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Fixed points from perturbation theory

1. Nontrivial perturbative fixed points

Perturbation theory is as routinely applied by some as it is frowned upon by others, both not
always thoughtfully. Before turning to gravity proper we offer some general remarks on what one
can and cannot reasonably expect from perturbation theory (PT). The identification of a nontrivial
fixed point in PT at first sight seems to be a contradiction in terms, alas it is not. By definition
PT is a saddle point expansion in the loop counting parameterh̄ introduced into the functional
integral as the inverse prefactor of the bare action,h̄−1S0. For h̄ → 0 one obtains, depending on
the signature, a generalized Laplace or stationary phase expansion which may or may not coincide
with the expansion in some ‘small’ bare reference coupling.In the presence of massless degrees of
freedom the orders in the loop counting parameter also do notcoincide with the orders in Planck’s
constant. The ‘bare’̄h expansion can typically be shown to provide an asymptotic expansion of the
properly regularized functional integral. After renormalization such proofs are exceedingly difficult
and are available only in superrenormalizable or purely fermionic field theories. Off hand therefore
the renormalized PT expansion is only a formal power series in the loop counting parameter̄h.
An important advantage of PT however is that (in a perturbatively renormalizable field theory) the
ultraviolet (UV) cutoff can termwise strictly be removed, independent of the nature of the coupling
flow. The perturbatively defined coupling flow itself then provides a plausibility criterion [2] for
the existence of an underlying ‘exact’ theory such that for physical quantities PT yields a valid
asymptotic expansion, namely: All essential couplings gj must be asymptotically safe with respect
to a trivial or nontrivial fixed point,

∑
µ0≤µ≤∞

g j(µ) < ∞ , lim
µ→∞

g j(µ) = g∗j < ∞ . (1.1)

Hereµ is the renormalization scale and the flowµ → g j(µ) is assumed to be non-constant. Clearly
both properties in (1.1) are parameterization dependent and as stressed by S. Weinberg [5] one
should ultimately define “the coupling constants as coefficients in a power series expansion of the
reaction rates themselves around some physical renormalization point”. With this understanding
of the couplings the ultraviolet regime should in an asymptotically safe field theory be accessible
to a suitably formulated perturbation theory. As emphasized in [2] the value of the fixed point
coupling is of minor importance. One can take any one differenceδg1 := g1−g∗1 which is of order
of h̄ at µ = µ0 as the reference coupling reinterpret the expansion as one in δg1 and proceed with
the renormalization group improvement as usual. Being basis dependent the values of the fixed
point couplings g∗j are also not directly related to the ‘Gaussian’ or ‘non-Gaussian’ nature of the
fixed point. A ‘Gaussian’ fixed point is one where there existsa preferred basis in the space of
interaction monomials such that the ‘exact’ functional measure in the vicinity of the fixed point
becomes Gaussian. For a non-Gaussian fixed point the existence of such a basis must be excluded,
– a formidable task for a realistic field theory. We thereforedistinguish here only between trivial
fixed points with g∗j = 0 for all j in a ‘natural’ basis, and nontrivial ones where g∗

j 6= 0 for at least
one j.

We now apply these considerations to higher derivative (HD)gravity. HD gravity in four di-
mensions comes close to realizing a renormalizable quantumtheory of gravity. Compared to the
Einstein-Hilbert action two additional interaction monomials are added containing the independent
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Fixed points from perturbation theory

curvature invariants with four derivatives of the metric tensor. The resulting gravity theory is per-
turbatively renormalizable to all loop orders [1] which is related to the strong, 1/p4 type, falloff of
the free propagator at large momenta. With Euclidean signature the action reads

S=
∫

d4x
√

q
[
Λ̃− 1

κ2R+
1
2s

C2− ω
3s

R2
]
. (1.2)

Hereqαβ is the metric entering the functional integral,C2 is the square of its Weyl tensor, and
total derivative terms like∇2R and the integrand of the Gauss-Bonnet term have been omitted.
In terms of the cosmological constantΛ one hasΛ̃ = 2Λ/κ2 and the parameterization of the
other coefficients by couplingss,ω is chosen for later convenience. The two dimensionful cou-
plings are replaced with dimensionless ones according to gN = µ2κ2 andλ = µ−4gNΛ̃/2 = µ−2Λ.
Our curvature conventions are set by(∇α∇β − ∇β ∇α)vγ = Rγ

δαβ vδ and Rαβ = Rγ
αγβ . Here

∇αvβ = ∂αvβ +Γβ
αγvγ with Γγ

αβ = 1
2gγδ [∂αgβδ +∂β gαδ −∂δ gαβ ], which givesRδ

γαβ = ∂αΓδ
γβ −

∂β Γδ
γα +Γδ

αρΓρ
γβ −Γδ

βρΓρ
γα . In four dimensions the integrandE of the Gauss-Bonnet term and

the square of the Weyl tensors are related byC2 = E +2Rαβ Rαβ − 2
3R2.

