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1. Introduction

Systems of ultracold Fermi atoms provide a test bed for atomic and nuclearbodgyheory.
These systems, like the low-density neutron matter found in the crusts obnestarrs, are very
strongly paired, with gaps of the order of the Fermi energy, rather tleawetty small fraction typ-
ical in traditional superfluids or superconductors. Strongly pairaditers are important in many
contexts: cold Fermi atom experiments, low-density neutron matter, and Q@i@ aery high
baryon densities potentially found in the center of massive neutron stasgldping a quantita-
tive understanding of strongly paired Fermi systems is important since ffegyaainique regime
for quantum many-body physics, relevant in very different physse#tings, including the struc-
ture and cooling of neutron stars. Constraining neutron matter propesiealso be important
in understanding the exterior of neutron-rich nuclei by constrainingmaters of nuclear density
functionals. Cold-atom experiments can provide direct tests of the equditstate and the pairing
gap in the strongly paired regime, and hence provide a crucial benclohar&any-body theories
in these systems.

2. Equation of state and pairing gap

For both cold atoms and neutron matter, we consider a system of two fermpaties and a
simple Hamiltonian (for a refinement, see the last section) of the form

2
H:—Zﬁmlzmﬁjti;v(rij), (2.1)
wherei and j represent spin up and down particles, respectively. In ultracold Fgasgs, the
interactionv(r) can be tuned through Feshbach resonances to be very attractive, @nodiuce a
specific scattering length. In this work we are interested in values of timei Fesmentunkg times

the scattering lengtafrom -1 to -10 (the BCS side of what is known as the “BCS-BEC crosspve
and also—kra = o, a universal regime known as unitarity. For these systems, the effeatige

re between the atoms is nearly zero.

On the other hand, in low-density neutron matter the scattering length is vggy (famnat-
urally large”),~ —18.5 fm, much larger than the typical separation between neutron pairs. The
effective range is much smaller than the scattering lenigths,2.7 fm, solre/al ~ 0.15, but only at
very low densities is the effective range much smaller than the interpartiadengpa\Ve are using
the'Sy channel of the Argonne v18 potenti§l.[1]

We have performefl[2] fixed-node quantum Monte Carlo (QMC) calculatfor both cold
atoms and neutron matter. In each case, the trial wave function is taken taHseJastrow-BCS
form with fixed particle number and periodic boundary conditions:

Wr = []’l f(rij)] ([ e(rij)]- (2.2)
i<)

The BCS pairing functiorp(r) is parametrized with a short- and long-range part as in Héf. [3].
The fixed-node approximation ensures that the result that follows franim & calculation will be
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Figure 1. Equations of state a& = O for cold

atoms and neutron matter. Also shown are the
low-density analytical expansion of the ground-
state energy of a normal fluid, and the cold atom
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Figure 2: Superfluid pairing gap versus a for
cold atoms e = 0) and neutron mattefrg/a| ~
0.15). Shown are the mean-field BCS results for
both cases (solid lines) and the QMC calcula-

result at unitarity Kra = o, arrow). QMC calcu- tions (points), as well as the cold atom result at
lations are shown as circles and squares for neu- unitarity (kra = oo, arrow).
tron matter and cold atoms, respectively.

an upper bound to the true ground state energy. We have used thisvadatonally optimize the
parameters itVt so as to obtain the lowest possible fixed-node ground-state energy.

In Fig. [1 we compare th& = 0 equations of state for cold atoms and neutron matter. The
horizontal axis ikra, with the equivalent Fermi momentukg for neutron matter shown along
the top. The vertical axis is the ratio of the ground-state energy to the &maifgas energy
(Eec = 3/5Eg) at the same density; only at very low densities (where we are near the limit of a
non-interacting gas) is this ratio one. The curve at lower densities shevantiytical result for
normal matterE /Erg = 1+ 2ake + %712 (11—2In2) (ake )%, which is only accurate for very low
densities.

The equations of state for cold atoms and neutron matter are practically identioa den-
sities, and are very similar even at densities where the effective rangenigacable to the in-
terparticle spacing. This shows why cold atomic systems are a “test beduédear physics: a
measurement of the ground-state energy of, sélyj gas provides results that are directly related
to the equation of state of neutron matter. The largest density at which Yegrped a calculation
for neutron matter (since beyond that point non S-wave contributioreieconsiderable; again,
see the last section) islgta= —10. The energy at that point is not too far from QMC calculations
(B, B.[B] and measurements (see REf. [6]) of the rataf the unitary gas energy k¢, previous
calculations givé = 0.42(1). Extrapolations of recent QMC calculationgte= 0 and also AFMC
calculations suggest that= 0.40(1) (arrow in Fig.[1).

