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The main goal of our present work is to provide, for the first time, a simple computational tool
that can be used to compute the brightness, the spectral index, the polarization, the time variability
and the spectrum of the non-thermal light (both synchrotron and inverse Compton, IC) associated
with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) sim-
ulations. The proposed method is quite general, and can be applied to any scheme for RMHD and
to all non-thermal emitting sources, e.g. the pulsar wind nebulae (PWNe), and in particular to
the Crab Nebula (CN) as in the present proceeding. It is here analyzed in detail only the linear
optical and X-ray polarization that characterizes the PWNe synchrotron emission in order to in-
fer information on the inner bulk flow structure, to provide a direct investigation of the magnetic
field configuration, in particular the presence and the strength of a poloidal component, and to
understand the origin of some emitting features, such as the knot, whose origins are still uncer-
tain. Future work will be necessary to obtain polarization maps in the hard X- and gamma-rays
to compare with the actual observations by Integral/IBIS [7]. The complete investigation of the
dynamics and synchrotron emission can be found in [5]. In [22] the inverse Compton radiation
is treated to disentangle the different contributions to radiation from the magnetic field and the
particle energy distribution function, and to search for a possible hadronic component in the emit-
ting PWN, and thus for the presence of ions in the wind. If hadronic radiation was found in a
PWN, young supernova remnants would provide a natural birth-place of the cosmic-rays around
the knee.
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1. Synchrotron emission and polarization

PWNe are a class of supernova remnants that is characterized by a non-thermal continuum
emission from the radio up to soft gamma-ray band mainly due to synchrotron emission, and in
the gamma-rays principally due to IC scattering. The optical and X-ray observations made by the
Hubble Space Telescope, ROSAT, Chandra, and XMM-Newton show that the nebular continuum
emission presents a jet-torus morphology. Some examples are the CN, which is the prototype of
PWNe [8], [23], [9], and the nebula associated to Vela [18], [19].

Analytical uni-dimensional models were created to explain the physics at the base of the
PWNe [10], [11], [6], but they resulted inadequate to describe the jet-torus structure. Analyti-
cal bi-dimensional models thus were born in order to give an answer to the problem [1], [14]. The
idea was that an anisotropic Poynting plus kinetic energy flux in the pulsar wind (PW) was ca-
pable to give origin to the torus and the oblate shape of the termination shock (TS, the shock in
which the PW ends). The jets appear to come out from the pulsar due to the cusp-like form of the
shock, instead they are collimated by the hoop-stresses of the nebular magnetic field downstream
the TS. This idea was confirmed by RMHD simulations [12], [3], which were able to solve the
bi-dimensional hyperbolic equations thanks to the developed numerical codes [13], [4].

In order to investigate the PWN dynamics and emission is crucial to study the polarization. As
a matter of fact the synchrotron emission from relativistic particles is known as linearly polarized
(V! = 0) with a high degree of polarization. The polarization permits to deduce the geometry of
the source and the magnetic field strength and direction, together with the particle acceleration.

In our numerical model the dynamics and the synchrotron emission of the PWNe are deduced
by simulations obtained from a two-dimensional axisymmetric RMHD shock-capturing code [3],
[4]. In the code the maximum particle energy ("#) equation together with the RMHD equations, is
evolved in space and time as following [5]

d"#
dt′

=
d lnn1/3

dt′
+
1
"#

(
d"#
dt′

)sync (1.1)

where the first and the second terms of the second member are respectively the adiabatic and the
synchrotron losses, t′ is the time in the comoving frame, n is the proper numerical density. Our
model parameters are three: the parameter $ connected to the wind energy flux anisotropy, the
parameter b linked to the width of the striped wind region, and the magnetization % .

For the set of parameters called runA (a factor of 10% in anisotropy, %eff = 0.02, and a narrow
striped wind region) the CN dynamics is well reproduced: both the bulk flow speed, and the jet-
torus morphology are very similar to the observations.

