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Fixed points from perturbation theory

1. Nontrivial perturbative fixed points

Perturbation theory is as routinely applied by some as itowified upon by others, both not
always thoughtfully. Before turning to gravity proper wdesfsome general remarks on what one
can and cannot reasonably expect from perturbation thébry. The identification of a nontrivial
fixed point in PT at first sight seems to be a contradiction imge alas it is not. By definition
PT is a saddle point expansion in the loop counting paranfetetroduced into the functional
integral as the inverse prefactor of the bare actfortS. Forh — 0 one obtains, depending on
the signature, a generalized Laplace or stationary phasmeion which may or may not coincide
with the expansion in some ‘small’ bare reference couplinghe presence of massless degrees of
freedom the orders in the loop counting parameter also doaiotide with the orders in Planck’s
constant. The ‘bardl expansion can typically be shown to provide an asymptoti@esion of the
properly regularized functional integral. After renorimation such proofs are exceedingly difficult
and are available only in superrenormalizable or purelpienic field theories. Off hand therefore
the renormalized PT expansion is only a formal power serighé loop counting parametér
An important advantage of PT however is that (in a pertuvbltirenormalizable field theory) the
ultraviolet (UV) cutoff can termwise strictly be removeddependent of the nature of the coupling
flow. The perturbatively defined coupling flow itself then yides a plausibility criterion [2] for
the existence of an underlying ‘exact’ theory such that faygical quantities PT yields a valid
asymptotic expansion, namely: All essential couplingagst be asymptotically safe with respect
to a trivial or nontrivial fixed point,

gj(H) <o, lim gj(u) =gj <. (1.1)
poL<e Hoe
Herep is the renormalization scale and the flow— g;(u) is assumed to be non-constant. Clearly
both properties in (1.1) are parameterization dependettaarstressed by S. Weinberg [5] one
should ultimately define “the coupling constants as coeffits in a power series expansion of the
reaction rates themselves around some physical renoatiafizpoint”. With this understanding
of the couplings the ultraviolet regime should in an asyrtipatly safe field theory be accessible
to a suitably formulated perturbation theory. As emphakire[2] the value of the fixed point
coupling is of minor importance. One can take any one diffeegg; := g1 — g; which is of order
of hat u = g as the reference coupling reinterpret the expansion asnobg iand proceed with
the renormalization group improvement as usual. Beingsbdspendent the values of the fixed
point couplings § are also not directly related to the ‘Gaussian’ or ‘non-Gaars nature of the
fixed point. A ‘Gaussian’ fixed point is one where there exatgreferred basis in the space of
interaction monomials such that the ‘exact’ functional swra in the vicinity of the fixed point
becomes Gaussian. For a non-Gaussian fixed point the ecéstéisuch a basis must be excluded,
— a formidable task for a realistic field theory. We therefdigtinguish here only between trivial
fixed points with g = O for all j in a ‘natural’ basis, and nontrivial ones wherg-40 for at least
onej.

We now apply these considerations to higher derivative (giayity. HD gravity in four di-
mensions comes close to realizing a renormalizable quatiteory of gravity. Compared to the
Einstein-Hilbert action two additional interaction moniaia are added containing the independent
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curvature invariants with four derivatives of the metrinder. The resulting gravity theory is per-
turbatively renormalizable to all loop orders [1] which &ated to the strong,/p* type, falloff of
the free propagator at large momenta. With Euclidean sigedhe action reads
w

3s

Here g, is the metric entering the functional integra’]? is the square of its Weyl tensor, and
total derivative terms liké1R and the integrand of the Gauss-Bonnet term have been omitted
In terms of the cosmological constantone hasA = 2A/k? and the parameterization of the
other coefficients by couplings w is chosen for later convenience. The two dimensionful cou-
plings are replaced with dimensionless ones according te g kZandA = - ng\/Z U—2A.

Our curvature conventions are set Gy, g — Oglg )V = v5 and R, = Here

S— /d“x\/_ /\——R+ CZ— (1.2)

avB
OaVB = 9 VB + TP, v with rY, g = $9"°[0a9ps + 9pYas — 0590,5] WhICh givesR® | g = — 9,0 s~

opl’ ya+r apr VB F5B 4. In four dimensions the integrarilof the Gauss- Bonnet term and
the square of the Weyl tensors are relatecCBy-= E + 2R?P Rap — —RZ.

