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Many years of experimental tests have lead us to accept the Standaed ddatthe effective
theory valid at and below the weak energy scale. This includes its rangeria té direct particle
searches as well as high-precision tests of quantum effects, bothmofé¢teted by the renormaliz-
ability of gauge theories. However, the crucial ingredient of electr&sgmmetry breaking is not
yet understoodi.e. we still have not seen a fundamental scalar Higgs boson or any kindief ind
cation of strong interactions breaking the electrows8bk2), x U (1)y symmetry to the observed
electromagnetit) (1)q. While the search for some variation of a simple fundamental Higgs scalar
has been the major motivation in experimental searches as well as theorybuibdiely for at least
the past 25 years there is a little more to it. To date we see four serious prokbiémesir Standard

Model

1. experimentally, it does not include dark matter, even though genericalkyrdatter could
be explained by a stable weak-scale particle with typical weak-scale Sthittalel cou-

plings [1].

2. theoretically, a truly fundamental quantum theory including masses faVtaedZ gauge
bosons should either include a Higgs boson or an additional strong itiberadth its ap-
propriate resonances. All we know to date is that a light Higgs scalar sistent with
electroweak precision datf [2].

3. if the Higgs boson is a fundamental scalar, its mass has to be protectedw®#) quantum
corrections would betray the underlying principle of fundamental gawgitgs and force us
to order by order fine tune a counter term to stabilize the fragile Higgs mass hiettaechy
problem [B]. Decoupling a corresponding new-physics sector freneléctroweak precision
data mentioned in point (2) can be achieved with a discrete symmetry which singas
introduces a stable dark matter particle as required by point (1).

4. gravity is not included in this picture of particle physics, even thoughneaikhat it includes
the remaining fourth fundamental force between particles.

Note that this is of course not a complete list of problems in fundamental hysiich would
have to include the cosmological constant, the baryon asymmetry of thertmive the absence
of gravitational waves. This list simply includes issues which might well beesbby TeV-scale

new physics.

On the other hand, this list makes it obvious that Higgs searches, ohesdioc the mechanism
of electroweak symmetry breaking, cannot be separated from sedwliBeV-scale new physics.
Both are different sides of the same medal. Proof that all four problemsncieed be linked
together is given by supersymmetry: by roughly doubling the Standara:Rdquhrticle spectrum
above the TeV scale it provides a dark matter candidate, radiativelysedattroweak symmetry,
stabilizes the Higgs mass, allows for a perturbative extrapolation to higlgieadincluding a
grand unified theory) and links the Standard Model to a local theoryavfityr The problem is that
even the minimal supersymmetric Standard Model can be viewed as more daltbeage than on
the minimal side. Instead, we can ask the question: how far can we get ingsaly many of the
above issues with as little extra input as possible?
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Tackling the last of the problems listed above we run into a fundamental pnatftieeld theory
— we know from the classical theory that the gravitational coupling caeiesass dimension,
which means we cannot quantize it in a perturbatively renormalizable mawfieat we can do
is explicitly exclude the possibly dangerous high-energy regime and traatygas an effective
field theory,i.e. a theory with a built-in cutoff scale which should nevertheless describe low-
energy observables well. In Sectidis 1 dhd 2 we will construct two sfiettige theories of
extra-dimensional gravity valid up to LHC energies and show the limitations oaipsoach. In
Section B we will compute the same observables based on two ultraviolet complefigravity
which cure the poor ultraviolet behavior of the effective theory of iyav

1. Flat extradimensions

One answer to this question is given by large extra dimensidrg [4, 5]. Thiglnhas the
most important feature that it does not introduce any additional stated) witiern means that we
would have to invoke some other mechanism to explain dark matter. But as waewibelow, it
does successfully tackle the three other problems and might even ofigpkamation for the small
cosmological constant.

