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The heavy quark effects in deep—inelastic scattering irahyanptotic regimeQ? > n? can be
described by heavy flavor operator matrix elements. Corapdeialytic expressions for these
objects are currently known tdLO. We present first results for fixed momentsdNMLO. This
involves a recalculation of fixed moments of the correspogdiNLO anomalous dimensions,
which we thereby confirm.
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1. Introduction

The double—differential cross section for unpolarized deep inelastittesing via single photon
exchange can be expressed in terms of two structure fundgqr(g, Q%). Especially in the region
of smaller values ok, these structure functions contain lamge-contributions of up to 20-40 %,
denoted byF5X (x, Q%) 1. The perturbative heavy flavor Wilson coefficieitts, (z, Q% n¥) corre-
sponding to these structure functions are knowNla® semi—analytically ire—space,[[1], with a
fast numerical implementation in Mellidd-space given in[J2]. Due to the size of the heavy flavor
corrections, it is necessary to extend the description of these contribti@fal), as := as/(4m),
and thus to the same level which has been reached for the massless Wéffanerts, []3]. This
will allow for a more precise determination of parton distribution functions aedytD—scaleA.

A calculation of these quantities in the whole kinematic rang&Nit O seems to be out of reach
at present. However, in the limit of large virtualiti€®, Q? > 10n¢ in the case oF°(x,Q?), one
observes thalecf(x, Q?) are very well described by their asymptotic expressidijs, [4], neglecting
power corrections im? /Q2. In this kinematic range, one can calculate the heavy flavor Wilson co-
efficients analytically. This has been donegF(x, Q%) to 2—loop order in[J4f]5] and fdFE(x, Q%)

to 3—loop order in[[B]. In the latter case, the asymptotic result becomes vajichbmuch higher
values ofQ?. As first steps towards the 3—loop calculation at asymptotic scalé'gf()x, Q) we
calculated the &) terms of the 2-loop heavy operator matrix elements (OMEE)] [7, 8], which ¢
tribute to the asymptotic 3—loop heavy flavor Wilson coefficients via renormalizan the present
paper, we report on new results concerning moments of the heavy @%ﬁ, A%SQ* andAgq0

at 3—-loops. In doing so, the fermionic terms of the even montdnts2...12 of the corresponding
NNLO anomalous dimensions given {1} [9] are confirmed in an independent dadcula

2. Heavy Flavor Operator Matrix Elements

In the following, we consider massive OMEs of the flavor—-decomposetH@viaperators between
partonic states

SNS(MP N L SNSi x| e | ASNS,(1) (TP
A (F,N)_MOK in =8+ 3 aAG (F,N>. (2.2)

Here,S andNS are the singlet and non-singlet contributions, respectivelgnotes the outer on—
shell particle { = g, g) andOy stands for the quarkoni& & q) or gluonic k = g) operator emerging

in the light—cone expansion. The subscHbindicates that we require the presence of heavy quarks
of one type with masm, while u is the renormalization scale. We work in Mellin—space, with the
Mellin—variable denoted byl. The logarithmic terms im?/u? are completely determined by
renormalization and contain contributions of the anomalous dimensions of tHe2vaigerators.
Thus atNNLO the fermionic parts of the 3-loop anomalous dimensions calculated in Rgfs. [9]
appear. All pole terms provide a check on our calculation. The single poleakows for a first
independent calculation of the terfasTk in the 3-loop anomalous dimensions.

As outlined in Ref. 4], in the limitQ? > m? one applies the massive renormalization group equa-
tion to obtain the factorization of the heavy flavor Wilson coefficients into a Malimvolution of

1We consider extrinsic heavy flavor production only.
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the light flavor Wilson coefficients with the corresponding heavy OMEse ligiht flavor Wilson
coefficients are known up to three loop ordgr [3] and carry all thegssdependence, whereas the
heavy quark OMESs are universal, process—independent objettsoatain all mass corrections to
Hz up to terms proportional ton?/Q?)3, a > 1.

