of
a nonrelativistic quark model.

Different nonrelativistic quark models share the common feature that baryons and mesons are
bound states of constituent quarks and antiquarks with masses of the order of 300 MeV. Also,
the quarks and antiquarks are confined by a prescribed potential, and residual interactions derived
from perturbative one-gluon exchange (OGE) provide a meansto describe spin-dependent mass
splittings. Given the microscopic interactions and the bound state wave functions, low-energy
effective hadronic interactions can be derived within sucha model using a variety of methods, the
most well known being the resonating group method (RGM) – fora review and a list of references
on the RGM and other methods, see e.g. Ref. [4]. Now, althoughsuch a framework has proved to
be very useful in many instances, it is clearly very limited for studying effects related to in-medium
changes of hadron properties. For that one needs a model thatis closer to QCD, but still simple
enough so that one can make calculations without resorting to extensive numerical simulations.
A model that provides such a workable framework is based on the QCD Hamiltonian in Coulomb
gauge [5]. In the present communication we use such a model toconstruct a calculational scheme
to obtain effective hadron-hadron interactions in close analogy to the traditional approaches [4]
based on the nonrelativistic quark model. The model is basedon a field theoretic Hamiltonian that
confines color and realizes dynamical chiral symmetry breaking. The model allows to construct
an approximation scheme for defining hadronic bound-state wave functions and effective hadron-
hadron potentials can be derived using the RGM. The effective hadron-hadron potentials can be
used in a Lippmann-Schwinger equation to obtain cross-sections and phase-shifts.

We use the formalism to obtain a short-distance potential for D̄-nucleon system and calculate
cross-sections and phase shifts at low energies - close to threshold. A recent publication [3] in-
vestigated the possibility to extract information about the D̄N interaction from the ¯pd→D0D−p
reaction using for the short distance part of theD̄N interaction an effective interaction based on the
OGE. There are proposals for experiments of this kind by theP̄ANDA collaboration at the FAIR
facility at the GSI laboratory in Germany. Our calculation serves the purposes of comparing results
with the traditional approach based on OGE, and also to provide a framework to extend the present
model to study in-medium hadron-hadron interactions.
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2. The model

The microscopic Hamiltonian of the model is given in terms ofquarkΨ(x) and transverse-
gluon Aa(x), a = 1, · · · ,8, field operators [6, 7]. Since the present work focuses on quark degrees
of freedom, the relevant part of the Hamiltonian involves only Ψ(x) and it can be written as

H =
∫

dxΨ†(x)(−iα ·∇+ βm0)Ψ(x)−
1
2

∫

dxdyρa(x)VC(|x−y|)ρa(y)

+
1
2

∫

dxdyJa
i (x)

(

δi j −
∇i∇ j

∇2

)

VT(|x−y|)Ja
j (y) (2.1)

wherem0 is the current quark matrix (in the limit of exact chiral symmetry, m0 = 0), andρa(x) =

Ψ†(x)Ta Ψ(x) andJa
i (x) = Ψ†(x)Taαi Ψ(x) are the color charge and current densities, withTa =

λ a/2, whereλ a are theSU(3) Gell-Mann matrices. OnceVC andVT are given the Hamiltonian is
completely specified. Next, one expands the field operators as

Ψ(x) =

∫

dk
(2π)3/2 ∑

s=±1/2

[us(k)qs(k)+vs(k)q̄†
s(−k)]eik·x (2.2)

whereq†
s(k), q̄†

s(−k), qs(k) e q̄s(−k) represent creation and annihilation operators ofconstituent
quarks, and

us(k) =

√

Ek +Mk

2Ek

(

1
σ ·k

Ek+Mk

)

χs, vs(k) =

√

Ek +Mk

2Ek

(

− σ ·k
Ek+Mk

1

)

χc
s (2.3)

with Ek = (k2+M2
k)

1/2, χc
s =−i σ2χ∗

s , andχs is a Pauli spinor. The momentum dependent function
Mk is the constituent quark mass function. The mass function issolution of a nonlinear integral
equation – the quark gap equation – which can be obtained by using Wick contraction techniques.
The contracted Hamiltonian can be written asH = H0+H2+H4, whereH0 is a c-number, the vac-
uum energy, andH2 andH4 are normal ordered terms with two and four field operatorsΨ. The nor-
mal ordering is with respect to the constituent quark creation and annihilation operators of Eq. (2.2).
H2 contains self-energy contributions and is infrared divergent forVC confining. H4 also contains
an infrared divergence forVC confining. These infrared divergences cancel in color singlet bound
states [8].

