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Figure 1: Integral equation for the particle-dimer scattering amplitude. A single (double) line indicates a
particle (full dimer) propagator.

Introduction.The Effective Field Theory (EFT) approach provides a powerful framework that
exploits the separation of scales in physical systems. Onlylow-energy (or long-range) degrees of
freedom are included explicitly, while everything else is parametrized in terms of the most general
local contact interactions. Thus, the EFT describes universal low-energy physics independent of
detailed assumptions about the short-distance dynamics. Physical observables can be described
in a controlled expansion in powers ofkl, wherek is the typical momentum andl ∼ re is the
characteristic low-energy length scale of the system. We focus on applications of EFT to few-body
systems with large S-wave scattering length|a| ≫ l . For a generic system, the scattering length is
of the same order of magnitude as the low-energy length scalel . Only a very specific choice of the
parameters in the underlying theory (a so-calledfine tuning) will generate a large scattering length
a. The fine tuning can be accidental or it can be controlled by anexternal parameter. Examples
with an accidental fine tuning are the S-wave scattering of nucleons or of4He atoms. The scattering
length of alkali atoms close to a Feshbach resonance can be tuned experimentally by adjusting the
external magnetic field. At very low energies these systems behave similarly and show universal
properties associated with largea [1]. We start with a brief review of the EFT for few-body systems
with largea and then discuss some applications in nuclear and atomic physics.

Three-body system with large scattering length.We consider a two-body system of bosonic
particles with large S-wave scattering lengtha and massm. The generalization to fermions is
straightforward. For momentak of the order of the inverse scattering length 1/|a|, the problem is
nonperturbative inka. The exact two-particle scattering amplitude can be obtained analytically by
summing the so-calledbubble diagramswith a 2-body contact interaction. The resulting amplitude
reproduces the leading order of the effective range expansion for the particle-particle scattering
amplitude: fAA(k) = (−1/a− ik)−1 , where the total energy isE = k2/m. If a > 0, fAA has a pole
at k = i/a corresponding to a shallow dimer with binding energyB2 = 1/(ma2). Higher-order
derivative interactions are perturbative and generate corrections suppressed by powers ofℓ/|a|. We
now turn to the 3-body system. At leading order, the particle-dimer scattering amplitude is given
by the integral equation shown in Fig. 1. The inhomogeneous term consists of the one-particle
exchange and the 3-body contact interaction. The integral equation simply sums these diagrams
to all orders. An ultraviolet cutoffΛ must be introduced in order to regulate the loop integrals
involved. This cutoff guarantees that the integral equation has a unique solution. All physical
observables, however, must be independent ofΛ, which determines the behavior of the 3-body
contact interactionH as a function ofΛ [2]:

H(Λ) =
cos[s0 ln(Λ/Λ∗)+arctans0]

cos[s0 ln(Λ/Λ∗)−arctans0]
, (1)

wheres0 = 1.00624 is a transcendental number andΛ∗ is a 3-body parameter introduced by di-
mensional transmutation. It cannot be predicted by the EFT and must be determined from a 3-body
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Figure 2: Universal correlations between the triton binding energy and the spin-doublet neutron-deuteron
scattering length (left panel) and between4He trimer ground and excited state energiesB(0)

3 andB(1)
3 (right

panel).

observable. Note also thatH(Λ) is periodic and runs on a limit cycle. WhenΛ is increased by a
factor of exp(π/s0) ≈ 22.7, H(Λ) returns to its original value. In summary, two parameters are
required to specify a 3-body system at leading order inl/|a|: they may be chosen as the scattering
lengtha (or equivalentlyB2 if a > 0) and the 3-body parameterΛ∗ [2]. This universal EFT con-
firms and extends the universal predictions for the 3-body system derived by Efimov including the
Efimov effect, the accumulation of infinitely many 3-body bound states at threshold asa→±∞ [3].

Universal correlations.Since up to corrections of orderl/|a|, low-energy 3-body observables
depend ona andΛ∗ only, they obey non-trivial scaling relations. If dimensionless combinations of
such observables are plotted against each other, they must fall close to a line parametrized byΛ∗

[1, 2, 3]. These correlations are purely driven by the large scattering length and are independent of
the mechanism responsible for it. In Fig. 2, we show two examples of such universal correlations
[1]. In the left panel, we show the Phillips line, a correlation between the triton binding energy and
the doublet neutron-deuteron scattering length. In the right panel, we show the correlation between
the 4He trimer ground and excited state energiesB(0)

3 andB(1)
3 . The data points show calculations

using various interaction potentials. Since these potentials have approximately the same scattering
length but include different short-distance physics, the points on this line correspond to different
values ofΛ∗. The small deviations of the potential model calculations are mainly due to effective
range effects. They are suppressed byre/|a| and can be calculated at next-to-leading order. The
extension of this EFT to the 4-body system requires no new 4-body parameter at leading order in
l/|a| [4]. Consequently, the universal correlations persist in the 4-body system.