The pairing gap is the other fundamental zero-temperature propertypeffhud systems.
Calculations of the pairing gap in many-body simulations are significantly mdreutithan the
ground-state energy, essentially because the pairing gap is much moeptsule to finite-size
truncation errors than the ground- state energy. To examine these nmoretety, we have com-
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pared calculations of the BCS pairing gap in finite volumes with periodic boyratenditions to
the infinite volume limit. Details of this process of reaching the thermodynamic limit ses g
Ref. [3]. The main result is that at leagt{60) particles are needed for such a simulation to be
reliable.

Calculations of the s-wave pairing gap in neutron matter have varied ensiyrawer the past
20 years[[[r[J8]. The difficulties in accurately calculating corrections t®M8 pairing gaps in the
strongly paired regime are significant, and hence calculations of the pgamgan differ by large
factors (from 4 to 10) in the low-density regime. Cold atom experiments cande a critical test
of theories of the pairing gap in this regime.

We calculate the pairing gap from the odd-even energy staggering:

A:E(N+1)—%(E(N)+E(N+2)) (2.3)

whereN is an even number of particles. In Fig. 2 we plot the pairing gap as a funatikra for
both cold atoms and neutron matter.

For very weak coupling:-kra << 1, the pairing gap is expected to be reduced from the BCS
value by the polarization corrections calculated by Gorfpv/A@ecs = (1/4e)'/S. Because of
finite-size effects, it is difficult to calculate pairing gaps using QMC in thelwssipling regime.
The QMC calculations at the lowest denskya = —1, are roughly consistent with this reduction
from the BCS value. At slightly larger yet still small densities, whetga= ¢'(1) butkere << 1
for neutron matter, one would expect the pairing gap to be similar for cold atnchseutron matter.
The results akra = —2.5, wherekgre = 0.35, support this expectation. Beyond that density the
effective range becomes important and the QMC results are significadilged in relation to
the cold atoms wherg, ~ 0. Such a microscopic calculation of the neutron mat&r pairing
gap is potentially important to neutron star cooling and to Skyrme-Hartrele-Bogoliubov mass

formulas.[1D].
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Figure 3: Experimental points and theoretical curves for the spiraiug spin-down densities as a function
of distance from the center of the trap.
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Moving on to the experimental situation, measurements of the local polarizatibwe itnap
provide direct information on the pairing gap. In such experiments thessraged local chemical
potential is fixed by the trap potential and the total number of particles. Theratite between
the up and down chemical potentials is independent of the position in the trapratemperature
in a slowly-varying potential the system will separate into three regions:par8uid region in
the center which has been found to have zero net polarization, a noatagizpd region in the
middle with different numbers of spin up and spin down particles, and a follgrized region in
the exterior consisting of only one species. The fact that the interiorrregiionpolarized can be
used to place a lower bound on the pairing gap (see Rig. 3). At finite tetnpethe interior
superfluid will be polarized by thermal effects, and measurements of thezation as a function
of position in the trap provide a sensitive estimate of the pairing gap. We mahgzad recent
measurements by the MIT gro{ip[11] and obtained an estimate for the paaprihat is 0.45(Hr
in the unitary regime[[12] This can be compared with the many-body calculatmmrsin Fig.[?
which is 0.50(3)Er and also with the recent experimental redult [13] which is 0.48£3)

3. Ongoing work

Apart from the equation of state, it is possible to calculate other quantitieg @MC, like
the momentum distribution, the pair distribution function, and the quasiparticlerdisp. Fur-
thermore, it is possible to use a potential that is more refined than the onénuRefl [3], by
incorporating more terms from the AV18 potential, i.e.

Va(r) = Ve(r) +Vo(r)os- 02 (3.1)

The quasi-particle spectrum that results from such an approach isishdvig. [4; it is calculated
by putting the unpaired particle in different momentum states and using E{}. £owledge
of this quantity is relevant to calculations of the spin susceptibility of neutron matkech are
of interest in neutron star physics. Further details and results for thesdities with this new
potential are to be provided in a forthcoming publicatipr].[14].
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Figure 4: Neutron matter quasi-particle dispersion in BCS (line) &kMC (points) akra = —10.
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Another direction such calculations have taken is related to the physicddoatmms: it is
possible[15[16] to trap Fermi-Fermi mixtures (e.g. bf and 4°K) in the laboratory and also
to tune the relative populations of the two species. There ia paori reason to expect such
an unequal-mass system to behave in exactly the same way as the catiegmmual-mass one
(though in mean-field theory that is the case), i.e. the possibility of exotic $tage® be consid-
ered. In a forthcoming publication[lL 7] we give results for the quasiparsipectrum as well as the
energy as a function of polarization for such a system.
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