Viewed as a running coupling Newton’s constant has a spetaiajs. In some bounded kine-
matical regime it can be viewed as an inessential paramétesewalue (like that of a wave func-
tion renormalization constant) can be changed at will. ingdple Gy can be kept fixed, e.g. at
[Gn]Y2 = Mp ~ 1.4 x 101°GeV. This trivializes the g flow, gy (u) = 1671(u /Mpy)2, but may intro-
duce spurious singularities in the flow of other dimensissleouplings; see [2] for a discussion. A
better alternative is to define the running qfmglative to that of a reference coupling. A convenient
choice is a cosmological constant teﬂ“(fdx\/g. Indeed in four dimensions:= gyA = 161IGNA
is dimensionless and invariant under constant rescaliftfseametric [6]. As a consequence the
associated flow equation must be independent of parametiensng a multiplicative metric renor-
malization. We shall continue to work withygandA but will construct flow equations that have
this interplay built in.

The existence of a nontrivial fixed poinf,g> O for gy is a crucial ingredient for the asymp-
totic safety scenario [3, 2, 4]. The following heuristic amgent suggests that if HD gravity
indeed has a nontrivial fixed point forygit should be visible already in PT [2]: led,g be
the ‘quantum metric’ entering the functional integral. Whany Wilsonian action of the form
Suld] = [d**,/G Ti>1 Ui (1) R (g) with asymptotically safe coupllngs and scalar interactiono-
mials B (q) of mass dimensior-d; will for u — o depend only oru qaﬁ, asui(u) ~ pdu. For
the coefficient of the Ricci scalar i, this is ‘as if’ Newton’s constant has picked up an inte-
ger anomalous dimension2 along the trajectory connecting infrared to ultravioledgerties. A
typical propagator would thus scale at low energies likp?land at high energies like/p*. But
the latter is precisely the behavior which is in the realm ©ffér HD gravity. On the other hand
an anomalous dimension2 goes hand in hand with a nontrivial fixed point fg§.gThis can be
seen by taking into account & double role as an inessential parameter (“wave functolmal-
ization constant”) and a coupling. The yet-to-be-deteadiflow equation will thus naturally be
parameterized by the anomalous dimensjoa u% Ink?, in which casey%gN =(2+n)on, and
gy # 0 if and only if n = —2. Finally we note thas and g, are of degree 1 in the loop counting
parameteh while the other couplings are of degree zero. Sisterns out to be asymptotically
free in PT [11, 12] one can regard the perturbative exparesscm expansion in powers ®fThen
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gn may occur in degree zero ratigggy (and in fact it does) and a putative nonzero fixed point
value for g, is well within the realm of the expansion.

Already the one loop order should contain the decisive pi¢agormation provided a suitable
framework is used. Itis then a matter a computation to determvhether or not the nontrivial fixed
point exists. In section 3 we present the result of such a atatipn [24] confirming the existence
of a nontrivial fixed point. For definiteness we presentedatigeiment here for HD gravity where
the instrumental Ap* decay of the propagators is built into the kinematics. Irtisac4 we will
put our results into the context of the asymptotic safetynade which entails that a similar link
between a nontrivial perturbative fixed point fag gnd a dynamically generated i* behavior
should exist in any other gravity theory which renormalizadt one loop.

2. Refined gravitational PT

Perturbative computations in gravity theories have tiaktlly been been performed with di-
mensional regularization and minimal subtraction. Theloop flows of genuinely dimensionless
couplings are in fact scheme independent, so any otheranégation and scheme is bound to give
the same result. A quick assessment shows that the situatibffierent for the originally dimen-
sionful couplings g andA. On general grounds scheme changes in PT should be in aneeto-
correspondence to finite redefinitions of the couplings efappropriate order in the loop counting
parameter. For HD gravity at one loop one may take

h 2 h
9N=9;\|+W9;\| Ci, )\:)\/-ngfu 1 (2.1)
whereCy, D1 are functions ofA, w,s/gn evaluated at the primed coupling values B§f = 2, +
O(h), By = —2A"+0(h), Bs = O(h), B, = O(h) are the beta functions in the original scheme, then

d _ ﬁ 2 0Cl 0Cl
Mg = ot 9’2o+ 2010~ 2155
d ., h 0D, 0D1
Hgh = Bt G [4D1+29\|ﬁ _2’\0—/\] : 2.2)

are the beta functions in the new scheme. As usual most ofctiemges corresponding to cou-
pling redefinitions have no natural computational realimatnd are defined only implicitly. The
guestion relevant here is: which of the schemes impliciéfireed by (2.2) can be computationally
realized and admit a ‘Wilsonian’ interpretation that inrmiple allows one to make contact to a
nonperturbative formulation? Remarkably there is an d@&dnunique choice folC,, D; which
meets these requirements and which leads to beta functimmhiguously determined by the co-
efficients parameterizing the divergent part of the effectiction. As a consequence the one loop
beta functions of the originally dimensionful gravitatédrcouplings acquire a status almost as ro-
bust as the beta functions of genuinely dimensionless gl For the rest of this section we now
explain this fact in more detail and comment on the remainioig-universalities.