Viewed as a running coupling Newton’s constant has a specialstatus. In some bounded kine-
matical regime it can be viewed as an inessential parameter whose value (like that of a wave func-
tion renormalization constant) can be changed at will. In principle GN can be kept fixed, e.g. at
[GN]1/2 = MPl≈ 1.4×1019GeV. This trivializes the gN flow, gN(µ) = 16π(µ/MPl)

2, but may intro-
duce spurious singularities in the flow of other dimensionless couplings; see [2] for a discussion. A
better alternative is to define the running of gN relative to that of a reference coupling. A convenient
choice is a cosmological constant termΛ̃

∫
dx
√

g. Indeed in four dimensionsτ := gNλ = 16πGNΛ
is dimensionless and invariant under constant rescalings of the metric [6]. As a consequence the
associated flow equation must be independent of parameters entering a multiplicative metric renor-
malization. We shall continue to work with gN andλ but will construct flow equations that have
this interplay built in.

The existence of a nontrivial fixed point g∗
N > 0 for gN is a crucial ingredient for the asymp-

totic safety scenario [3, 2, 4]. The following heuristic argument suggests that if HD gravity
indeed has a nontrivial fixed point for gN it should be visible already in PT [2]: letqαβ be
the ‘quantum metric’ entering the functional integral. Then any Wilsonian action of the form
Sµ [q] =

∫
d4x

√
q ∑i≥1ui(µ)Pi(q) with asymptotically safe couplings and scalar interactionmono-

mialsPi(q) of mass dimension−di will for µ → ∞ depend only onµ2qαβ , asui(µ) ∼ µdi u∗i . For
the coefficient of the Ricci scalar inSµ this is ‘as if’ Newton’s constant has picked up an inte-
ger anomalous dimension−2 along the trajectory connecting infrared to ultraviolet properties. A
typical propagator would thus scale at low energies like 1/p2 and at high energies like 1/p4. But
the latter is precisely the behavior which is in the realm of PT for HD gravity. On the other hand
an anomalous dimension−2 goes hand in hand with a nontrivial fixed point for gN. This can be
seen by taking into account gN’s double role as an inessential parameter (“wave function renormal-
ization constant”) and a coupling. The yet-to-be-determined flow equation will thus naturally be
parameterized by the anomalous dimensionη = µ d

dµ lnκ2, in which caseµ d
dµ gN = (2+η)gN, and

g∗N 6= 0 if and only if η = −2. Finally we note thats and gN are of degree 1 in the loop counting
parameter̄h while the other couplings are of degree zero. Sinces turns out to be asymptotically
free in PT [11, 12] one can regard the perturbative expansionas an expansion in powers ofs. Then
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Fixed points from perturbation theory

gN may occur in degree zero ratioss/gN (and in fact it does) and a putative nonzero fixed point
value for gN is well within the realm of the expansion.

Already the one loop order should contain the decisive pieceof information provided a suitable
framework is used. It is then a matter a computation to determine whether or not the nontrivial fixed
point exists. In section 3 we present the result of such a computation [24] confirming the existence
of a nontrivial fixed point. For definiteness we presented theargument here for HD gravity where
the instrumental 1/p4 decay of the propagators is built into the kinematics. In section 4 we will
put our results into the context of the asymptotic safety scenario which entails that a similar link
between a nontrivial perturbative fixed point for gN and a dynamically generated 1/p4 behavior
should exist in any other gravity theory which renormalizable at one loop.

2. Refined gravitational PT

Perturbative computations in gravity theories have traditionally been been performed with di-
mensional regularization and minimal subtraction. The oneloop flows of genuinely dimensionless
couplings are in fact scheme independent, so any other regularization and scheme is bound to give
the same result. A quick assessment shows that the situationis different for the originally dimen-
sionful couplings gN andλ . On general grounds scheme changes in PT should be in one-to-one
correspondence to finite redefinitions of the couplings of the appropriate order in the loop counting
parameter. For HD gravity at one loop one may take

gN = g′N +
h̄

(4π)2 g′N
2C′

1 , λ = λ ′ +
h̄

(4π)2 g′N D′
1 , (2.1)

whereC1,D1 are functions ofλ ,ω ,s/gN evaluated at the primed coupling values. Ifβg′ = 2g′N +

O(h̄), βλ ′ =−2λ ′+O(h̄), βs = O(h̄), βω = O(h̄) are the beta functions in the original scheme, then

µ
d

dµ
gN = βg +

h̄
(4π)2 gN

2
[
2C1 +2gN

∂C1

∂gN
−2λ

∂C1

∂λ

]
,

µ
d

dµ
λ = βλ +

h̄
(4π)2 gN

[
4D1 +2gN

∂D1

∂gN
−2λ

∂D1

∂λ

]
, (2.2)

are the beta functions in the new scheme. As usual most of the schemes corresponding to cou-
pling redefinitions have no natural computational realization and are defined only implicitly. The
question relevant here is: which of the schemes implicitly defined by (2.2) can be computationally
realized and admit a ‘Wilsonian’ interpretation that in principle allows one to make contact to a
nonperturbative formulation? Remarkably there is an essentially unique choice forC1, D1 which
meets these requirements and which leads to beta functions unambiguously determined by the co-
efficients parameterizing the divergent part of the effective action. As a consequence the one loop
beta functions of the originally dimensionful gravitational couplings acquire a status almost as ro-
bust as the beta functions of genuinely dimensionless couplings. For the rest of this section we now
explain this fact in more detail and comment on the remainingnon-universalities.