Initially, large extra dimensions were suggested as an explanation for feeveld hierarchy
between the electroweak and Plandk [4] or GUJT [6] scales while allowingithgs mass to re-
main comfortably at a mass around 100 GeV. Such models with large (comipatieel Planck
length) and flat extra dimensions are referred to as ADD models. The# isaslow fundamen-
tal Planck scaleM, ~ TeV) which also locates the onset of quantum gravitational effects. This
new scale serves as the ultraviolet cutoff in the loop contributions to thematized Higgs mass,
which limits the size of quadratic quantum corrections. This construct eppeae in clear con-
tradiction to all 4-dimensional data which determines the Planck mass from Nevatonstant
Gn ~ 1/M3,. describing the force on an object in a gravitational field. The ADD moadleks
this apparent contradiction by deriving the observed valudgf,.xfrom the fundamental Planck
massMl, and a a particular geometry of space-time.

At the classical level we can see how this occurs in a universe with epditeasdimensions.
The Einstein-Hilbert action in any number @+ n) dimensions is given as

Sk = — % / 44y [ —gldn) M2 R (1.1)

We denote 4-dimensional space-time coordinates with Greek indicesxr = 0,1,2,3 and extra
dimensional coordinates with lower case Roman letdelisc = 5,6,7,---n. These are unified to
capital Roman letters,N,L = 0,1,2,3,5,---n. The 4-dimensional coordinates we write)xas
while the(4+ n)-dimensional coordinates ayg, such thaizy = X, + Ya.

The Einstein Hilbert action has a number of interesting features: first dhallpropagating
degrees of freedom are carried exclusively by the the mgiyic To act as a metric in the con-
ventional sense (most notably connecting vectors to form inner prgdugsymmetric, and to
produce the correct mass dimensioggn must be dimensionless. The mass dimension of the
Ricci scalar is independent of the underlying space-time dimension. Thisr@dyniiee statement
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that the dimensionality oR is completely determined by derivatives and not fields. The action
eq.{L.1) enjoys ful(4 + n)-dimensional invariance under general coordinate transformation with
an arbitrary paramete (2)

zv — 2w +ém(2), (1.2)
where the induced variation in the metric is
59a8 = 0a&Mame + dsEMama + EMomaas. (1.3)

The ADD model breaks this symmetry explicitly by treating the 4-dimensional spaaed then-
dimensional spacyg differently. Coordinate transformation can no longer mix these components.
The requirements on the space described by mgjrare

— spatial the signature for tha extra dimensions is—1,—1,---).

— separablethe extra dimensions must be orthogonal to the brane so that the md4stris
well defined. In other words, the metric decomposes as a product gffate= g & g™.

— flat: the dimensions must be flat so that they can be integrated out explicitly inttbe.da
standard gravity the same is true unless sources intipee0. We therefore restrict matter
to they; = 0 brane:

(n)
Ta(X;Y) = Np N8 Tuv(X) 5" (y) = <TW(X)06 v (())) : (1.4)

The assumption of an infinitely thin brane for our 4-dimensional world migkeha be
weakened to generate realistic higher-dimensional operators for flaysics or proton de-
cay [1,[8]. Einstein’s equation purely in the extra dimensions

1
Rik — mgij— 0. (1.5)
contracted wittgk requiresR = 0. The full Ricci scalar is then
R=gunR"™ = guwR" +gijR! +giuRH = R =RY (1.6)

usingg“‘Rjk = 0 along with the fact thag,; no longer transforms under general coordinate
transformations.

— compact/periodicthe simplest compact space is a torus with periodic boundary conditions
and a radius of the compactified dimension =y; + 2.

In addition to the Ricci scalar, the Einstein—Hilbert action contains explicitnégncy on the
determinant of the metri¢/ —g(4t"). Since the extra dimensions are flat and spatial, the contribu-
tion to defgumn) = g is at most a sign. We assume thatg is synonymous with /[g|. Now, it is
straightforward to simplify the higher—dimensional bulk action

Souk = _;MS+2/d4+nz _g(4+n) R(4+n)

:—;Mfﬁ(mww/H%u/—@MRW
= _;Mlglanck/ d4X\/ _9(4) R(4)- (1-7)
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In the last line we have matched the two theorigs, we have assumed that from a 4-dimensional
point of view the actions have to be identical, as long as we do not probehalgh energy scales
to observe quantum gravity effects.