We take the background effective actibfh;g| as the basic object in the quantum theory. It
is characterized by three properties: a functional intefifferential equation, background covari-
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ance, and splitting Ward identities, see e.qg. [8, 3]. Them&rfunctional equation reads

orihg } . (2.3)

exp—rh;g| = /dQX(f)exp{ —S[f;g] +/d4x\/§(f —h)“véTw

Hereg,y is a generic background metric and the integration is owefltictuation part,, of the
original ‘quantum metric'gy, = guv + fuv. The other argument df is the average of the fluc-
tuations,hyy = (fuv)g, SO that(quv)g = guv + hyv. The actionS, [f;g] differs from the original
oneS[g+ f] by addition of a gauge fixing teri®y[ f; g implementingx, (f;g) = 0 and the depen-
dence onf andg is no longer through the sum only. The kinematical mead@g( f) includes an
integral over ghost fielde, ¢, with actionS;,. The gauge fixing action is obtained by Gaussian
averaging of the (shifted)(x,,) constraint and contains a paramedesuch tha () is recovered
inthe limita— 0. The quantum actioB+ Syt + Sy is BRST invariant and the measure is formally
too. As usual [h;g] arises by Legendre transformation so thath; g} /dhy,, = \/gJuv is an ex-
tremizing source. The source-free conditidinh; g]/dh,, = 0 dynamically adjusts,, = (fuy)g

to gyv in a selfconsistent way. In principle the background fielarfalism therefore is not tied to
externally prescribed backgrounds.

Background covariance means tHaandh transform as a symmetric tensors and that only
covariant expressions enter built frofnh, g, the covariant derivativél of g, and the curvature
tensors ofg. For a diffeomorphismp with bull-back ¢, this meansS, [¢. f; ¢.9] = S,[f;g] and
r¢.h; ¢.9) = [h;g], assuming that the measure has the appropriate invariadoge that this
is a much weaker requirement than diffeomorphism invadgaotca functional depending only
on the sumf + g or h+g. For the classical actio§¢.(g+ f)] = Slg+ f] entails upon expansion
consistency conditions among the vertices. For the effeeittion the facgg+ f] = Sg' + '] with
different decompositions into background and fluctuatigimes rise to ‘splitting Ward identities’.

In a perturbative construction one (re-)introduces a loa@metei by rescalingS, — %g(

[ — &, and f,, — Vhf,,. The effective action is assumed to be of the fdfth;g] = Sg] +
anlﬁ”/zrn/z[h;g], where the non-integer coefficients vanish tice 0. Upon expansion of (2.3)
one can compute thE,»'s recursively using only Gaussian averages. One fings[h;g] =

SV (g)-handri[h; gl —1[0;g] = 152 [g]- 2, etc, where the superscripts here refer to functional
derivatives with respect to the background metric and thdndtices integration and summation
over tensor indices. ThE;[0;g] term depends on the normalization of the underlying Ganssia
measure. The normalization is important in the presentesoras it relates to ‘vacuum energy
contributions’ which affect the renormalization of the gtational couplings.

The normalization of the measure commonly adopted is th#teko-called geometric ap-
proach [7]. One decomposdsaccording tof = fX + Lv, where fX satisfies the gauge condi-
tion, x,(fX,9) = 0, and(Lgv),v := Ouvy + OyVvy is its gauge variation referring to a fixgdas
the base point of the tangent space. The Jacabiam) stemming from the change of variables
fuy — (fff\,,v“) is essentially the Faddeev-Popov factor and the measureipdrturbative ex-
pansion of (2.3) is interpreted d€2, (f) = Z(1X)Jy(g) with the formal product measur@( fX)
normalized by

/ 7(1*)exp{ - % / d*/@ (GO P 1} =1, 2.4)
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where GHV-@B — 11v.aB | K(,g#Vg?B is a ultralocal configuration space metric which is positive
definite forkg > —1/4. The point relevant here is that the normalizatior#gff X ) and hence also
of the formal product measurg( f) is done with respect to a constant (rather than a diffeigntia
kernel on the tangent spacegatAs a consequencal short distance singularities stemming from
éf) and the ghost Hessian are included'in This isnot what one would conventionally do in a
Feynman diagram evaluation of a flat space quantum field yhadrere the Gaussian measures
occurring are normalized with respect to the inverse frampagator. The latter automatically
removes divergences with field independent coefficientsa fgravitational context there is no
sensible decomposition into a kinematical part with thekgemund fieldg ‘switched off’ and a
superimposed dynamics. By the above splitting principtefaa as the non-redundant degrees of
freedom are concerned, switching off the background shibelthe same as switching off the full
field in the Hessian. For a conventional field theory this edlproduces a free propagator, for a
gravitational Hessian the notion is meaningless.