We take the background effective actionΓ[h;g] as the basic object in the quantum theory. It
is characterized by three properties: a functional integrodifferential equation, background covari-
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Fixed points from perturbation theory

ance, and splitting Ward identities, see e.g. [8, 3]. The formal functional equation reads

exp−Γ[h;g] =

∫
dΩχ( f )exp

{
−Sχ [ f ;g]+

∫
d4x

√
g( f −h)µν

δΓ[h;g]

δhµν

}
. (2.3)

Heregµν is a generic background metric and the integration is over the fluctuation partfµν of the
original ‘quantum metric’qµν = gµν + fµν . The other argument ofΓ is the average of the fluc-
tuations,hµν = 〈 fµν〉g, so that〈qµν〉g = gµν + hµν . The actionSχ [ f ;g] differs from the original
oneS[g+ f ] by addition of a gauge fixing termSgf[ f ;g] implementingχµ( f ;g) = 0 and the depen-
dence onf andg is no longer through the sum only. The kinematical measuredΩχ( f ) includes an
integral over ghost fieldscµ , c̄µ with actionSgh. The gauge fixing action is obtained by Gaussian
averaging of the (shifted)δ (χµ ) constraint and contains a parametera such thatδ (χµ) is recovered
in the limit a→ 0. The quantum actionS+Sgf +Sgh is BRST invariant and the measure is formally
too. As usualΓ[h;g] arises by Legendre transformation so thatδΓ[h;g]/δhµν =

√
gJµν is an ex-

tremizing source. The source-free conditionδΓ[h;g]/δhµν = 0 dynamically adjustshµν = 〈 fµν〉g

to gµν in a selfconsistent way. In principle the background field formalism therefore is not tied to
externally prescribed backgrounds.

Background covariance means thatf andh transform as a symmetric tensors and that only
covariant expressions enter built fromf , h, g, the covariant derivative∇ of g, and the curvature
tensors ofg. For a diffeomorphismϕ with bull-back ϕ∗ this meansSχ [ϕ∗ f ;ϕ∗g] = Sχ [ f ;g] and
Γ[ϕ∗h;ϕ∗g] = Γ[h;g], assuming that the measure has the appropriate invariance.Note that this
is a much weaker requirement than diffeomorphism invariance of a functional depending only
on the sumf +g or h+g. For the classical actionS[ϕ∗(g+ f )] = S[g+ f ] entails upon expansion
consistency conditions among the vertices. For the effective action the factS[g+ f ] = S[g′+ f ′] with
different decompositions into background and fluctuationsgives rise to ‘splitting Ward identities’.

In a perturbative construction one (re-)introduces a loop parameter̄h by rescalingSχ 7→ 1
h̄Sχ ,

Γ 7→ 1
h̄Γ, and fµν 7→

√
h̄ fµν . The effective action is assumed to be of the formΓ[h;g] = S[g] +

∑n≥1 h̄n/2Γn/2[h;g], where the non-integer coefficients vanish forh = 0. Upon expansion of (2.3)
one can compute theΓn/2’s recursively using only Gaussian averages. One findsΓ1/2[h;g] =

S(1)(g) ·h andΓ1[h;g]−Γ1[0;g] = 1
2S(2)

χ [g] ·h2, etc, where the superscripts here refer to functional
derivatives with respect to the background metric and the dot indices integration and summation
over tensor indices. TheΓ1[0;g] term depends on the normalization of the underlying Gaussian
measure. The normalization is important in the present context as it relates to ‘vacuum energy
contributions’ which affect the renormalization of the gravitational couplings.

The normalization of the measure commonly adopted is that ofthe so-called geometric ap-
proach [7]. One decomposesf according tof = f χ + Lv, where f χ satisfies the gauge condi-
tion, χµ( f χ ,g) = 0, and(Lgv)µν := ∇µvν + ∇νvµ is its gauge variation referring to a fixedg as
the base point of the tangent space. The JacobianJχ(g) stemming from the change of variables
fµν 7→ ( f χ

µν ,vµ ) is essentially the Faddeev-Popov factor and the measure in the perturbative ex-
pansion of (2.3) is interpreted asdΩχ( f ) = D( f χ)Jχ(g) with the formal product measureD( f χ)

normalized by
∫

D( f χ)exp
{
− 1

2

∫
d4x

√
g fχ

µν [G(g)]µν ,αβ f χ
αβ

}
= 1, (2.4)
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Fixed points from perturbation theory

whereGµν ,αβ = 1µν ,αβ + k0gµνgαβ is a ultralocal configuration space metric which is positive
definite fork0 > −1/4. The point relevant here is that the normalization ofD( f χ) and hence also
of the formal product measureD( f ) is done with respect to a constant (rather than a differential)
kernel on the tangent space atg. As a consequenceall short distance singularities stemming from
S(2)

χ and the ghost Hessian are included inΓ1. This isnot what one would conventionally do in a
Feynman diagram evaluation of a flat space quantum field theory, where the Gaussian measures
occurring are normalized with respect to the inverse free propagator. The latter automatically
removes divergences with field independent coefficients. Ina gravitational context there is no
sensible decomposition into a kinematical part with the background fieldg ‘switched off’ and a
superimposed dynamics. By the above splitting principle, as far as the non-redundant degrees of
freedom are concerned, switching off the background shouldbe the same as switching off the full
field in the Hessian. For a conventional field theory this indeed produces a free propagator, for a
gravitational Hessian the notion is meaningless.

