
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
8
)
1
8
9

Infrared suppression of the Coulomb gauge gluon
propagator in SU(3) Yang-Mills theory

Yoshiyuki Nakagawa∗

Research Center for Nuclear Physics, Osaka University
Ibarakisi, Osaka 567-0044, Japan
E-mail: nkgw@rcnp.osaka-u.ac.jp

Atsushi Nakamura
Research Institute for Information Science and Education, Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail: nakamura@riise.hiroshima-u.ac.jp

Takuya Saito
Integrated Information Center, Kochi University
Kochi, 780-8520, Japan
E-mail: tsaitou@kochi-u.ac.jp

Hiroshi Toki
Research Center for Nuclear Physics, Osaka University
Ibarakisi, Osaka 567-0044, Japan
E-mail: toki@rcnp.osaka-u.ac.jp

We calculate the equal-time transverse gluon propagator in Coulomb gauge QCD using a SU(3)
quenched lattice gauge simulation on large lattices, up to 114 [fm4]. We find that the equal-time
gluon propagator shows scaling violation; namely, the data for different lattice spacings do not
fall on top of one curve. This problem is cured by discarding data at large momenta, which suffer
from discretization errors. In the infrared region, the transverse gluon propagator is strongly
suppressed and shows a turnover at about 500 [MeV]. Fitting the power law ansatz to the data
at small momenta predicts the vanishing gluon propagator at zero momentum, indicating the
confinement of gluons.
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1. Introduction

Among several scenarios of color confinement proposed since the discovery of QCD, Coulomb
gauge QCD has recently been received much attention along lattice QCD simulations and a vari-
ational approach. Coulomb gauge is a physical gauge in the sense that unphysical degrees of
freedom, such as longitudinal component of gluons, are integrated out and the color Gauss’ law is
formally solved. As a result, an instantaneous interaction shows up in the Hamiltonian in Coulomb
gauge QCD, which plays a central role in the confinement mechanism in Coulomb gauge. In the
Gribov-Zwanziger scenario, the path integral is dominated by the configurations near the Gribov
horizon where the lowest eigenvalue of the Faddeev-Popov (FP) operator vanishes, and the eigen-
value distribution of the FP operator gets concentrated near the vanishing eigenvalue compared to
that in the abelian gauge theory [1]. Such an enhancement has been observed by the lattice simu-
lations [2, 3]. Accordingly, the color-Coulomb instantaneous interaction is strongly enhanced and
provides a confining force between color charges. Lattice QCD simulations have showed that the
instantaneous color-Coulomb potential rises linearly at large distances and it is stronger than the
static potential [4, 5, 6, 7]. This is an expected result from the Zwanziger’s inequality [8]. On the
other hand, the color-Coulomb potential has been evaluated by inverting the FP matrix, and it has
been shown that the color-Coulomb string tension almost saturates the Wilson string tension [9].

In the Gribov-Zwanziger scenario, the would-be physical gluon propagator is expected to be
suppressed in the infrared (IR) region due to the proximity of the Gribov horizon in the IR direction
[10]. In this study, we calculate the equal-time transverse gluon propagator,

Dab
µν(~x−~y) = 〈Aa

µ(~x)Ab
ν(~y)〉= Dab

µν(~x−~y), (1.1)

in the momentum space,

Dab
i j (~p) = δ

ab
(

δi j −
pi p j

~p 2

)
Dtr(|~p|). (1.2)

using SU(3) quenched lattice QCD simulations. The lattice configurations are generated by the
heat-bath Monte Carlo technique with the Wilson plaquette action. In these simulations we adopt
the iterative method with the Fourier acceleration to fix a gauge, and the gauge fixing is stopped if
(∂iAi)2 < 10−14 at each time slice. The details of the simulations will be published elsewhere.

2. Equal-time transverse gluon propagator

The equal-time transverse gluon propagator at β=5.7 and 6.0 is drawn in the left panel of
Fig. 1. The cone cut and the further cut are applied and the propagator is normalized such that
Dtr(|~p| = 2 [GeV]) = 1. The scale is set by using the Necco-Sommer scaling relation [11]. We
observe that the gluon propagator has a maximum at p = 0.4∼ 0.5 [GeV] irrespective of the lattice
coupling and it decreases with decreasing the momentum in the IR region. This is the striking
feature of the gluon propagator. The equal-time propagator is defined as the energy integral of the
4-dimensional propagator,

Deq(|~p|) =
∫ d p4

2π
D(~p, p4), (2.1)

and it can be interpreted as the inverse of the energy dispersion relation. Thus, the propagator
at vanishing momentum corresponds to the inverse of the effective mass of the gluon. The IR
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suppression of the equal-time transverse gluon propagator implies that the gluons have momentum
dependent effective mass M(~p) and it diverges in the IR limit, lim~p→0 M(~p) = ∞, indicating the
confinement of gluons.
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Figure 1: (Left) The equal-time transverse gluon propagator in physical units at β = 5.7 and β = 6.0.
Data are converted from lattice units to physical units by adopting the Necco-Sommer scaling relation. The
propagator is renormalized at 2 [GeV]. (Right) The dressing function of the unrenormalized equal-time
transverse gluon propagator, Ztr

B (~p) = |~p|Dtr
B (~p), at different lattice couplings is plotted in physical units.