With the normalization fixed by (2.4) the problem of settingairegularized perturbative ex-
pansion of (2.3) reduces to defining generic regularizedracind covariant Gaussian functional
integrals. It is important that a systematic regularizatis adopted from the beginning for the
entire expression (2.3). After regularization the muitigtive identity DefAB = DetA DetB is for
non-trace-class operatars/alid as a matter of principle — so formally equivalent expressiill
differ after regularization and the correct interpretatis dictated by the initial definition of (2.3)
via its regularized expansion. Once a suitable regulaoizdtas been fixed the divergent pE[ff"
of the one loop background effective action can be computddize beta functions extracted. For
pure gravity theories the divergent part of the one loop gemlnd effective action is of the form

_ 1 : :
100 =~ e { Ay a8+ Ay @tk vaR Y
+ In(Ayv/u) /d4X\/§ [ZlCz + (R + GE + pPLR+ H455] } - (2.5)

Here Ayy is a momentum-type ultraviolet cutoff is the renormalization scale, and the coeffi-
cientsYj,i=1,2,3 and{j, j =1,...,5 are to be determined. Unlike dimensional regularization,
where the Gauss-Bonnet tefns non-topological fod # 4 and in principle needs to be kept [14]
our regularization operates in strictly four dimensiond #me E can term be consistently omitted
from the beginning. As indicated above some novel featucesiroin determining the beta func-
tions for the originally dimensionful gravitational coups which we address by a ‘Wilsonian’
reinterpretation of the perturbative flow.

One then finds that th¥ coefficients have a decisive influence on the flow. These coafts
are less universal than the coefficients of the logarithnirergences; off hand th¥’s are both
scheme and gauge dependent while §heoefficients are only gauge dependent. For both sets
gauge independent combinations exist on general grourdigram can set up the flow equations
(2.23) such that only; and these gauge independent combinations enter. The sclegr@edence
of theY’s is found to be be of a rather innocuous nature and to be pEegimed by certain moments
gm, m=1/2,1,2 of the cutoff function used as a regulator. These momeetdarconstruction
positive andO(1), so using different schemes only leads to minor quantéathvanges.
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We now describe the main ingredients of the resulting im@doperturbative framework [24]
consecutively. In outline these are: (a) use of a backgroaomdriant operator cutoff in combination
with the heat kernel that keeps track of powerlike divergsn¢b) a nonminimal subtraction ansatz
parameterizing generic finite coupling redefinitions. (dQ\Vadsonian matching condition which
identifies the bare couplings with the renormalized onekaatkV cutoff scale.

(a) Operator-heat-kernel regularization: In contrast to earlier perturbative computations we
use a background covariant operator regularization [2ddmbination with the heat kernel. Unlike
dimensional regularization (which sees only logarithmieohences) such a regulator in principle
allows one to make contact with nonperturbative result® dgerator regularization uses a function
z+— Fayy (2) that depends parametrically on an infrared cukofind an ultraviolet cutoff\yy .
The infrared cutoffk is conceptually distinct from the renormalization scatefor the purposes
here we may assume howevekOck < p < Ayy with some fixedcs > 1. For the regulator
functions we tak& a,, (2) = f(z/A3,,) — f(z/k?), for suitablef : R, — R, interpolating between
f(y) =Iny+ const+ O(y) and zero. For a formally selfadjoint covariant differehtperatorA of
order 2 on ad dimensional riemannian manifold our basic prescripticthag InA is replaced with
Fe ap, (A) acting as an integral operator obtained by averaging thekeeael:

INA — InAgpy, = Fe g, (A)(XY) = /0 dtRe Ay, (DAX YL, (2.6)

whereA(x,y;t) is the heat kernel oA normalized according to

(2 +A)AKYD =0, AKX y0)=3(xy). (2.7)

with &(x,y) normalized wrt,/g; schematicallyA(x,y;t) =: (x| exp(—tA)[y). Furtherf a,, is the
inverse Laplace transform & »,,, normalized such thd «(t) = —1/t (where the limits of course
cannot be taken under the integral). It follows that

