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The heavy quark effects in deep–inelastic scattering in theasymptotic regimeQ2 ≫ m2 can be

described by heavy flavor operator matrix elements. Complete analytic expressions for these

objects are currently known toNLO. We present first results for fixed moments atNNLO. This

involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions,

which we thereby confirm.
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1. Introduction

The double–differential cross section for unpolarized deep inelastic scattering via single photon
exchange can be expressed in terms of two structure functionsF2,L(x,Q2). Especially in the region
of smaller values ofx, these structure functions contain largecc–contributions of up to 20-40 %,
denoted byFcc

2,L(x,Q
2) 1. The perturbative heavy flavor Wilson coefficientsH2,L(z,Q2,m2) corre-

sponding to these structure functions are known atNLO semi–analytically inz–space, [1], with a
fast numerical implementation in Mellin–N space given in [2]. Due to the size of the heavy flavor
corrections, it is necessary to extend the description of these contributions toO(a3

s), as := αs/(4π),
and thus to the same level which has been reached for the massless Wilson coefficients, [3]. This
will allow for a more precise determination of parton distribution functions and theQCD–scaleΛ.
A calculation of these quantities in the whole kinematic range atNNLO seems to be out of reach
at present. However, in the limit of large virtualitiesQ2, Q2 >

∼ 10m2
c in the case ofFcc̄

2 (x,Q2), one
observes thatFcc̄

2,L(x,Q
2) are very well described by their asymptotic expressions, [4], neglecting

power corrections inm2/Q2. In this kinematic range, one can calculate the heavy flavor Wilson co-
efficients analytically. This has been done forFcc̄

2 (x,Q2) to 2–loop order in [4, 5] and forFcc̄
L (x,Q2)

to 3–loop order in [6]. In the latter case, the asymptotic result becomes valid only at much higher
values ofQ2. As first steps towards the 3–loop calculation at asymptotic scales forFcc̄

2 (x,Q2) we
calculated the O(ε) terms of the 2-loop heavy operator matrix elements (OMEs), [7, 8], which con-
tribute to the asymptotic 3–loop heavy flavor Wilson coefficients via renormalization. In the present
paper, we report on new results concerning moments of the heavy OMEsAPS

Q(q)q, ANS,+
qq,Q andAgq,Q

at 3–loops. In doing so, the fermionic terms of the even momentsN = 2...12 of the corresponding
NNLO anomalous dimensions given in [9] are confirmed in an independent calculation.

2. Heavy Flavor Operator Matrix Elements

In the following, we consider massive OMEs of the flavor–decomposed twist–2 operators between
partonic states

AS,NS

ki

(m2

µ2 ,N
)

= 〈i|OS,NS

k |i〉H = δk,i +
∞

∑
l=1

al
sA

S,NS,(l)
ki

(m2

µ2 ,N
)

. (2.1)

Here,S andNS are the singlet and non–singlet contributions, respectively,i denotes the outer on–
shell particle (i = q,g) andOk stands for the quarkonic (k= q) or gluonic (k= g) operator emerging
in the light–cone expansion. The subscriptH indicates that we require the presence of heavy quarks
of one type with massm, while µ is the renormalization scale. We work in Mellin–space, with the
Mellin–variable denoted byN. The logarithmic terms inm2/µ2 are completely determined by
renormalization and contain contributions of the anomalous dimensions of the twist–2 operators.
Thus atNNLO the fermionic parts of the 3-loop anomalous dimensions calculated in Refs. [9]
appear. All pole terms provide a check on our calculation. The single pole term allows for a first
independent calculation of the terms∝ TF in the 3-loop anomalous dimensions.
As outlined in Ref. [4], in the limitQ2 ≫ m2 one applies the massive renormalization group equa-
tion to obtain the factorization of the heavy flavor Wilson coefficients into a Mellin–convolution of

1We consider extrinsic heavy flavor production only.
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the light flavor Wilson coefficients with the corresponding heavy OMEs. The light flavor Wilson
coefficients are known up to three loop order [3] and carry all the process dependence, whereas the
heavy quark OMEs are universal, process–independent objects and contain all mass corrections to
H2,L up to terms proportional to(m2/Q2)a, a≥ 1.
A related application of the heavy OMEs is given when using a variable flavor number scheme to
describe parton densities including massive partons. The OMEs are then the transition functions
when going fromnf to nf +1 flavors and thus one may define parton densities for massive quarks,
see e.g. Ref. [10]. This is of particular interest for heavy quark induced processes at the LHC, such
ascs→ W+ at large enough scalesQ2. In this context, one may show as well that various sum
rules follow from momentum conservation, [10], e.g:

ANS,+
qq,Q

∣

∣

∣

N=2
+APS

Q(q)q

∣

∣

∣

N=2
+Agq,Q

∣

∣

∣

N=2
= 0 . (2.2)

Note, that in Eq. (2.2) two differentPS contributions can be distinguished and we adopt the notation
APS

Q(q)q := APS
Qq +APS

qq,Q, where for the{Qq}– term the operator couples to the heavy quark and for
the{qq,Q}–term to a light quark.