A related application of the heavy OMESs is given when using a variablerflammber scheme to
describe parton densities including massive partons. The OMEs are @hémauisition functions
when going fromns to ns + 1 flavors and thus one may define parton densities for massive quarks,
see e.g. Ref[[]0]. This is of particular interest for heavy quark iedymocesses at the LHC, such
ascs — W™ at large enough scalé®®. In this context, one may show as well that various sum
rules follow from momentum conservatiofi, [10], e.g:

NS,+ PS .
aQ N:2+Ao(q>q‘N:2+qu,Q(N:2 =0. (2.2)

Note, thatin Eq.[(2]2) two differertS contributions can be distinguished and we adopt the notation
AT = Aoa T Afgqr Where for the{Qq}— term the operator couples to the heavy quark and for
the {qq, Q}—term to a light quark.

3. Renormalization

We work in Feynman—gauge and use dimensional regularizatibr=r + € dimensions, applying
the MS—scheme, if not stated otherwise. Renormalization proceeds in fos;, stech we will
briefly sketch here and refer t§] [, B, [T, 8] for more details. Massrreabization is performed
in the on—shell schem¢ J11], whereas for charge renormalization wéhesdS—-scheme. The
remaining singularities are of the ultraviolet and collinear type. The forneremormalized via
the operatoZ—factors, whereas the latter are removed via mass factorization througghriséion
functionsl". After coupling— and mass renormalization, the renormalized heavy flaMiEare
then obtained via

A=Z1Ar1, (3.1)

where quantities with a hat are unrenormalized. Note, that in the singletopesator mixing
occurs and hence Eq._(B.1) should be read as a matrix equation, gaotthe NS—case. Th&—
andl—factors can be expressed in terms of the anomalous dimensions of the tepsta2ors in
all orders in the strong coupling constat cf. [[f] up toO(a2). For this purpose, we adopt the
convention

y=uoInZ(u)/op . (3.2)

From Egs. [(3]1,3]2) one can then infer that for operator renormalizatidnmeass factorization at
0(a2), the anomalous dimensions upN&LO, [H], together with the 1-loop heavy flavor OMEs
up toO(£?) and the 2—loop heavy OMEs up@j¢) are needed. Higher ordersérenter since they
multiply Z— andl"—factors containing poles ia. This has been worked out in some detail in Ref.
[[], where we presented ti@¢) termsagg’, ééz)('g\'s andégaps in the unpolarized case. The terms

ééZ)Q andééaQ were given in Refs.[[8]. Thus all terms needed for the renormalizatiGlabps
in the unpolarized case are known by now.
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4. Moments of the Massive OMEs at three L oops

The heavy flavor OMEs aD(a2) are given by 3-loop self-energy type diagrams, which contain a
local operator insertion. The external massless particles are on—shelhéavy quark mass sets
the scale and the spin of the local operator is given by the Mellin—varldbl&he steps for the
calculation are the following: We us@GRAF, [[L7], for the generation of diagrams. Approxi-
mately 100 diagrams contribute for each case at hand. For the calculatiba oblor factors we
use [IB]. After undoing the contraction of the operators with the light-likaaré, (A% = 0), the
diagrams are genuinely given as tensor integrals. Applying a projectoptiogides the results for
the diagrams for the specific (even) Mellin moment under considerationdidlygeams are further
translated into a form, which is suitable for the progrstATAD [[[4], through which the expansion
in € is performed and the corresponding massive three—loop tadpole—typamimare calculated.
We have implemented all these steps infB@RM—program, cf. [15], and useFORM, [[Lg], for
parts of the calculation. We checked our procedures against vaiwoyslete two—loop results and
certain scalar 3—loop integrals and found full agreement.

5. Results

Applying Eq. (3.11), one can predict the pole structure of the unrenorethligsults and thus the
logarithmic terms of the renormalized OMEs. Since we consider only terms ingpétiteast one
heavy quark, we adopt the following notation for the anomalous dimensions

y=y(ns+1)—y(ne) . (5.1)

As an example, we show the structure of the renormalized result iRShease, where all renor-
malization constants are takenmtflavors.