At AR = O, (A)(XY) = — /0 dttFe Ay, (DAX, Y1),

DetA — Defp,, A = exp{ /Owdtlfkr7,\bv(t)/ddx\/gA(x,x;t)}, (2.8)

and we define the regularized generic Gaussian functiotegrial by [24]

: 1 1
/.@f exp{—if-A-f—irJ-f} - (Dek,\UVA)—l/Zexp{EJ-A;}\UV-J}. (2.9)

Note that the right hand side reduces to unityKet Ayy in accordance with the picture that ‘no
modes’ are being integrated out. Compatibility with ‘coetplg the square’ type manipulations
requires thatA itself is regularized according & — (AE/l\uv)lZ/l\uv' The regularization of non-
trace-class operators inevitably violates naive muttgilive identities and the one adopted here is
no exception: one may check that D& # DetADetB ands(sA) ! # A1, for the regularized
versions.

For a flat background),, = nuy and operators with constant coefficients one can switch to
momentum space, insert ;

Axy;t) = / (ST)pde'p'(x‘y) e AP (2.10)
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and replace the above expressions by simpler ones invothim@perator's symboA(p). Func-
tions of the (matrix-valued) symbol are interpreted in temfi the spectral representatidp) =
YiAi(p)Mj(p/v/P?), wherell; are (operator-dependent) mutually orthogonal projectorpar-
ticular for the regularized—* and TrInA this gives
- dp ok P
A (09) = 3 [ G @ M () e, (i (o).

\/E

d
Thiery () = 3 [ ok P (s (P). 211

I

wherem; = trl1; is the multiplicity ofA;.
Our cutoff functions will be of the symmetric form

I:k/\uv (Z) = f(Z//\av) - f(z/kz) ’

Foaw (1) = Z[F(tAGy) — f(tk?)], (2.12)

~|

which ensures that fdt = Ayy all regularized Gaussian integrals reduce to unity. It isvenient
to specify only the functiong (y) and f(u) which are however related bi(y) = f5* 9 f(u)e>!
only modulo (occasionally divergent) terms that canceliodbe differences. For definiteness we
consider the following three choices:

d/2
fyy=—In1+1/y)+y ——, ‘smooth’,
(v) (1+1/y) n;n(ler)”
f(y) =6(1—y)Iny, ‘optimal’, (2.13)
fly)=-r(0,y), ‘sharp proper time’
The ‘optimal’ cutoff [22] has no proper time counterpart; floe other two one has:
- rd/2+1u 921
fluy=—"2—""=5 —ue" ‘smooth’
W=Tazr1 nZO e ’ (2.14)
fluy=—6(u—-1), ‘sharp proper time’

Many applications require to isolate the divergences ind R,, A as/A\yy — . This can be
achieved by inserting the smalhsymptotic heat kernel expansion where UV singularitiaseco
spond to non-positive powers bf For definiteness we tak#even in the following. On general
grounds the diagonal of the heat keripglexp(—tA)|x) will admit a smallt asymptotic expansion
for a large class of differential operators. For operatéiarder 2 which are products of Laplacian
type operators-[0°+U on a closed Riemannian manifold of dimensibiihe asymptotic expansion
takes the form

1 @) ad B
GO () & T En A, BoldA) =1 (215)

(x| exp(—tA)|x) ~

The form (2.15) is then taken as an ansatz also for otheredadperators. Usually however only
operators with trivial principal part are consideréd= 1(—0?)" + rest, and tabulated results are
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available only for this situation. Operators with nontaivprincipal parts are needed in gravity. The
results are considerably more complicated then, for examptadyEq(x|A) is a nontrivial matrix.
For the divergent part of Indétin (2.8) the generalized expansion (2.15) gives

r(a
TrFe ay,, (A) = —Wrr(é)) / d?x\/g (2.16)

d/2-1
X[ S A g2y Ezn(X|A) + 2rInAuy Ed(xyA)]+0(A8V),
n=0

where theg, are moments of the cutoff function defined below. We use {j2d @efine the diver-
gent part (2.5) of the effective action. From the scalingpprties of theE,, one sees thainly the
coefficient of the logarithmic divergence is invariant unde-scalings of the operatd; overall
normalizations thus matter. The momeagtenter via

00 B ~ 1 o0 -
/0 dtt ”Fk,,\w(t):m/o dz# *Feny, (2
—2|nAuv/k, n=0,
_ (2.17)
—gn(AZ, —K*)  0<n<2.

The casen = 0 can also be interpreted as limy R a,, (2). For the three cutoffs considered ttye
come out as

‘ . _I(d/2+1-n)
smooth’: On = rd2+1)
. 1
‘optimal’: Oh = 7nr(n+l) , (2.18)

. 1
‘sharp proper time’: ¢, = o
for 0 < n<d/2, where the actual values neededmrel/r,...,(d/2)/r.