3. Renormalization

We work in Feynman–gauge and use dimensional regularization inD = 4+ε dimensions, applying
the MS–scheme, if not stated otherwise. Renormalization proceeds in four steps, which we will
briefly sketch here and refer to [4, 5, 7, 8] for more details. Mass renormalization is performed
in the on–shell scheme [11], whereas for charge renormalization we usethe MS–scheme. The
remaining singularities are of the ultraviolet and collinear type. The former are renormalized via
the operatorZ–factors, whereas the latter are removed via mass factorization through thetransition
functionsΓ. After coupling– and mass renormalization, the renormalized heavy flavor OMEs are
then obtained via

A = Z−1ÂΓ−1 , (3.1)

where quantities with a hat are unrenormalized. Note, that in the singlet caseoperator mixing
occurs and hence Eq. (3.1) should be read as a matrix equation, contrary to theNS–case. TheZ–
andΓ–factors can be expressed in terms of the anomalous dimensions of the twist–2operators in
all orders in the strong coupling constantas, cf. [7] up toO(a3

s). For this purpose, we adopt the
convention

γ = µ∂ lnZ(µ)/∂ µ . (3.2)

From Eqs. (3.1,3.2) one can then infer that for operator renormalization and mass factorization at
O(a3

s), the anomalous dimensions up toNNLO, [9], together with the 1–loop heavy flavor OMEs
up toO(ε2) and the 2–loop heavy OMEs up toO(ε) are needed. Higher orders inε enter since they
multiply Z− andΓ–factors containing poles inε. This has been worked out in some detail in Ref.
[7], where we presented theO(ε) termsa(2)

Qg, a(2),NS

qq,Q anda(2)PS

Qq in the unpolarized case. The terms

a(2)
gg,Q anda(2)

gq,Q were given in Refs. [8]. Thus all terms needed for the renormalization at3–loops
in the unpolarized case are known by now.

3



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
8
5

Heavy flavor operator matrix elements at O(a3
s) Sebastian Klein

4. Moments of the Massive OMEs at three Loops

The heavy flavor OMEs atO(a3
s) are given by 3–loop self–energy type diagrams, which contain a

local operator insertion. The external massless particles are on–shell. The heavy quark mass sets
the scale and the spin of the local operator is given by the Mellin–variableN. The steps for the
calculation are the following: We useQGRAF, [12], for the generation of diagrams. Approxi-
mately 100 diagrams contribute for each case at hand. For the calculation ofthe color factors we
use [13]. After undoing the contraction of the operators with the light–like vector ∆, (∆2 = 0), the
diagrams are genuinely given as tensor integrals. Applying a projector then provides the results for
the diagrams for the specific (even) Mellin moment under consideration. Thediagrams are further
translated into a form, which is suitable for the programMATAD [14], through which the expansion
in ε is performed and the corresponding massive three–loop tadpole–type diagrams are calculated.
We have implemented all these steps into aFORM–program, cf. [15], and useTFORM, [16], for
parts of the calculation. We checked our procedures against various complete two–loop results and
certain scalar 3–loop integrals and found full agreement.

5. Results

Applying Eq. (3.1), one can predict the pole structure of the unrenormalized results and thus the
logarithmic terms of the renormalized OMEs. Since we consider only terms involving at least one
heavy quark, we adopt the following notation for the anomalous dimensions

γ̂ ≡ γ(nf +1)− γ(nf ) . (5.1)

As an example, we show the structure of the renormalized result in thePS case, where all renor-
malization constants are taken atnf flavors.

A(3),PS

Q(q)q =
γ̂(0)

qg γ(0)
gq

48

{

γ(0)
gg − γ(0)

qq +4(nf +1)β0,Q +6β0

}

ln3
(m2

µ2

)

+

{

γ̂(1),PS
qq

2

(

(nf +1)β0,Q−β0

)

+
γ̂(0)

qg

8

(

(nf +1)γ̂(1)
gq − γ(1)

gq

)

−
γ(0)

gq γ̂(1)
qg

8

}

ln2
(m2

µ2

)

+

{

γ̂(2),PS
qq

2
−2a(2),PS

Qq β0−
γ(0)

gq

2
a(2)

Qg

−ζ2
γ̂(0)

qg γ(0)
gq

16

(

γ(0)
gg − γ(0)

qq +4(nf +1)β0,Q +6β0

)

+
nf +1

2
γ̂(0)

qg a(2)
gq,Q

}

ln
(m2

µ2

)

+ γ(0)
gq a(2)

Qg

+ζ3
γ(0)

gq γ̂(0)
qg

48

(

γ(0)
gg − γ(0)

qq +4nf β0,Q +6β0

)