The Wick contracted Hamiltonian can be used to obtain hadronbound states with the varia-
tional principle [8]. One can simplify considerably the approach without sacrificing the physical
content of the model using a low momentum expansion for the mass functionMk as

Mk = M−M1k−M2k2 (2.4)

whereM = M(k = 0). Retaining terms up toO(k2/M2) in the expansion of the spinorsus(k) and
vs(k), one obtains a Fermi-Breit type of Hamiltonian. For the nucleon and D-mesons ground states
the most important components of these interactions can be written in momentum space as

V(q) = VC(q)+
2
3

q2

M1M2
S1 ·S2VT(q) (2.5)
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whereVC(q) andVT(q) are the Fourier transforms ofVC(|x|) andVT(|x|). We take Gaussian forms
for the nucleon and D-meson wave functions – see Eqs. (16)-(18) of Ref. [2] – where the width
parametersα and β are taken as variational parameters. Minimizing the expectations values of
the Hamiltonian with these wave functions gives nonlinear equations for the parametersα for the
nucleon andβ for the D-mesons (here we useMu = Md )

α4 =
Mu

2

∫

dq
(2π)3 q2

[

VC(q)+
2
3

q2

M2
u

(

−
1
4

)

VT(q)

]

e−q2/2α2
(2.6)

β 4 =
2
9

(

MuMc

Mu+Mc

)

∫

dq
(2π)3 q2

[

VC(q)+
2
3

q2

MuMc

(

−
3
4

)

VT(q)

]

e−q2/4β2
(2.7)

The use of Gaussian wave functions is useful for getting closed forms for the effective hadron-
hadron interactions as derived with the RGM [4]. Their explicit expressions are the same as for the
case of OGE given in Ref. [2], but withvC(q) andvT(q) of this reference replaced by ourVC(q)

andVT(q) of Eq. (2.5) above. Of course, the big difference here as compared to Ref. [2] is that the
constituent quark massesMu andMc, the width parametersα andβ , and the interactionsVC andVT

are all derived from a single microscopic quark-gluon Hamiltonian.

3. Numerical Results

For an explicit application we need to specifyVC andVT . We use two forms forVC. One, which
we call model SS, is derived in Ref. [6] using a quasi-particle variational approach for the gluonic
vacuum functional. The other form, which we call model Latt,is a fit to recent lattice simulations
in Coulomb gauge QCD [9]. Specifically, we use the parametrization given in Eq. (92) of Ref. [6],
its long distance part gives confinement in the form of an almost linearly rising potential and its
short distance part that is asymptotically free, both matchat some scalemg = 600 MeV – see also
Ref. [7]. The long distance part of the lattice result is parameterized as [9]

VC(q) =
8πσ
q4 +

4πC
q2 , (3.1)

with σ = (552 MeV)2 andC = 6. For the short distance part, we take for simplicity the same form
as of the model SS and enforce that both parts match atmg = 600 MeV. For the transverse part, we
use the simple form

VT(q) = −
4παT

(q2 + µ2) ln1.42(τ +q2/m2
g

) (3.2)

The exponent of the log is inspired by the short distance partof VC andµ 6= 0 is to conform with
recent lattice results that show that the transverse gluon propagator is finite atq2 = 0. The param-
etersαT , µ andτ are chosen to get a reasonable value for the quark condensateand a constituent
quarks mass ofMu = 300 MeV. We useµ = mg/2, τ = 1.05 andαT = 0.7.

We have solved the quark gap equation and obtainedMu andMc. Given the constituent quark
masses, we obtained the variational parametersα andβ . While bothVC andVT are equally im-
portant for the numerical values ofMu andMc, it is VC that essentially determines the values of
α andβ . Given the quark masses and the size parameters of the wave functions, we obtained the
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Figure 1: Total cross-sections forI = 1 andI = 0 (left panel) for the SS and lattice models, ands-wave
phase-shifts for the SS model (right panel).

numerical values for the effective potentials for the nucleon-D̄0 and nucleon-D− interactions and
solved the Lippmann-Schwinger equation to calculate cross-sections and phase-shifts. In Fig. 1 we
present a selected set of results. The SS model provides muchlarger values for the observables
and, like for the case of the one-gluon exchange, theI = 1 observables are much larger, because
the spin-isospin factors for the Coulomb part are zero [2].

Concluding, in this communication we have sketched a calculational scheme to obtain effec-
tive hadron-hadron interactions from a microscopic quark-gluon Hamiltonian that confines quarks
and gluons and realizes dynamical chiral symmetry breaking. We have applied the formalism to
obtain the short-distance part of an effective nucleon–D̄0 and nucleon-D− interaction.
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