With the normalization fixed by (2.4) the problem of setting up a regularized perturbative ex-
pansion of (2.3) reduces to defining generic regularized background covariant Gaussian functional
integrals. It is important that a systematic regularization is adopted from the beginning for the
entire expression (2.3). After regularization the multiplicative identity DetAB = DetA DetB is for
non-trace-class operatorsinvalid as a matter of principle – so formally equivalent expressions will
differ after regularization and the correct interpretation is dictated by the initial definition of (2.3)
via its regularized expansion. Once a suitable regularization has been fixed the divergent partΓdiv

1

of the one loop background effective action can be computed and the beta functions extracted. For
pure gravity theories the divergent part of the one loop background effective action is of the form

Γdiv
1 [0;g] = − 1

(4π)2

{
Λ4

UV

∫
d4x

√
gϒ1 + Λ2

UV

∫
d4x

√
g[ϒ2R+ µ2ϒ3]

+ ln(ΛUV/µ)
∫

d4x
√

g
[
ζ1C

2 + ζ2R2+ ζ3E+ µ2ζ4R+ µ4ζ5

]}
. (2.5)

HereΛUV is a momentum-type ultraviolet cutoff,µ is the renormalization scale, and the coeffi-
cientsϒ j , i = 1,2,3 andζ j , j = 1, . . . ,5 are to be determined. Unlike dimensional regularization,
where the Gauss-Bonnet termE is non-topological ford 6= 4 and in principle needs to be kept [14]
our regularization operates in strictly four dimensions and theE can term be consistently omitted
from the beginning. As indicated above some novel features occur in determining the beta func-
tions for the originally dimensionful gravitational couplings which we address by a ‘Wilsonian’
reinterpretation of the perturbative flow.

One then finds that theϒ coefficients have a decisive influence on the flow. These coefficients
are less universal than the coefficients of the logarithmic divergences; off hand theϒ’s are both
scheme and gauge dependent while theζ coefficients are only gauge dependent. For both sets
gauge independent combinations exist on general grounds and one can set up the flow equations
(2.23) such that onlyϒ1 and these gauge independent combinations enter. The schemedependence
of theϒ’s is found to be be of a rather innocuous nature and to be parameterized by certain moments
qm, m = 1/2,1,2 of the cutoff function used as a regulator. These moments are by construction
positive andO(1), so using different schemes only leads to minor quantitative changes.

6
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We now describe the main ingredients of the resulting improved perturbative framework [24]
consecutively. In outline these are: (a) use of a backgroundcovariant operator cutoff in combination
with the heat kernel that keeps track of powerlike divergences. (b) a nonminimal subtraction ansatz
parameterizing generic finite coupling redefinitions. (c) aWilsonian matching condition which
identifies the bare couplings with the renormalized ones at the UV cutoff scale.

(a) Operator-heat-kernel regularization: In contrast to earlier perturbative computations we
use a background covariant operator regularization [21] incombination with the heat kernel. Unlike
dimensional regularization (which sees only logarithmic divergences) such a regulator in principle
allows one to make contact with nonperturbative results. The operator regularization uses a function
z 7→ Fk,ΛUV (z) that depends parametrically on an infrared cutoffk and an ultraviolet cutoffΛUV .
The infrared cutoffk is conceptually distinct from the renormalization scaleµ ; for the purposes
here we may assume however 0< csk < µ ≤ ΛUV with some fixedcs > 1. For the regulator
functions we takeFk,ΛUV (z) = f (z/Λ2

UV)− f (z/k2), for suitablef : R+ →R+, interpolating between
f (y) = lny+const+O(y) and zero. For a formally selfadjoint covariant differential operatorA of
order 2r on ad dimensional riemannian manifold our basic prescription isthat lnA is replaced with
Fkr ,Λr

UV
(A) acting as an integral operator obtained by averaging the heat kernel:

lnA 7→ lnAk,ΛUV := Fkr ,Λr
UV

(A)(x,y) =
∫ ∞

0
dt F̃kr ,Λr

UV
(t)A(x,y; t) , (2.6)

whereA(x,y; t) is the heat kernel ofA normalized according to
( ∂

∂ t
+A

)
A(x,y; t) = 0, A(x,y;0) = δ (x,y) , (2.7)

with δ (x,y) normalized wrt
√

g; schematicallyA(x,y; t) =: 〈x|exp(−tA)|y〉. FurtherF̃k,ΛUV is the
inverse Laplace transform ofFk,ΛUV normalized such that̃F0,∞(t) =−1/t (where the limits of course
cannot be taken under the integral). It follows that

A−1 7→ A−1
k,ΛUV

:= ∂zFµ r ,Λr
UV

(A)(x,y) = −
∫ ∞

0
dt tF̃kr ,Λr

UV
(t)A(x,y; t) ,

DetA 7→ Detk,ΛUV A := exp
{∫ ∞

0
dt F̃kr ,Λr

UV
(t)

∫
ddx

√
gA(x,x; t)

}
, (2.8)

and we define the regularized generic Gaussian functional integral by [24]
∫

D f exp
{
− 1

2
f ·A · f +J· f

}
7→ (Detk,ΛUV A)−1/2 exp

{1
2

J·A−1
k,ΛUV

·J
}

. (2.9)

Note that the right hand side reduces to unity fork = ΛUV in accordance with the picture that ‘no
modes’ are being integrated out. Compatibility with ‘completing the square’ type manipulations
requires thatA itself is regularized according toA 7→ (A−1

k,ΛUV
)−1
k,ΛUV

. The regularization of non-
trace-class operators inevitably violates naive multiplicative identities and the one adopted here is
no exception: one may check that DetAB 6= DetADetB ands(sA)−1 6= A−1, for the regularized
versions.