+
ζ2

16

(

−4nf β0,Qγ̂(1),PS
qq + γ̂(0)

qg γ(1)
gq

)

+4(β0 +β0,Q)a(2),PS

Qq +CF

(

−(4+
3
4

ζ2)γ̂
(0)
qg γ(0)

gq −4γ̂(1),PS
qq +12a(2),PS

Qq

)

−(nf +1)γ̂(0)
qg a(2)

gq,Q +a(3),PS

Q(q)q . (5.2)

Here, the termsa(2)
i j denote the constant terms inε of the 2–loop OMEŝAi j andβi are the expansion

coefficients of theβ–function. The subscriptQ refers to contributions due to heavy quarks only,
cf. [4, 5, 7], andζi is the Riemannζ–function at valuesi. All quantities in Eq. (5.2) are known for
general values ofN, except fora(3)

Q(q)q, which is the genuine 3–loop contribution and remains to be
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calculated. Note, that it is not possible to factor outnf + 1, not even in the triple pole term. This
is due to the interplay of the prescription for coupling constant renormalization we have adopted,
cf. [4, 7], and the fact that the transition functionsΓ apply to sub–graphs containing massless lines
only.
We have calculated the OMEsAPS,(3)

Q(q)q , ANS,+,(3)
qq,Q andA(3)

gq,Q for N = 2...12, usingMATAD. All pole
terms agree with the general structure derived from renormalization. As an example, we show the
constant term after renormalization of thePS–OME forN = 2

A(3),PS

Q(q)q

∣

∣

∣

∣

∣

N=2

µ2=m2

=
(2048

81
ζ3−

86480
2187

)

CFT2
F nf +

(

−
3584
81

ζ3 +
53144
2187

)

CFT2
F +

(64
9

B4−
128
5

ζ 2
2

+
1280
27

ζ3 +
830
2187

)

CFCATF +
(

−
128
9

B4 +
128
5

ζ 2
2 −

9536
81

ζ3 +
95638
729

)

C2
FTF . (5.3)

The moments we obtain forN = 10, 12 for the corresponding 3–loop anomalous dimensions are
shown in Table 1. These results, as well as the moments we obtain for lower values ofN, agree with
the results of Refs. [9]. A check for the constant terms is provided by thesum rule in Eq. (2.2),
which is obeyed. Additionally, we find for all moments that the terms proportional to ζ2 disappear
after renormalization, which is a general observation made in manyD → 4 calculations. The term
B4 in Eq. (5.3) is given by

B4 = −4ζ2 ln22+
2
3

ln42−
13
2

ζ4 +16Li4

(1
2

)

, (5.4)

and appears in all OMEs we calculated. Since it does not appear in the light–flavor Wilson coeffi-
cients, cf. [3], it occurs as a genuine mass effect.

Table 1: Results forN = 10, 12 for the 3–loop anomalous dimensions

N γ̂
(2)
gq /TF /CF

10
1218139408

363862125
TF (1 + 2nf ) +

7168

495

(

CA − CF

)

ζ3 −
18846629176433

11767301122500
CA +

529979902254031

323600780868750
CF

12
13454024393417

5222779912350
TF (1 + 2nf ) +

5056

429

(

CA − CF

)

ζ3 −
64190493078139789

48885219979596000
CA +

1401404001326440151

3495293228541114000
CF

N γ̂
(2),NS,+
qq /TF /CF

10 −
27995901056887

1497656506500
TF (1 + 2nf ) +

192880

693

(

CF − CA

)

ζ3 −
9007773127403

97250422500
CA −

75522073210471127

307518802668000
CF

12 −
65155853387858071

3290351344780500
TF (1 + 2nf ) +

13549568

45045

(

CF − CA

)

ζ3 −
25478252190337435009

263228107582440000
CA

−
35346062280941906036867

131745667845011220000
CF

N γ̂
(2),PS

qq /TF /CF

10 −
265847305072

420260754375
TF (1 + 2nf ) +

50176

27225

(

CF − CA

)

ζ3 −
1028766412107043

1294403123475000
CA +

839864254987192

485401171303125
CF

12 −
2566080055386457

5703275664286200
TF (1 + 2nf ) +

49928

39039

(

CF − CA

)

ζ3 −
69697489543846494691

83039693672007072000
CA

+
86033255402443256197

54806197823524667520
CF
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6. Conclusions and Outlook

We calculated the heavy OMEsA(3),NS,+
qq,Q , A(3),PS

Qq andA(3)
gq,Q for even Mellin–momentsN = 2...12

usingMATAD and showed first results. This confirms for the first time in an independentcalculation
the moments of the fermionic parts of the corresponding 3–loop anomalous dimensions, [9]. We
expect results for the remaining termsA(3)

gg,Q andA(3)
Qg in the near future, thus enabling us to calculate

fixed moments of the heavy flavor Wilson coefficients in the asymptotic limitQ2 ≫ m2.
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