This leads us to the basis of extra dimensions as a solution to the hierardigrpraour 4-
dimensional Planck scaMpjanck~ 10'° GeV is not the fundamental scale of gravity. It is merely
a derived parameter which depends on the fundaméftah)—dimensional Planck scale and the
geometry of the extra dimensions,g. the compactification radius of the-dimensional torus.
Matching the two theories translates into

Mpianck= M, (ZWM*)n/Z (1.8)

If the proportionality factor(2rrM,, )" is large we can postulate that the fundamental Planck scale
M, be not much larger than 1 TeV. In that case the UV cutoff of our field theoof the same
order as the Higgs mass and there is no problem with the stability of the two.scales

AssumingM, = 1 TeV we can solve the equation above for the compactification radius
transferring the hierarchy problem into space-time geometry:

n r

1| 10%2m
2| 103m
3| 108m
6|10 1m

At least in the simplest modél= 1 is ruled out by classical bounds on gravity as well as astrophys-
ical data. A possible exception is if there is a non trivial mass gap betweesiesssind massive
excitations[[P]. For larger values ofwe need to test Newtonian gravity at small distan¢ep [10].
Note that the analysis in this section is purely classical, and it is obvious thdtyisscpl degrees

of freedom do not survive compactification. For this we resort to theraigdeas of Kaluza and
Klein and decompose the higher-dimensional gravitational theory as eatiedf 4-D theory with
residual gauge symmetrigs J11].

1.1 Gravitonsin extra dimensions

The first step towards a viable description of extra dimensional effectgierienent is deriv-
ing the properties of spin-2 gravitons in these extra dimensjond 12, 1&jei@ally, a massless
graviton in higher dimensions can be described by an effective theamyassive gravitons and
gauge fields in four dimensions. The inclusion of massive spin two fieldstisylarly interesting
from a theoretical point of view since the Pauli—Fierz mass t¢ri [14] anddbpling to matter
fields is highly restricted. In particular, it is inconsistent to introduce masspin-2 fields not
originating from some type of Kaluza—Klein decompositipr] [15].

We start with thg4+ n)-dimensional Einstein equation

1 T,
Rag — 58a8R = ﬁ (1.9)
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and rewrite the metric in terms of our flat background metrg and a fluctuating spin-2 fielldag

has

wi (1.10)

0aB = NaB+2

The prefactor ensures that(and with it the kinetic term in the Lagrangian) has the appropriate
mass dimension for a propagating bosonic figld= m®?+"/2, In terms ofh, Einstein’s equations
to linear order give

1
MmEn/2 (RAB — ngBR> = Ohag — 9a0°hcg — 90 Nca+ dadsh& — NasThE + Nagd“9°hep

Tas
=2 (1.11)
Mi+n/2
The equation of motion follows from the bilinear action which we refer to as tleafined Einstein—
Hilbert action:

F=— %hMNDhMN + %hDh— AMN Gy anh+hMNGywa N — My Y2 N (1.12)
The slightly circumvent logic (Einstein—Hilbert actien Einstein’s equation— linearized Ein-
stein’s equation— linearized Einstein—Hilbert action) leading us to fq.(1.12) is necessaaybec
the energy momentum tensor is generated throt¢h= 2/,/—g 6S/5g,v when computing the
eqguations of motion. Had we inserted the graviton decomposition into the Eirtdiktiart action
directly, the resulting linearized Einstein equations would describe a fregbapgating field. The
linearized variation analogous to €q9.{1.3) is

Shag = OnEM + 9gEM | (1.13)
leaving the linearized action invariant up to ter@igf 2) with h andé treated as the same order.

The ADD model breaks this full symmetry by compactifying the extra dimensiBesiodic
boundary conditions allow us to Fourier decomposeytbemponent of the graviton field

0 ) h(ﬁ) )
hAB(Z) e e ﬁ)()nelrhy]/r
M=o mSe \/(27T)
= h(x) + S .. v __ L A (x)M¥/" 4 bl (x) e inivi/r (1.14)

wherehfg(x) is a four dimensional bosonic field with mass dimension one. The second step is

possible becaudgg(z) is real.