(b) Nonminimal subtraction: The divergences (2.5) are absorbed as usual by coupling and
field renormalizations. For the gravitational couplingswse the nonminimal subtraction ansatz

2 {1—|— % [alo—kallln(/\uv/ll) +alz(/\llﬂ>2+al3(/\%>4] + O(ﬁz)} ’

Ao = u*==
oIJgN

K§ = Ung{l‘i‘% [b10+ b11|n(/\uv/ﬂ)+b12</\uﬂ)2} +O(ﬁz)}a (2.19)

while for originally dimensionless couplings minimal stdaition with only log terms is used. In-
serting the coupling and field redefinitions into the baréoac and expanding t®(h) gives
S = S+ AS, whereSis the renormalized action afkS is the counterterm. The cancellation con-
dition I"l“" = —ASfixes all minimal subtraction parameters as welbas a;»,a13 andby1, by, in
(2.19) but leavesyp andb;g undetermined. The flow equations for the couplings follovusisal
from the fact that the bare couplinds, Kg, etc areu-independent. For the gravitational cou-
plings one finds flow equations of the form (2.2) wh@g 3, are the beta functions in minimal
subtraction an€y, D, are related t@iq, byp by

g—NDl, P10 = —0OnC1. (2.20)

ago = gnNCy — 3
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(c) ‘Wilsonian’ matching condition: So far the bare couplingq%, Ao Were only assumed to
be p-independent. In a Wilsonian interpretation they shouldade with the running (‘renormal-
ized") couplings at scalgt = Ayy. This additional requirement fixes the subtraction point g2
uniquely:

! :
Kg = /\0\2/ gN(u = Auv) iff b10—|— b12 = O, (221)
~ 2A .
No =Ny (g—N)(Il =NAuy) iff ajpt+an+az=0.

The matching condition can be viewed as a (considerabla}cslido imposing renormalization
conditions proper, which for large gives identical results. Explicitly (2.21) amounts to

1
Ci=Y>, D1=§(Y1+Y3)+)\Y27 (2.22)

in terms of the coefficients in (2.5). As a consequence the éiquations for g andA are now
uniquely determined by the counterterm coefficients in)(@rkl possibly the parametey€ntering
through the field renormalizations:

d d
Hopn =PV 8.8), KA =B(Y.4.8). (2.23)

The dependence ahmust be such that\g3, + A By is ¢ independent.

3. Results for HD gravity

We now outline the application of the previous framework 1 gtravity with classical action
(1.2) [24].1 This requires a choice of gauge fixing and gauge averagingus&/@ three parameter
harmonic gauge

1 .
S = 5 [EXVBXY X0,

XIJ = vauv—i-bl':l“f, (31)
1
YR = —Z[gVDP+ (b - UMDY - R,
1 1+4w 2C
by = —— b= 2(1+w
1 iac, 1+w’' 2 3 (1+a),

where the gauge conditia x, — 6,) has been averaged with a normalized Gaussian of covariance
YHY. The reparameterization bf, b, in terms ofcy, ¢, is such that = ¢; = ¢, = 1 corresponds to
the so-called minimal gauge where in the gauge fixed Hes#litaras quartic in, except(d2)?
drop out. The ghost action associated with (3.1) has kekfél= —gHv[2 — (14 2by)0H0, —
RHY. The parameter in (2.4) ig = b;.
Consistent with the regularized Gaussians of section 2 \iraedthe one-loop effective action
by

1 1
M= ETrszJ\ﬁv () — ETrFkJ\uv (Y) = TrRcay, (D), (3.2)

1The presentation has been revised Nov. 2009 to match thizatith.
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where 7 is the Hessian of €S+ Sy). Its divergent part will be of the form (2.5) with the coef-
ficientsY and{ to be determined. In a non-gravitational context one uglslbtracts from (3.2)
a corresponding contribution from a reference operatore fEference operator is chosen so as
to represent the non-interacting system and in particelarores quartic divergences. In gravity
such a reference system bears on a definition of selfenedyit srunlikely that a preferred choice
exists. As discussed before the Gaussian normalizatioditoam (2.4) amounts to having no sub-
tractions in (3.2). Another modification of (3.2) would beadd to .77 its Vilkovisky-de-Witt
(VdW) correction [9]. We verified that the setting used heserectly reproduces the VdW form of
{5 [10] upon adding the correction, but that it leawés Y3 unaffected.