~(1),PS

me
Q- g yaa>+4<nfHmo,weﬁo}mm+{qu2 (10+ 9g- )

(2),P

(0) ~(1) 2
Vég ( ne+1 yg<q _Véq) ng8ng }|n2<ﬂz) n { Yaq- ZaQq PSp ngq an
+1. m?
B (9 + Do) + mz*’ég)aéﬁo}'”(;ﬂ) + 90

Véq Vc<|g (Vég —V(Sq +4nf[30Q+6Bo) 16( 4nfBonél Ps+%8)yéé)>

<B0+Boo>ao +CF( (44 S0 43S +1225)7)
(Nt + 1) 749 Bggi0 + 8 - (5.2)

Here, the termai(jz> denote the constant termsdrof the 2—loop OMEsﬁij andp; are the expansion
coefficients of thg8—function. The subscrip refers to contributions due to heavy quarks only,
cf. [A,[B.[7], and{; is the Riemand —function at values. All quantities in Eq. [[5]2) are known for
general values dfl, except forag’()q)q, which is the genuine 3—loop contribution and remains to be
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calculated. Note, that it is not possible to factor out+ 1, not even in the triple pole term. This
is due to the interplay of the prescription for coupling constant renormalizate have adopted,
cf. [A,[7], and the fact that the transition functionspply to sub—graphs containing massless lines
only.

We have calculated the OMIE%S Aqus andAé?;Q for N =2...12, usingMATAD. All pole
terms agree with the general structure derived from renormalizationn/Asample, we show the
constant term after renormalization of tR6—OME forN = 2

N=2
@ps| (2048, 8648 , 3584 5314 64, 128,
Ad(a)g 2 mz_( 81 9~ 2187 CFTF”**( 81 T 21g7 )T (9 Bam 52
H:
1280, 830 128 128 , 9536 95638)
753 2187>CFCATF+(—TB4 752— {3+ =29 CETr . (5.3)

The moments we obtain fod = 10, 12 for the corresponding 3—-loop anomalous dimensions are
shown in Tabl¢]1. These results, as well as the moments we obtain for lolwes N, agree with

the results of Refs[J9]. A check for the constant terms is provided bgtne rule in Eq. [(2]2),
which is obeyed. Additionally, we find for all moments that the terms propontioné, disappear
after renormalization, which is a general observation made in anry4 calculations. The term

B4 in Eq. (5.8) is given by

2 13 1
_ 2 ‘1o _ N
By = 402’2+ ZIn*2- 5 Z4+16L|4(2> , (5.4)

and appears in all OMEs we calculated. Since it does not appear in the kglor-filson coeffi-
cients, cf. [B], it occurs as a genuine mass effect.

Table 1. Results folN = 10, 12 for the 3—-loop anomalous dimensions

N 'vjq)/Tp/CF
T2IST39408 "~ e (cr - )C T8546620176433 _ _ 520979902254051
1218139408 ne) 4 168 _ _
363862125 s 95 \ AT F 11767301122500 ' 323600780868750
13454024393417 5056 64190493078139789 1401404001326440151
12 _—— f(1+2nf)+—(cA—C14)C3— Ca + Cp
5222779912350 29 48885219979596000 3495293228541114000
(2).NS,
N “r((;q) /TR /CF
27995901056887 102880 5007773127403 75522073210471127
10 I (1 2ny) o+ (cr—ca)es - Ca —
1497656506500 693 97250422500 307518802668000
65155853387858071 13549568 25478252190337435009
12 -t eng) + ——— (Cp — Ca )G - A
3290351344780500 45045 263228107582440000
35346062280941906036867
131745667845011220000
2),PS
N “/() /Tr/CF
265847305072 50176 1028766412107043 839864251087102
10 —_———— TF(1+2nf)+ (C'chA) 3 — A F
420260754375 27225 1294403123475000 485401171303125
2566080055386457 49928 69697489543846494691
12 - rn (14 2ng) + (CF‘*CA)CB*
5703275664286200 77 39039 83039693672007072000
86033255402443256197
54806197823524667520
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6. Conclusions and Outlook

We calculated the heavy OME{%QS*, AS&’PS andAéfiQ for even Mellin-moment§ = 2...12
usingMATAD and showed first results. This confirms for the first time in an indeperddénilation
the moments of the fermionic parts of the corresponding 3-loop anomalous dimenf]. We
expect results for the remaining term%Q andAggJ in the near future, thus enabling us to calculate
fixed moments of the heavy flavor Wilson coefficients in the asymptotic Qait> nm?.
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