To avoid confusion we emphasize tHﬂfBﬁ) (x) does not constitute an additional degree of
freedom in the theory. The internal indéxcan be thought of as a discretized momentum index,
such thahf%(x) andhL(Bﬁ) (x) differ only by the sign of the extra-dimensional momentlnﬁ(@) (x) =
hﬁ(Bﬁ) (x). This is also obvious from the fact tHa;(fé(x) andhﬁf,)(x) are not distinct field excitations.

It is now simple to work out the form of Einstein’s equations in terms of the lixg@ix). For
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example, the first term in ef.(1]11) decomposes as

1 .
Oé+p _ 9~ | (x) dMy)/r
o(2)= Y G M €]

! i A, N\ i
— Em. 2m)2 r)n/ZaC {<5ﬁa“h£g(x) + 6jch§\é(x)rl> din y)/r:|
]

1 n'n A .
=S G [Dw rzj] () (x) &)
mj

(1.15)

Multiplying by e '(™Y)/" and using the energy momentum tensor from[eq.(1.4) eliminates the ex-
ponential on the right-hand side of €g.(.11). An independent chet¢keononsistency of this
method is that the 4-dimensional massive graviton ﬂiéfﬂ&}(x) only has a Pauli—-Fierz mass term,
O [huv — nwh] and no mass terms originating from mixed index derivatives. This is reqfdared
a consistent spin-2 field [[L4].

From the Einstein equations we can brute force derive the action bilineag ﬁetdsh(Aﬁg(x).
This field does not transform irreducibly under the Lorentz group in flimensions. As an ansatz
we introduce a field decompositioph J12] which forms irreducible represiens Using the con-
venient definitionsn = fi/r andk = 1/3(n—1)/(n+2), the action in terms of these new fields
manifestly carries the correct degrees of freedom:

0,0
Gl = hyy + = (nuv+ E V)Hm)—duvaquervau

A 1 R
Vi = 5 i = 0P = Qy)
Aif\ HMk
S0 — hy - (n,k+ j k> il 1+nJF1(+nkPJ—n =
Hoo = L [h} + ﬁZP]
K ~
QP =it}
M) _ k
P = Azhj +0n;P
p() — ”k”J B e (1.16)

The fieldsQ,, P; andP are not invariant under general coordinate transformationf_eq.(antB)
cannot appear independently in the effective 4-dimensional action.idrséinse they are gauge
degrees of freedom and settiQg = P; = P = 0 corresponds to a unitary gauge with no propagating
ghosts.

The decompositions is similar in spirit to the well-known Kaluza—KI¢ir [11] deausitipn
where a 5-dimensional metrgag is decomposed into a 4-dimensional megjg,, a vectorA,,
and a scalap. At the massless level these fields decouple and the five degrees adrirder
a 5-dimensional graviton decompose appropriately 422 1. Including masses the vector and
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scalar fields are eaten by the graviton to build a massive 4-dimension#ébgraith five degrees
of freedom.

Similarly, starting from eq[(1.16) our unitary gauge choice aIIG&@ to become massive by
eatingP andQ,,. However, as opposed to the 5-dimensional case this does not exiadsgrees
of freedom; there is an additional massive- 1)-multiplet of vectorsv,,; which eatP,; to obtain
their longitudinal polarization. Finally, there afe? —n— 2)/2 scalars in the symmetric tensgjk
as well as the singlet scallr. The total number of degrees of freedom is

n—n-2 (n+4)(n+1)

1.5 -1)3+ ——1+1-1=
+(n-1)-3 + > + >

A similar analysis of 4+ n)-dimensional gravity gives an identical counting of degrees of freedom:
the only physical field is a symmetric tendagg with (44 n)(5+n)/2 components. These are
reduced by fixing the gauge; typically, the harmonic conditahi = dhﬁ/z amounts to 4-n
constraints. Furthermore, we are free to add terms to the variation parametefd.1B) with &y
leaving the action invariant. Altogether there afd 2 n) constraints, and counting of degrees of
freedom is identical to ed.(1]17).