The functional form of the coefficients in (2.5) can be caaisied without genuine dynamical
input. Keeping track of the grading by the loop counting pagter {1, (>, {4,{5 and Y1,Y>,Y3
must be real valued functions sfgy, A, . Further

Y3 4 {5 ¢

Y]_, YZa 73 77 ﬁa Xa

(3.3)
must be polynomials is/(gyA) and that the last three quantities cannot have terms. This ca
be seen by deriving the flow equations as described in se2tiand requiring that the explicit
dependence on the UV cutoff cancels. Finally, using the fejdations of (1.2) one sees that
O, 82, {5/A% +484/A and Yy, 4Y> + Y3/A, contain only on-shell information and thus should be
independent of the choice of gauge and field reparameterzebnstant.

The evaluation of the divergent part of (3.2) now amountshtodetermination of the short
time asymptotics for the heat kernels of the operatgfs Y, andA. BothY andA are second
order operators with trivial principal part, for which tdated heat kernel coefficients are available
[20]. In a curved background and in a generic gauge (374)is a very complicated operator
for which no tabulated results are available; moreoverglieno choice of gauge parameters for
which its principal part is trivial. We thus resorted to aralesation on a flat background in a
generic gauge which allows one to determ¥ieY; (and as a checks) in a generic gauge. Finally
Y> can be obtained by transversal-traceless decompositithe éfessian on maximally symmetric
backgrounds. As a check we also evaluatediirectly on a generic background in minimal gauge,
where the principal part is a nontrivial but constant matrix

The evaluation of (3.2) on a flat background reveals that -entrast to the common wisdom
about the system and in contrast to the situation in Eingieawity — there isno problem with
positivity. The Hessian on a flat background can be diagpedliexactly and the positivity of
the spectrum can be investigated. There are four specttas@ (p), A2(p), Az(p),Aa(p), with
multiplicities 53,1, 1, respectively. The last two are non-rational functionshef momenta with
a largep expansion of the fornp=4A;(p) = w; + O(sp~?) (which also applies td1, A2, where the
expansion terminates). Spectral positivity is decidedhaydigns of thgs; and one can show

>0 for —1<w<0, ¢;>1/4, c/a>0. (3.4)

The interval—1 < w < 0 is invariant under the renormalizition flow (3.6) and camtathe known
UV fixed point w, ~ —0.0228 [12, 11, 13]. Hence fqu sufficiently large no problem with posi-
tivity of the propagator (i.e. the inverse Hessian) evesei
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The divergent part of 1 is absorbed by the coupling renormalizations describedreeind
field renormalizations. By inspection of the equations ofiorofor (1.2) one sees that the only
useful field renormalizations are of the form

h
dop = dap + (@ (Ao /1) Oné ap + O(F?), (3.5)
whereé can be a function o§/gn, A, w. Inserting the coupling renormalizations and (3.5) into
the bare actiory, expanding, and requiring that the divergent terms eqaﬂg\a yields cancel-
lation conditions fixing all parameters in terms of e Yj, except foré andayo, bio. Imposing
the Wilsonian matching condition also fixegg, big and one arrives at flow equations uniquely
determined byj, Y; andé. The result is:

ds h

N@ = (a2 20,5, (3.6)
dw h
H@ = @y S(3{2+2w(1),
d h
Hapon = ZwagN[Zwﬂzvz], 3.7)
d h on
IJ@)\ = -2\ +W? (5+8A 0+ Y3+4AY2+4Y1 — (2AE+20 {0 —Y3) | .

The (s, w) flow equations are those of [12, 11, 14] while tfgy, A) equations are new. The
parameters in (3.6) are gauge independent and €quall33/20, 3>+ 2w{1 = (25+ 1098&v +
200w?)/60 [12, 14]. As a consequence the coupliig asymptotically free with UV fixed point
s, = 0. Thew flow can likewise be integrated analytically and has the wmityV fixed point
w, = (—549+ 71/6049) /200~ —0.0228 mentioned earlier. The othércoefficients are known
in several gauges [11, 12, 13, 14, 10] while ¥ieoefficients have not previously been computed.
The (gn,A) flow equations manifestly depend on the coefficients of thvegplike divergences and
warrants a detailed discussion.