For a flat backgroundgµν = ηµν and operators with constant coefficients one can switch to
momentum space, insert

A(x,y; t) =

∫
dd p

(2π)d eip·(x−y) e−tA(p) , (2.10)

7
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and replace the above expressions by simpler ones involvingthe operator’s symbolA(p). Func-
tions of the (matrix-valued) symbol are interpreted in terms of the spectral representationA(p) =

∑ j λ j(p)Π j(p/
√

p2), whereΠ j are (operator-dependent) mutually orthogonal projectors. In par-
ticular for the regularizedA−1 and TrlnA this gives

A−1
k,ΛUV

(x,y) = ∑
j

∫
dd p

(2π)d eip·(x−y) Π j

( p√
p2

)
∂zFkr ,Λr

UV
(λ j(p)) ,

TrFkr ,Λr
UV

(A) = ∑
j

mj

∫
dd p

(2π)d Fkr ,Λr
UV

(λ j(p)) , (2.11)

wheremj = trΠ j is the multiplicity ofλ j .
Our cutoff functions will be of the symmetric form

Fk,ΛUV (z) = f (z/Λ2
UV)− f (z/k2) ,

F̃k,ΛUV (t) =
1
t
[ f̃ (tΛ2

UV)− f̃ (tk2)] , (2.12)

which ensures that fork = ΛUV all regularized Gaussian integrals reduce to unity. It is convenient
to specify only the functionsf (y) and f̃ (u) which are however related byf (y) =

∫ ∞
0

du
u f̃ (u)e−yu

only modulo (occasionally divergent) terms that cancel outin the differences. For definiteness we
consider the following three choices:

f (y) = − ln(1+1/y)+
d/2

∑
n=1

1
n(1+y)n , ‘smooth’,

f (y) = θ(1−y) lny, ‘optimal’ ,

f (y) = −Γ(0,y) , ‘sharp proper time’.

(2.13)

The ‘optimal’ cutoff [22] has no proper time counterpart, for the other two one has:

f̃ (u) =
Γ(d/2+1,u)

Γ(d/2+1)
=

d/2

∑
n=0

1
n!

une−u , ‘smooth’,

f̃ (u) = −θ(u−1) , ‘sharp proper time’.

(2.14)

Many applications require to isolate the divergences in lnDetk,ΛUV A asΛUV → ∞. This can be
achieved by inserting the smallt asymptotic heat kernel expansion where UV singularities corre-
spond to non-positive powers oft. For definiteness we taked even in the following. On general
grounds the diagonal of the heat kernel〈x|exp(−tA)|x〉 will admit a smallt asymptotic expansion
for a large class of differential operators. For operators of order 2r which are products of Laplacian
type operators−∇2+U on a closed Riemannian manifold of dimensiond the asymptotic expansion
takes the form

〈x|exp(−tA)|x〉 ∼ 1

(4π)d/2

Γ( d
2r )

rΓ(d
2)

∑
n≥0

t
2n−d

2r E2n(x|A) , E0(x|A) = 1. (2.15)

The form (2.15) is then taken as an ansatz also for other classes of operators. Usually however only
operators with trivial principal part are considered,A = 1(−∇2)r + rest, and tabulated results are

8
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available only for this situation. Operators with nontrivial principal parts are needed in gravity. The
results are considerably more complicated then, for example alreadyE0(x|A) is a nontrivial matrix.
For the divergent part of lndetA in (2.8) the generalized expansion (2.15) gives

TrFkr ,Λr
UV

(A) = − 1

(4π)d/2

Γ( d
2r )

rΓ(d
2)

∫
ddx

√
g (2.16)

×
[d/2−1

∑
n=0

Λ(d−2n)
UV q(d/2−n)/r E2n(x|A)+2r lnΛUV Ed(x|A)

]
+O(Λ0

UV) ,

where theqn are moments of the cutoff function defined below. We use (2.16) to define the diver-
gent part (2.5) of the effective action. From the scaling properties of theE2n one sees thatonly the
coefficient of the logarithmic divergence is invariant under re-scalings of the operatorA; overall
normalizations thus matter. The momentsqn enter via

∫ ∞

0
dt t−n F̃k,ΛUV (t) =

1
Γ(n)

∫ ∞

0
dzzn−1 Fk,ΛUV (z)

=

{
−2lnΛUV/k, n = 0,

−qn(Λ2n
UV −k2n) 0 < n≤ 2.