An infrared renormalization group limit cycle in QCD.Nuclear phenomena can be described
within a chiral EFT which has the explicit dependence on the quark masses [5]. It has been used to
study the quark mass dependence of nuclear forces [6, 7]. Theextrapolation of the S-wave nucleon-
nucleon scattering lengthsat (spin triplet) andat (spin singlet) to larger values ofMπ predicts thatat

diverges and the deuteron becomes unbound at a critical value in the range 170 MeV< Mπ < 210
MeV. It is also predicted thatas is likely to diverge and the spin-singlet deuteron becomes bound at
some critical value ofMπ not much larger than 150 MeV. Based on this behavior it was conjectured
that one should be able to reach the critical point by varyingthe up- and down-quark massesmu

andmd independently because the spin-triplet and spin-singlet channels have different isospin [8].
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Figure 3: Left panel: Binding energies of the triton ground and first two excited states in the critical region
as a function ofMπ . Right panel: The one- and two-body matter density form factors Fc, Fn, Fnc, and Fnn

with leading order error bands for the ground state of20C as a function of the momentum transferk2.

In this case, the triton would display the Efimov effect whichcorresponds to the occurence of an
infrared limit cycle in QCD. In Refs. [9, 10], the propertiesof the triton around the critical pion
mass were studied for one particular solution with a critical pion massMcrit

π = 197.8577 MeV.
The binding energies of the triton and the first two excited states in the vicinity of the limit cycle
were calculated for this scenario in chiral EFT. They are given in the left panel of Fig. 3 by the
circles, squares, and diamonds. The dashed lines indicate the neutron-deuteron (Mπ ≤ Mcrit

π ) and
neutron-spin-singlet-deuteron (Mπ ≥ Mcrit

π ) thresholds where the 3-body states become unstable.
Directly at the critical mass, these thresholds coincide with the 3-body threshold and the triton has
infinitely many excited states. The solid lines are leading order calculations in the universal EFT
using the pion mass dependence of the nucleon-nucleon scattering lengths and one triton state from
chiral EFT as input. Both calculations agree very well and the universal EFT has also been used to
calculate scattering [10]. The binding energy of the tritonground state varies only weakly over the
whole range of pion masses. The excited states, however, aremore influenced by the thresholds
and vary strongly. Whether the limit cycle can be realized inQCD can only be answered definitely
by directly solving QCD. In particular, one would like to know whether this can be achieved by
approriately tuning the quark masses in a Lattice QCD simulation [11].

Halo Nuclei. Halo nuclei can be described by extensions of the universal EFT. One can as-
sume the core to be structureless and treats the nucleus as a few-body system of the core and the
valence nucleons. Corrections from the structure of the core appear in higher orders and can be
included in perturbation theory. A new facet is the appearance of resonances as in the neutron-
alpha system [12]. The first application of effective field theory methods to halo nuclei was carried
out in Refs. [12, 13], where thenα system (“5He”) was considered. It was found that for resonant
P-wave interactions both the scattering length and effective range have to be resummed at leading
order. At threshold, however, only one combination of coupling constants is fine-tuned and the
EFT becomes perturbative. More recent studies have focusedon the consistent inclusion of the
Coulomb interation in two-body halo nuclei such as thepα andαα systems [14, 15].

Three-body halo nuclei composed of a core and two valence neutrons have the possibility to
exhibit excited states due to the Efimov effect [16]. A comprehensive study of S-wave halo nuclei
in EFT including structure calculations with error estimates was recently carried out in Ref. [17].
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Currently, the only possible candidate for an excited Efimovstate is20C, which consists of a core
nucleus with spin and parity quantum numbersJP = 0+ and two valence neutrons. The value of the
19C energy, however, is not known well enough to make a definite statement about the appearance
of an excited state in20C. The structure of halo nuclei can also be calculated in the halo EFT.
As an example, we show the various one- and two-body matter density form factors Fc, Fn, Fnc,
and Fnn (for a definition, see [17]) with leading order error bands for the ground state of20C as
a function the momentum transferk2 in the right panel of Fig. 3. The theory breaks down for
momentum transfers of the order of the pion-mass squared (k2 ≈ 0.5 fm−2). From the slope of the
form factors one can extract the radii: F(k2) = 1− 1

6k2
〈

r2
〉

+ . . . . Experimental information on
these radii is available for some halo nuclei. For the neutron-neutron radius of the Borromean halo
nucleus14Be for example, the leading order halo EFT result is

√

〈r2
nn〉 = 4.1±0.5 fm. The value

√

〈r2
nn〉exp= 5.4±1.0 fm was obtained from 3-body correlations in the dissociation of 14Be using

intensity interferometry and Dalitz plots [18]. Within theerrors there is good agreement between
both values. Results for further halo nuclei are given in Ref. [17]. With upcoming experiments
much more knowledge can be obtained about the structure of these intriguing systems as well as
discovering whether they show universal behavior and excited Efimov states.
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