. (1.17)

In terms of the new physical fields Einstein’s equations simplify to

o (R 1 a,0 TA
(O+ nZ)GEw) = [T,,V + <fnz” + nw> %

MPIanck
~ i
@+m)Vv) =0
(O+f)Sy =0
K
O+)HD = = TH 1.18
( ) 3MPIanck H ( )

so that the linearized Lagrangian €q.(].12) in terms of the fields eq.(1dd) (emitting the sum
over the indexi for all fields)

1 1
L~ = EGTW(D + M )Gy — 5 Gl (O + Mgy )G} — G™V6,6,G)

2
1
+G™M 9,0, Gjy — SH' (O + M H
1 K
- GHY ——nH*H | T+ 1.19
|\/lPIanck[ 3'7 } HY ( )

where the ellipses stand for free field kinetic terms. Here and henceferttefinem?, = i? =

i2/r2. The structure of Einstein’'s equations €q.(]L.18) reveals a few paritesarhe fieldsv,,;
andSj do not couple to the energy momentum tenser, to the Standard Model. The massive
gravitonsGy,, do couple to the Standard Model. Their Fourier coordinate only appsa sreass-
squaredn? and in the coupling to the trace of the energy-momentum tensor. This means their
couplings are level-degenerate and their masses and couplings depend the length, but not

on the orientation of the vector *

We focus on the properties of conformally invariant theories, wﬁ'é?& 0, because this is
a good approximation of all relevant particle masses as compared to the hét@ye For such
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massless theories
THY

|VlPIanck
describes physical gravitons produced by quark or gluon interactiodsither vanishing or de-
caying to leptons. The scalar moHeplays a special role. Its massless radion mode corresponds
to a fluctuation of the volume of the compactified extra dimension. We assumeét@irtipacti-
fication radiug is stabilized in some way [IL6], giving mass to the radion [17]. More importantly,
the radion only couples to a massive theory, so it is not surprising thag@dax with no Standard
Model charge it will mix with a Higgs boson without too drastic effects.

(O+m&) GV = (1.20)

Before deriving Feynman rules we will briefly outline the significance dilka—Klein towers
of massive gravitons: first of all, the basic relation derived at the clasgel can be rewritten
asM3ne= M2N whereN ~ (2rrM,)" is the number of Kaluza—Klein species existing below
the scaleM,. A heuristic argument for this relies on the spacing between consecukivaddes
omkk ~ 1/r, so thatrM, = M,./dmkk gives the number of KK modes with the vectboccupied
only in one directioni.e. fi= (j,0,0,---) with j being some integer. A generic vector has
such directions, so in general there &, )" possibilities. Realistic numbers fM, ~ TeV give
N ~ 10%2. A similar result is achieved by considering black hole evaporafidn [18s Multiplicity
of states is what determines the visible effects of ADD models at the LHC.

As a side remark, it is not altogether mysterious that we are summing ovey kakgs number
of KK states. In(4-+n)-dimensional language the graviton propagator is simplypipa). The
momenturmp® obeys momentum conservation at each vertex to two Standard Model arfibie
way 4-dimensional external lines fix the momentum in four directions, leavingtagration over
: 1 1 (dmkk )"

Np. _ nA. K
/d p‘p‘\pA_/d p‘p“pu—pjpjwn% PHPu — MRy 42D
For KK modes as intermediate states, proper treatment of the KK tower implieseddlttegral,
similar to an additionah-dimensional loop integral .#. A similar argument reveals that the
additional momentum directions available for final state KK particles amounts taldietbphase
space integra/ |.# |.