(2.17)

The casen = 0 can also be interpreted as limz→0 Fk,ΛUV (z). For the three cutoffs considered theqn

come out as

‘smooth’: qn =
Γ(d/2+1−n)

nΓ(d/2+1)
,

‘optimal’: qn =
1

nΓ(n+1)
,

‘sharp proper time’: qn =
1
n

,

(2.18)

for 0 < n≤ d/2, where the actual values needed aren = 1/r, . . . ,(d/2)/r.

(b) Nonminimal subtraction: The divergences (2.5) are absorbed as usual by coupling and
field renormalizations. For the gravitational couplings weuse the nonminimal subtraction ansatz

Λ̃0 = µ4 2λ
gN

{
1+

h̄
(4π)2

[
a10+a11 ln(ΛUV/µ)+a12

(ΛUV

µ

)2
+a13

(ΛUV

µ

)4]
+O(h̄2)

}
,

κ2
0 = µ−2gN

{
1+

h̄
(4π)2

[
b10+b11 ln(ΛUV/µ)+b12

(ΛUV

µ

)2]
+O(h̄2)

}
, (2.19)

while for originally dimensionless couplings minimal subtraction with only log terms is used. In-
serting the coupling and field redefinitions into the bare action S0 and expanding toO(h̄) gives
S0 = S+ ∆S, whereS is the renormalized action and∆S is the counterterm. The cancellation con-
dition Γdiv

1 = −∆Sfixes all minimal subtraction parameters as well asa11, a12,a13 andb11, b12 in
(2.19) but leavesa10 andb10 undetermined. The flow equations for the couplings follow asusual
from the fact that the bare couplings̃Λ0, κ2

0 , etc areµ-independent. For the gravitational cou-
plings one finds flow equations of the form (2.2) whereβg, βλ are the beta functions in minimal
subtraction andC1, D1 are related toa10, b10 by

a10 = gNC1−
gN

λ
D1 , b10 = −gNC1 . (2.20)
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(c) ‘Wilsonian’ matching condition: So far the bare couplingsκ2
0 , Λ̃0 were only assumed to

beµ-independent. In a Wilsonian interpretation they should coincide with the running (‘renormal-
ized’) couplings at scaleµ = ΛUV . This additional requirement fixes the subtraction point (2.19)
uniquely:

κ2
0

!
= Λ−2

UV gN(µ = ΛUV) iff b10+b12 = 0, (2.21)

Λ̃0
!
= Λ4

UV

(2λ
gN

)
(µ = ΛUV) iff a10+a12+a13 = 0.

The matching condition can be viewed as a (considerable) shortcut to imposing renormalization
conditions proper, which for largeµ gives identical results. Explicitly (2.21) amounts to

C1 = ϒ2 , D1 =
1
2
(ϒ1 + ϒ3)+ λϒ2 , (2.22)

in terms of the coefficients in (2.5). As a consequence the flowequations for gN andλ are now
uniquely determined by the counterterm coefficients in (2.5) and possibly the parametersξ entering
through the field renormalizations:

µ
d

∂ µ
gN = βg(ϒ,ζ ,ξ ) , µ

d
∂ µ

λ = βλ (ϒ,ζ ,ξ ) . (2.23)

The dependence onξ must be such that gNβλ + λβg is ξ independent.

3. Results for HD gravity

We now outline the application of the previous framework to HD gravity with classical action
(1.2) [24]. 1 This requires a choice of gauge fixing and gauge averaging. Weuse a three parameter
harmonic gauge

Sgf =
1
2s

∫
d4x

√
gχµYµν χν ,

χµ = ∇ν fµν +b1∇µ f , (3.1)

Yµν = −1
a

[
gµν ∇2+(b2−1)∇µ∇ν −Rµν

]
,

b1 = − 1
4c1

1+4ω
1+ ω

, b2 =
2c2

3
(1+ ω) ,

where the gauge conditionδ (χµ −θµ) has been averaged with a normalized Gaussian of covariance
Yµν . The reparameterization ofb1, b2 in terms ofc1, c2 is such thata= c1 = c2 = 1 corresponds to
the so-called minimal gauge where in the gauge fixed Hessian all terms quartic in∇µ except(∇2)2

drop out. The ghost action associated with (3.1) has kernel∆µν := −gµν∇2− (1+ 2b1)∇µ∇ν −
Rµν . The parameter in (2.4) isk0 = b1.

Consistent with the regularized Gaussians of section 2 we define the one-loop effective action
by

Γ1 =
1
2

TrFk2,Λ2
UV

(H )− 1
2

TrFk,ΛUV (Y)−TrFk,ΛUV (∆) , (3.2)

1The presentation has been revised Nov. 2009 to match the publication.
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whereH is the Hessian of 2s(S+ Sgf). Its divergent part will be of the form (2.5) with the coef-
ficientsϒ andζ to be determined. In a non-gravitational context one usually subtracts from (3.2)
a corresponding contribution from a reference operator. The reference operator is chosen so as
to represent the non-interacting system and in particular removes quartic divergences. In gravity
such a reference system bears on a definition of selfenergy and it is unlikely that a preferred choice
exists. As discussed before the Gaussian normalization condition (2.4) amounts to having no sub-
tractions in (3.2). Another modification of (3.2) would be toadd toH its Vilkovisky-de-Witt
(VdW) correction [9]. We verified that the setting used here correctly reproduces the VdW form of
ζ5 [10] upon adding the correction, but that it leavesϒ1, ϒ3 unaffected.