A particle-energy distribution function considered as a power law both at the injection and
evolved along the streamlines together with a monochromatic-approximated spectral power, per-
mits to calculate the emission coefficient in which the relativistic corrections are included

j!(! ,!n) =






CP |!B′ ×!n′|a+1Da+2!−a, !# ≥ ! ,

0, !# < ! .

(1.2)

where C is a constant; a is the spectral index; P is the thermal pressure;!B′ = B/& is the magnetic
field in the comoving frame with B the magnetic field in the observer frame and & the fluid Lorentz
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factor; !n′ and !n are the observer direction respectively in the comoving and in the observer frame;
! is the observation frequency; and D is the Doppler boosting factor. The synchrotron burn-off
is reproduced by a cut-off frequency that is the maximum particle frequency !# ≡ D! ′

c("#) =
D3e/(4'mc) |!B′ ×!n′|"2#.

From the emissivity it is possible to calculate the surface brightness and the spectral index
maps, the integrated spectra, the Stokes parameters, and the degree of linear polarization and di-
rection [5].

In particular the surface brightness in the cartesian coordinate system (x,y,z) is given by

I!(! ,y,z) =
∫ #

−#
j!(! ,x,y,z)dx. (1.3)

The corresponding synthetic optical and X-ray maps appear to reproduce the jet-torus structure,
and the size reduction due to the synchrotron burn-off at increasing frequencies. Our maps are
qualitatively comparable to the observed images even in the finest details such as the inner ring, the
central knot and the main arc (see the right panel of Fig. 2 for the runA case that best matches the
CN dynamics). Also the synthetic spectral index maps are very similar to those of Mori [15].

The Stokes parameters Q! andU! are instead obtained by the following equations

Q!(! ,y,z) =
a+1
a+5/3

∫ #

−#
j!(! ,x,y,z)cos 2( dx, U!(! ,y,z) =

a+1
a+5/3

∫ #

−#
j!(! ,x,y,z)sin 2( dx,

(1.4)
where ( is the local polarization position angle between the emitted electric field vector !e in the
plane of the sky, measured from the z-axis; and the additional factor (a+1)(a+5/3) comes from
the intrinsic properties of synchrotron emission.

Finally the polarization fraction ()), and direction (P) can be thus deduced as

)! =
√
Q2! +U2

!

I!
!P! =)! (sin( x̂+ cos( ŷ) . (1.5)

The polarization formulae and their results are tested and investigated first through an uniform
emitting torus as in [2], and then through the Kennel and Coroniti model, see [16], in order to
understand the polarization behavior. The)! results are reported in figure 1 for different bulk flow
speeds. The flow speeds are taken to be greater than 0.2 c in order to include significant Doppler
boosting effects. The polarization vector that is close to the symmetry axis of the torus is aligned
with the axis itself due to the assumption of a purely toroidal magnetic field. Moving away from
the symmetry axis, the inclination of the polarization vector with respect to the same axis increases.
The position where the polarization vector is perpendicular to the symmetry axis is a function of
the flow velocity for a constant torus inclination angle. It is immediately evident that for increasing
values of the bulk flow speed the corresponding position at which )! deviates from the parallelism
to the symmetry axis, results closer and closer to the aforesaid axis. The position of the transition
can be measured with the polar angle * , the results are: 90◦, 75◦, and 60◦ respectively for a bulk
flow speed of 0.2 c, 0.5 c, and 0.8 c. This effect is called the polarization angle swing (thus the
deviation of the vector direction) and is due only to relativistic effects. The angle swing is bigger
in the front side than in the back side of the torus, as observed [20], with an increasing discrepancy
for growing flow speed values. The )! images are thus capable to give information about the
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Figure 1: Maps of polarization direction (superimposed to the surface brightness map) in the uniform torus
case at increasing values of the velocity: on the left 0.2 c; in the middle 0.5 c; on the right 0.8 c. Polarization
fraction is normalized against (a+ 1)/(a+ 5/3) ( 70% for a spectral index a = 0.6 selected from optical
observations of the Crab Nebula inner region [21]. The ticks length used for polarization direction is propor-
tional to the normalized fraction. The emission (linear scale) is normalized to the maximum, see the color
panel. The inclination angle of the symmetry axis with respect to the plane of the sky is $ = 30 ◦ as in the
Crab Nebula, while the rotation angle towards West respect to the North is zero. Along the axes there is the
distance from the center of the torus in arbitrary units.