To summarize our main results relevant for ADD phenomenology; the spraton field
couples to the energy momentum tensor universally for massless statpsessga by the 4-
dimensional Planck scaMpiancke This predicts the production of massive gravitons at the LHC
from gluon as well as quark initial states. The index structure of the neagsaviton propagator
and vertices are a mess, but theoretically well defined in our effectideliieory. There are a large
number of gravitons organized by a KK tower which again couple uralgro Standard Model
fields. The mass splitting between the KK states inside the tower is giveyrbyHich translates
into (M, = 1 TeV as before):

L v, \2n [ 0003ev (n=2)
Mgk ~ — = 21M, ( - > =¢{ 0.1 MeV (n=4) (1.22)
' Metanc 005GeV  (n=6)

10
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On the scale of high-energy experiments or the weak soate~(91 GeV), this mass splitting
is tiny. For example the LHC will be unable to resolve such mass differemd@sh allows us

to generally replace the sum over graviton modes (either as intermediatecstatefinal states)
by an integration over a continuous variable. We will show this conversi@ntimtegral in the
next section. What we can also see from this mass splitting is that gravitons mabisl might

well be stable, just because they are too light to decay to two Standard partieles even via a
gravitational interaction. A KK tower of gravitons appears as missing gragrthe LHC.

1.2 Feynman rules

To lowest order in the graviton field the coupling to massless matter is giveq. {iy. ED). We
illustrate the extraction of the vertices from the energy-momentum tensor inigestynsymmetric
way using the QED Lagrangian

—q/ _ 1
Zoep = \K/I':g <u,uy’°‘@aw— 4F,NF“"> (1.23)

where the covariant derivative contains a gauge and coordinatectiom Taking the variation in
the metric for only the gauge field and notidg/—g = —/—g ¢" dguv/2 we find

2 5 (1
nt”
= FagF P +FHFY (1.24)

and for the the purely fermionic contribution
i i — —
Tiemmion= 2@ (1Y + 0"y g — 2 (0" By’ +0"Py) (1.25)
All momenta are incoming to the vertex. To derive the Feynman rules we negthtoetrize the
graviton and gauge boson indices separately.

In the following, we will quote the Feynman rules relevant to our LHC analyBiecause
gravity couples to every particle in and beyond the Standard Model ther@ &act many other
graviton vertices[[12], 13]. The fermion—graviton and gluon—gravitatioes are

f (ko)
i
G = W, +W,
HY 4MPIamck[ K V“]
and af(kl)
£g(k2)
1 0ab
G =— W, +W,
uv MPIanck[ pvaB vuaﬁ}
b (k1)

11



UV-Complete Extra Dimensions Tilman Plehn

with
Wiy =(ki —k2) o

1
Wovag :énuv (klﬁk2a — kg - erIaﬁ) + Nagkiukoy + Nua (kl kanyp — klﬁk2v) — NUBkkag
(1.26)

The non-abelian part of the field strength does not contribute, and thefaotor d,, reflects the
fact that the graviton is a gauge singlet. The final ingredient needed wraléon propagator,
which is the momentum-space inverse two-point function from the bilinear terres.[d.19).
This Lagrangian describes the physical fields and — as opposed to tiséegzagraviton — no
additional gauge fixing is required.

iP
Ghp(K) =

GNV(k) _ k2_ n,]z

with

1
Puvag = é(nuanvﬁ +NugNva — NuvNag)
1
— =5 (NuakvKg + NugkvKa + NypkvKa + Nvakukg)
2mky

1 2 2

— ——k k ——Kkgkg | . 1.27
+6<rluv+mﬁK pv) <'7a,8+m§Kka ﬁ) ( )
It is easy to recognize the first line in €q.(3.27) as (ignoring overall niiatin) the massless

graviton in the De Donder gauge. A good exposition on different forniffe(dnt weak field
expansions) of the massive and massless propagator is given if JRef.[19

The amplitude for a generigchannel process mediated by virtual gravitons will then look
like

1 P vap
Mglanckz S— m|2<K o>
1 S T Nuallvp + Nupva — MpvMap + Nuvap/3 o ,
= o
|\/Ilglanck g 2(5_ mﬁK)
1 1
= TuvTIJV
|v'lglanck S— mﬁK
=.7(5) T . (1.28)

On the way we use the conservation and tracelessness of the energy tonortemsori. e. Tﬁ‘ =
k,THY = 0. This form is useful because the field content= T, TV and an appropriate coeffi-
cient form a general dimension-8 operator7 .