The functional form of the coefficients in (2.5) can be constrained without genuine dynamical
input. Keeping track of the grading by the loop counting parameterζ1,ζ2,ζ4,ζ5 and ϒ1,ϒ2,ϒ3

must be real valued functions ofs/gN,λ ,ω . Further

ϒ1, ϒ2,
ϒ3

λ
,

ζ4

λ
,

ζ5

λ 2 ,
ξ
λ

, (3.3)

must be polynomials ins/(gNλ ) and that the last three quantities cannot have terms. This can
be seen by deriving the flow equations as described in section2 and requiring that the explicit
dependence on the UV cutoff cancels. Finally, using the fieldequations of (1.2) one sees that
ζ1, ζ2, ζ5/λ 2 + 4ζ4/λ andϒ1, 4ϒ2 + ϒ3/λ , contain only on-shell information and thus should be
independent of the choice of gauge and field reparameterization constant.

The evaluation of the divergent part of (3.2) now amounts to the determination of the short
time asymptotics for the heat kernels of the operatorsH , Y, and∆. Both Y and ∆ are second
order operators with trivial principal part, for which tabulated heat kernel coefficients are available
[20]. In a curved background and in a generic gauge (3.1)H is a very complicated operator
for which no tabulated results are available; moreover there is no choice of gauge parameters for
which its principal part is trivial. We thus resorted to an evaluation on a flat background in a
generic gauge which allows one to determineϒ1,ϒ3 (and as a checkζ5) in a generic gauge. Finally
ϒ2 can be obtained by transversal-traceless decomposition ofthe Hessian on maximally symmetric
backgrounds. As a check we also evaluatedϒ2 directly on a generic background in minimal gauge,
where the principal part is a nontrivial but constant matrix.

The evaluation of (3.2) on a flat background reveals that – in contrast to the common wisdom
about the system and in contrast to the situation in Einsteingravity – there isno problem with
positivity. The Hessian on a flat background can be diagonalized exactly and the positivity of
the spectrum can be investigated. There are four spectral valuesλ1(p), λ2(p), λ3(p) ,λ4(p), with
multiplicities 5,3,1,1, respectively. The last two are non-rational functions ofthe momenta with
a largep expansion of the formp−4λi(p) = µi +O(sp−2) (which also applies toλ1, λ2, where the
expansion terminates). Spectral positivity is decided by the signs of theµi and one can show

µi > 0 for −1 < ω < 0, c1 > 1/4, c2/a > 0. (3.4)

The interval−1 < ω < 0 is invariant under the renormalizition flow (3.6) and contains the known
UV fixed point ω∗ ≈ −0.0228 [12, 11, 13]. Hence forµ sufficiently large no problem with posi-
tivity of the propagator (i.e. the inverse Hessian) ever arises.
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The divergent part ofΓ1 is absorbed by the coupling renormalizations described before and
field renormalizations. By inspection of the equations of motion for (1.2) one sees that the only
useful field renormalizations are of the form

q0
αβ = qαβ +

h̄
(4π)2 ln(ΛUV/µ) gNξ qαβ +O(h̄2) , (3.5)

whereξ can be a function ofs/gN,λ ,ω . Inserting the coupling renormalizations and (3.5) into
the bare actionS0, expanding, and requiring that the divergent terms equals−Γ(1)

div yields cancel-
lation conditions fixing all parameters in terms of theζ j , ϒ j , except forξ anda10,b10. Imposing
the Wilsonian matching condition also fixesa10,b10 and one arrives at flow equations uniquely
determined byζ j , ϒ j andξ . The result is:

µ
ds
dµ

= − h̄
(4π)2 2ζ1s2 , (3.6)

µ
dω
dµ

= − h̄
(4π)2 s(3ζ2 +2ωζ1) ,

µ
d

dµ
gN = 2gN +

h̄
(4π)2 g2

N[ζ4 + ξ +2ϒ2] , (3.7)

µ
d

dµ
λ = −2λ +

h̄
(4π)2

gN

2

[
ζ5 +4λζ4 + ϒ3 +4λϒ2 +4ϒ1− (2λξ +2λζ4−ϒ3)

]
.

The (s, ω) flow equations are those of [12, 11, 14] while the(gN, λ ) equations are new. The
parameters in (3.6) are gauge independent and equalζ1 = 133/20, 3ζ2 + 2ωζ1 = (25+ 1098ω +

200ω2)/60 [12, 14]. As a consequence the couplings is asymptotically free with UV fixed point
s∗ = 0. Theω flow can likewise be integrated analytically and has the unique UV fixed point
ω∗ = (−549+ 7

√
6049)/200≈ −0.0228 mentioned earlier. The otherζ coefficients are known

in several gauges [11, 12, 13, 14, 10] while theϒ coefficients have not previously been computed.
The(gN,λ ) flow equations manifestly depend on the coefficients of the powerlike divergences and
warrants a detailed discussion.