The left panel of Fig. 1 also illustrates that the equal-time transverse gluon propagator shows
scaling violation; namely, the data points at different lattice couplings cross at the renormalization
point |~p|= 2 [GeV] and do not not fall on top of the same curve [12, 13, 14]. Taking a closer look
at the raw results of the numerical simulations gives us a clue to cure scaling violation. The right
panel of Fig. 1 shows the dressing function of the unrenormalized equal-time gluon propagator in
physical units. We observe that the dressing function at different lattice couplings shows completely
different behavior at high momenta. On the other hand, the momentum dependence of the dressing
function is quite similar in the small momentum region. This implies that the scaling violation can
be cured by restricting the momentum to

|pµa| ≤ α < 2, (2.2)

and discarding data at large momenta where data suffer from strong discretization errors. In order
to find a reasonable value for α which guarantees the scaling behavior of the transverse gluon
propagator, we adopt a matching procedure described in [15].

3. Result of the matching analysis and the IR behavior

We cut data at large momenta and apply the matching procedure to the transverse gluon prop-
agator. We refer to [15, 16] for the details of the matching analysis. We performed the matching
between data at β = 6.0 and β = 5.7. The ratios of the lattice spacing and the renormalization
constant obtained by the matching are given in Table 1. Although χ2/nd f is relatively large for
α = 0.7, it takes smaller values for smaller α . For α ≤ 0.6, χ2/nd f takes acceptable values, and
Ra and RZ are stable against the change of α . The equal-time transverse gluon propagator with the
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α Ra RZ χ2/nd f
0.7 1.731

2 0.9673
4 9.72

0.6 1.742
2 0.9735

5 2.16
0.5 1.742

2 0.9746
7 2.72

0.4 1.742
2 0.97310

10 2.11

Table 1: The matching results with the further cut |pia| ≤ α . Ra = a(β = 5.7)/a(β = 6.0) is the ratio of
the lattice spacings and RZ = Z(β = 5.7)/Z(β = 6.0) is that of the renormalization constants. The Necco-
Sommer scaling relation gives RNS

a = 1.83.

further cut α ≤ 0.6 is shown in Fig. 2. We observe that the data points for different lattice couplings
nicely fall on the same curve. This implies that scaling behavior of the equal-time gluon propaga-
tor is recovered by cutting the data points at large momenta, which suffer from the discretization
effects.
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Figure 2: The matched gluon propagator with the further cut |pia| ≤ 0.6. The 3-dimensional momentum
and the propagator are expressed in units of the lattice spacing at β = 6.0. The dashed curve represents the
fitting function corresponding to the fitting range 0 ≤ |~pmax|a(β = 6.0)≤ 0.135.

In order to explore the IR behavior of the equal-time transverse gluon propagator, we make
the power law ansatz,

Dtr(|~p|) = d1|~p|γ
IR
gl , (3.1)

in the IR region. The fitted parameters are listed in Table 2. The fitting function corresponding
to the smallest fitting range is plotted in Fig. 2. Although the fitting becomes worse and the
IR exponent γ IR

gl gets small as the maximum momentum of the fitting range increases, γ IR
gl takes

positive value in all cases. That is, our result of the IR fitting predicts the vanishing transverse
gluon propagator at zero momentum.

4. Summary and conclusion

We calculate the equal-time transverse gluon propagator on large lattices, up to 114 [fm4].
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|~pmax|a(β = 6.0) d1 γ IR
gl χ2/nd f

0.135 6.02(32) 0.318(24) 0.20
0.140 5.29(11) 0.261(10) 3.49
0.160 5.38(10) 0.269(9) 3.33
0.170 5.29(5) 0.261(5) 2.64

Table 2: The result of the IR power law fitting. |~pmax|a(β = 6.0) represents the maximum momentum of
the fitting range.

We find that the equal-time gluon propagator shows scaling violation. This problem is cured by
discarding data at large momenta where the lattice data suffer from discretization errors. In the IR
region, the transverse gluon propagator is strongly suppressed and shows the turnover at about 500
[MeV]. Fitting the power law ansatz to the data at small momenta supports the vanishing gluon
propagator at zero momentum, indicating the confinement of gluons.
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