In addition, a loop-induced dimension-6 operator will be generated byatiegof the form

Ji I

12
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The resulting four-fermion interactions couples two axial-vector currents

csy (Pryut)’ (1.29)

where the sum is over all fermions in the theory. The coefficigntan be estimated by naive
dimensional analysi§ [20]. Such KK graviton contributions can be cordpareffects from a
modified theory with non-symmetric connectign][21]. Generically, all these éffects will affect
electroweak precision observables.

Our final consideration is real graviton emission off any kind of Standdodel process,
preferably a so-called standard candlg [22] which we expect to stashet well from a theory as
well as an experimental perspective. Calculating amplitudes corresgptoditiegrams such as

requires polarization tensors for external gravitons. We can for ebeangmstruct five tensors

sfw wheres = (1,2, ---5) by taking outer products of the three massive gauge boson polarization
vectors. A convenient parameterization is given in Refl [13]. Most irtmoly, theey;, obtained

this way satisfy

> & (K)ggg(K) = Puyap (K) (1.30)

when summed over all polarization states. This brief review of calculaticetails now puts us
into a position to discuss LHC processes.

1.3 Collider observables

In this section we summarize possible direct and indirect signatures foivm#&sduza—Klein
gravitons at colliderd[14, 28, P#,145] 26]. There is also a large anaiyttenomenological work
confronting electroweak precision dafa][27] or astrophysical falizafi2® large extra dimensions,
in part orthogonal to their collider effectd [9], which we will not have@p#o cover here. Current
limits strongly constrain ADD models with few extra dimensions favoring2. As we will see in
the following sections, such a scenario is also the most conceptually intgreStintwo to seven
extra dimensions, strong direct constraintd\bncome from recent Tevatron dafa][29] 30].

Of the two classes of collider observables we first consider the realiemizsKaluza—Klein
gravitons at the LHC[[44, 31]. The outgoing gravitons cannot be deté@ctaur detectors — similar
to neutrinos or possible dark matter agents — so they appear as missingtsansomentum or
missing transverse ener@;. One process to radiate gravitons off is single jet produc{ioh [24].
The Feynman rules discussed above allow us to compute squaredeal/anaglitudes for partonic
sub-processes such @g— gG, qq — gG andgg — gG all of which lead to the same final state:
one hard QCD jet and missing transverse endrgy Due to the strong QCD coupling this is the
most likely real emission search channel.

For the graviton—jet final state there is an obvious irreducible backdgroaming fromqq —
Zg where the gluon is emitted from an initial-state quark andZhdecays into neutrinos. This
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background is known to next-to-leading order] [32], but at large partevent energies the theo-
retical rate prediction becomes increasingly hard, due to large logarithxire.ciing new physics
from pure QCD signatures at the LHC will therefore always be toughsantewhat dangerous (as
we have seen in the past at the Tevatron, where many signals for neieghgve come and gone
over the years).

Due to the structure of the parton densities of quarks and gluons insidganpievatron
searches for large extra dimensions concentratgfgnfinal states. Similarly, at the LHC a one
photon final state could be resolved in the detectors optimized for Higgshesain theH — yy
decay channel. Hard single photon events would constitute a revealirajigigifor physics beyond
the Standard Model.

Similarly, the Drell-Yan procesyg — y*,Z — ¢/~ with two leptons (electrons or muons) in
the final state is the arguably best known hadron collider pro¢essA38fge amount of missing
energy in this channel would be a particularly clean signal for physigsriabthe Standard Model
at the LHC [3}4]. Depending on the detailed analysis, both of these elemfosignatures do
have smaller rates than a jet+graviton final state, but the lack of QCD hmctdg and QCD-sized
experimental and theory uncertainties result in discovery regions of sisia{12,[3]L].