The flow equations (3.7) admit a nontrivial fixed point which is solely determined by theϒ1

andϒ2 coefficents. Indeed by (3.3)ζ4/λ , ζ5/λ 2 andξ/λ are at leastO(s) and thus vanish at the
UV fixed point s∗ = 0 of thes flow. Anticipating that alsoϒ3 is linear ins/(gNλ ) one sees that
(3.7) has a nontrivial fixed point at

g∗N
(4π)2 = − 1

ϒ∗
2
, λ∗ = − ϒ∗

1

2ϒ∗
2
, (3.8)

whereϒ∗
2 := ϒ2|ω∗,s=0, ϒ∗

1 := ϒ1|ω∗,s=0. Importantly the fixed point is gauge-independent whenever
a definition ofΓ1 is used that renders it gauge independent on-shell. This isnot the case for the
definition (3.2) and improved variant will be presented elsewhere. The scheme dependence always
enters only through theqn of Eq. (2.17).

The results forϒ1, ϒ2, ϒ3 based on (3.2) in a generic gauge are too bulky to be reported here.
For simplicity we present them here in minimal gauge. First the fixed point values

ϒ∗
2 = −1.9867q1 −0.09836q1/2 , (3.9)

ϒ∗
1 = 5.8114q1 −6.1026q2 ,
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where for all cutoffs usually consideredq1/q2 ≥ 2.
To study the flow (3.6) itself we now make the choice

ξ = −ζ4+ ϒ3/(2λ ) , (3.10)

which gives rise to(gN,λ ) flow equations depending only on the gauge independentζ combination,
ϒ2+ϒ3/(4λ ) andϒ1 without affecting the fixed point (3.8). One hasϒ1 = u1(ω), ϒ2+ϒ3/(4λ ) =

u2(ω)− s
gNλ u3(ω), with

u1(ω) = q1
26ω −1

12ω
−q2

[9
2

+
9
8

1
(1+ ω)2 +

4
9
(1+ ω)2

]

u2(ω) = −
√

π
8

q1/2

[
3(1+ ω)− ω +2

3

√
−1+ ω

3ω

]
−q1

87+118ω +56ω2 +16ω3

72(1+ ω)
.

u3(ω) =
3
√

π
64

q1/2

[
3−

(
−1+ ω

3ω

)3/2]
, (3.11)

In combination with the knownζ1,ζ2,ζ5 +4λζ4 [12, 11, 14, 13, 10] this defines the flow (3.6).
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Figure 1: Wilsonian 1-loop flow in HD gravity in minimal geuge.

Fig. 1 shows the result of a numerical integration after rescaling gN 7→ (4π)2gN, s 7→ (4π)2s,
with s(1) = 1, ω(1) = −1/2, and the smooth cutoff. The initial data for gN,λ were varied in
the range[0,2]. One sees that gN,λ are initially non-monotonous functions ofµ , monotonous
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behavior sets in quickly but non-uniformly in the initial data. At µ = 10 the memory of the initial
data is erased to accuracy 10−7 and the merged trajectory eventually hits the fixed point located at
g∗N ≈ 1.3697,λ∗ ≈ 0.9451, however with 1% deviations even atµ = 109.

4. Implications for the asymptotic safety scenario

Two main issues need to be addressed in order to promote HD gravity to a viable field theory
of quantum gravity. First, since perturbation theory (PT) presumably captures only a small part
of the physics content of the theory a formulation that is renormalizable in the Kadanoff-Wilson
sense needs to be found. This requires a genuinely nonperturbative regularization yet-to-be-found
in which one would expect the associated Wilsonian actions to contain higher derivative terms in
addition to those in (1.2) needed for powercounting renormalizability. Second, higher derivative
interactions are potentially problematic from the viewpoint of unitarity. Although the problem as
originally construed is absent in HD gravity proper, see Eq.(3.4), little is known, conceptually
and computationally, about what physical quantities oughtto obey which physically relevant no-
tion of unitarity. The asymptotic safety scenario [5, 2, 3, 4] purports the optimistic view that both
problems can be overcome. In brief:S-matrix-like quantities in higher derivative type gravity
can be constructed via a massive scaling limit based on a nontrivial fixed point beyond asymp-
totic expansions and are compatible with the physically relevant notion of unitarity.We regard
the perturbative construction of the nontrivial fixed pointdescribed here as very compelling. It
complements earlier results obtained via the truncated average effective action [15, 16, 17, 18, 19];
some comments on the relation will be offered elsewhere. An important implication is that the
interplay between perturbative and nonperturbative quantum gravitational physics may be similar
as in Yang-Mills theories, with the nonperturbative dynamics important mostly in the infrared. A
second consequence is that the dimensional reduction phenomenon [3, 2] for the residual interac-
tions in the extreme UV can be investigated perturbatively.The conjectured picture is [2]: The
functional averages of physical quantities can in an asymptotically safe theory of quantum grav-
ity based on a nontrivial fixed point in the extreme ultraviolet be asymptotically reproduced by a
two-dimensional statistical field theory which is: selfinteracting, not a conformal field theory, and
asymptotically safe itself. Gravitationally motivated field theories with the correct qualitative prop-
erties can be obtained through Killing vector reductions [23] but the proper dynamical reduction
phenomenon remains to be understood.

Acknowledgements:Ratio habeas corpus de re scientia renuntiabatur.
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