The flow equations (3.7) admit a nontrivial fixed point whishsblely determined by thé;
andY> coefficents. Indeed by (3.84/A, {s/A% and& /A are at leasO(s) and thus vanish at the
UV fixed points, = 0 of thes flow. Anticipating that alsoy; is linear ins/(gyA) one sees that
(3.7) has a nontrivial fixed point at

9 1 Yi

@z~ Mg &9
whereYs := Y|, s—0, Y] = Y1|w. s—0. Importantly the fixed point is gauge-independent whenever
a definition ofl"; is used that renders it gauge independent on-shell. Thistithe case for the
definition (3.2) and improved variant will be presented wisere. The scheme dependence always
enters only through the, of Eq. (2.17).

The results foiYy, Y3, Y3 based on (3.2) in a generic gauge are too bulky to be repoeted h
For simplicity we present them here in minimal gauge. Fhetfixed point values

Y; = —1.9867q; —0.098360 /7, (3.9)
Y; = 5.8114q; — 6.10260,,

12
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where for all cutoffs usually considereg/q, > 2.
To study the flow (3.6) itself we now make the choice

E=—-{1+Y3/(21), (3.10)

which gives rise tggn, A ) flow equations depending only on the gauge indepenglentnbination,
Y2+ Y3/ (4A) andY7 without affecting the fixed point (3.8). One h¥s= ui(w), Y2+ Y3/(4A) =
Up(w) — 5o Us(w), with

260w — 1 9 9 1 4 )
Ul(OJ) =01 1200 - 2|:§+§7(1+w)2+§(1+ OO) ]
YA w+2 [ 1+w 87+ 118w+ 56w + 160°
Uo(w) = —3 Q1/2[3(1+‘”)_ 3 V 3w ]_(“ 7211 w) ‘
3V 1+ w\3/2
Ug(w) = —g/4_Ql/2 [3— (——3w ) ] (3.11)

In combination with the knowd1, {», {5+ 4A {4 [12, 11, 14, 13, 10] this defines the flow (3.6).

Q.0 g

Figure 1: Wilsonian 1-loop flow in HD gravity in minimal geuge.

Fig. 1 shows the result of a numerical integration afterakisg gy — (47)%gn, S+— (41)3s,
with s(1) = 1, w(1) = —1/2, and the smooth cutoff. The initial data fog,d were varied in
the rangel0,2]. One sees that\gA are initially non-monotonous functions ¢of, monotonous
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behavior sets in quickly but non-uniformly in the initialtda At 4 = 10 the memory of the initial
data is erased to accuracy Y0and the merged trajectory eventually hits the fixed poirated at
Oy ~ 1.3697 A, ~ 0.9451, however with 1% deviations everyat= 10°.

4. Implications for the asymptotic safety scenario

Two main issues need to be addressed in order to promote Hidygi@ a viable field theory
of quantum gravity. First, since perturbation theory (PT@sumably captures only a small part
of the physics content of the theory a formulation that isoreralizable in the Kadanoff-Wilson
sense needs to be found. This requires a genuinely nonipatitie regularization yet-to-be-found
in which one would expect the associated Wilsonian actioreonhtain higher derivative terms in
addition to those in (1.2) needed for powercounting rentimability. Second, higher derivative
interactions are potentially problematic from the viewpaf unitarity. Although the problem as
originally construed is absent in HD gravity proper, see B#), little is known, conceptually
and computationally, about what physical quantities oughibey which physically relevant no-
tion of unitarity. The asymptotic safety scenario [5, 2, Bpdrports the optimistic view that both
problems can be overcome. In brieg-matrix-like quantities in higher derivative type gragvit
can be constructed via a massive scaling limit based on ariv@itfixed point beyond asymp-
totic expansions and are compatible with the physicallgwaht notion of unitarity.We regard
the perturbative construction of the nontrivial fixed paileiscribed here as very compelling. It
complements earlier results obtained via the truncatechgeeeffective action [15, 16, 17, 18, 19];
some comments on the relation will be offered elsewhere. Myortant implication is that the
interplay between perturbative and nonperturbative aquargravitational physics may be similar
as in Yang-Mills theories, with the nonperturbative dynegrimportant mostly in the infrared. A
second consequence is that the dimensional reduction ptesram [3, 2] for the residual interac-
tions in the extreme UV can be investigated perturbativdle conjectured picture is [2]: The
functional averages of physical quantities can in an asgtigaily safe theory of quantum grav-
ity based on a nontrivial fixed point in the extreme ultragtdbe asymptotically reproduced by a
two-dimensional statistical field theory which is: selfiiatgting, not a conformal field theory, and
asymptotically safe itself. Gravitationally motivateddi¢heories with the correct qualitative prop-
erties can be obtained through Killing vector reduction3] Jaut the proper dynamical reduction
phenomenon remains to be understood.

Acknowledgements:Ratio habeas corpus de re scientia renuntiabatur.
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