flow speed. The polarization fraction maps are not interesting, because they reach the maximum
theoretical value almost overall the torus, regardless of the radial speed.

The figure 2 represents )! on the left and P on the right in the optical (5.6× 104 Hz, upper
panels), and in the X-ray (1 keV, lower panels) frequencies for the runA inner region. The )!
images show a higher polarized fraction along the polar axis, where the projected magnetic field B
(assumed to be toroidal) is always orthogonal to the line of sight, and in the central region of the
torus especially around the front side of the bright arcs, while the depolarization occurs in the outer
regions, where contributions from the projected fields with opposite signs sum up along the line
of sight. The polarization direction P shows several ticks with a length proportional to )! , super-
imposed to the surface brightness maps, with the aim of making clear the association between the
polarization behavior and the emission main features. The polarization ticks are basically always
orthogonal to B, displaying the behavior expected given the inclination of the symmetry axis with
respect to the plane of the sky. However, in the rings where the velocity is relativistic, deviations
of the vector direction due to polarization angle swing are also visible. From the inner ring up to
the external arcs in the torus the polarization vector becomes perpendicular to the symmetry axis
of the nebula for growing values of the polar angle * due to the decreasing bulk flow speed. In the
back side of the inner ring (or of the arcs) the polarization tends to remain parallel to the axis up to
larger angular distances than in the front side. This asymmetry could have been used to infer the
relativistic speeds in the inner parts of the nebula. If an isotropic magnetic field is considered, the
growth of the depolarized areas in the polarization fraction maps are slightly visible only at smaller
scales, while the variations in the polarization direction maps result negligible. Notice that in these
zoomed maps it is possible to see a small bright feature resembling the CN knot (displaced to the
South with respect to the central position, as in the figures by [8]) that in our simulations seems
to originate in the cusp-like region immediately downwards the oblate TS. The behavior of the
polarization direction in the internal region of the torus can give information about the flow speed,
while the polarization fraction could estimate the amount of disordered or poloidal magnetic field.
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Figure 2: Maps of the polarization fraction )! (left) and direction (right, superimposed to the surface
brightness map), at the optical frequencies (upper row) and in the X-rays (lower row) for runA. Polarization
fraction is normalized against (a+ 1)/(a+ 5/3) ( 70% for a spectral index a = 0.6 selected from optical
observations of the Crab Nebula inner region [21]. The ticks length used for polarization direction is propor-
tional to the normalized fraction. The emission (logarithmic scale) is normalized to the maximum, see the
color panel. The inclination angle of the symmetry axis with respect to the plane of the sky is $ = 30 ◦ as in
the Crab Nebula, while the tilt is retained. Along the axes there is the distance from the central pulsar in ly.

A comparison with the observations at the corresponding frequencies is not possible, because high
resolution optical and X-ray polarization maps of the inner region of the Crab Nebula, or of other
PWNe, which could really provide crucial clues to the magnetic structure, are not available yet.
X-ray observations were done by Weisskopf at 2.6 keV and 5.2 keV [24], but they were not spa-
tially resolved. Weisskopf found a mean polarization fraction of ≈ 20% at both frequencies, which
is the same value obtained in the optical band [17], and a polarization angle of ≈ 156◦. The run
A averaged polarization fractions agree with the corresponding observed values (we find ≈ 18% at
both optical and X-ray frequencies), while the synthetic mean polarization angle would be trustable
only in three-dimensional simulations.
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