Going back to the theoretical basis, the partonic cross section for the emiggine graviton
is not the appropriate observable. What we are interested in is the entitewd contributing to
the missing energy signature

dgtower — Z do.graviton — /d N do.graviton (1_31)
n

where [ dN is an integration over an-dimensional sphere in KK density space

2m/2

[dN=s 1l tdp S 1= Fu2) (1.32)

In the ultraviolet the sum ovdtis truncated to those states which satisfy kinematic constraints. In
particular, the KK mass satisfiexx = |fi|/r < /Swherey/sis the partonic center of mass energy
(related to the proton center of mass energysva(14 TeV)? xixo).

The KK state density we can rewrite into a mass density kernel usimg /d|fi| = 1/r

1 (M 2
This implies for the production of a Kaluza—Klein tower
ion Sh_1 Mt d M 2
dgtower _ ggoraviton S tz;—?&gnﬂkK ( K/IEan) ) (1.34)

The key aspects of this formula are:

— The factorM3,,,« from the KK tower summation can be absorbed into the one-graviton
matrix element squared. The effective coupling of the entire tower at tl@ émergy scale
E is thenE/M, = 1/10 instead oE /Mpjanck i.€. roughly of the same size as the Standard
Model gauge couplings.
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Figure 1. Left: production rates for graviton—jet production at thd@. The cut on the transverse mass of
the jet indirectly acts as a cut on the transverse momentam fhe graviton tower, without the additional
experimental smearing from measuring missing transvereggg. For the curve (a) a cutoff procedure sets
a(s) = 0 whenever/s > M. For curve (b) thank integration in eq4) includes the regigfs > M,.
Figure from Ref. @2]. Right: & discovery contours for real emission of KK gravitons in theng of M,
and the UV cutoff ono(s). The transition to thin lines indicates a cutdff,,x aboveM,. Figure from
Ref. @]. Note thatMp in both figures corresponds kg, in the text.

— In particular for largen the integral is infrared finite with the largest contributions arising
from higher mass modes. This is the effect that KK modes are more tightled@acwe
move to higher masses and even more so for a increasing number of extresidinsa.

— Althoughmkk appears explicitly in the polarization sum and thus is naively present in the
amplitude, it does not appear once we square the amplitude due to the atgfoiewing
eq.(1.2B). Thenkk integration at least on the partonic level e. without the parton
densities — can be done without specifying the process.

Acoff G4 Mplanck > Sh-1 Mpianck) > Al
dN:/ Ldme = cutoft (1 35
/ 0 (2mv|*)n< M, ) M Ak (ZHM*)”< M. > n (499

In this form we indeed see that our effective theory of KK gravity regmia cutoff to reg-
ularize an ultraviolet divergence, simply reflecting the fact that gravitytgerturbatively

renormalizable. The crucial question becomes if the prediction of LHCrehiskes is sensi-
tlve tO /\cutoﬁ.

— For real graviton production the kinematic constraifit= 0 for mxx > /sprovides a natural
ultraviolet cutoff on then-sphere integration. Therefore the result is insensitive to physics far
above the LHC energy scale, which might or might not cover the fundairfiatack scale.

In the left panel of Fig]1 we see that the jef+ cross section becomes seriously dependent
on physics abovbl, the moment the Planck scale enters the range of available energies at the LHC
/S < 3 TeV. Above this threshold the difference between curves (a) and goall.
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In the region where the curves differ significantly, UV effects of our gilig of the KK
spectrum become dominant and any analysis based on the Kaluza—Késitiveftheory will fail.
Luckily, the parton distributions, in particular the gluon density, drop ragimiards larger parton
energies. This effects effectively constrains the impact of the UV reghdah includes,/s > M,.

In the right panel of Fig]1 we see the Bliscovery reach at the LHC with a variable ultraviolet
cutoff Acutoff ON the partonic collider energy. For each of the lines there are two distigiches: for
Ncutoff < M, the reach iV, increases with the cutoff. Once the cutoff crosses a universal ticesh
around 4 TeV the discovery contours reach a plateau and becomeicdegéndent. This universal
feature demonstrates and quantifies the effect of the rapidly falling pdetosities. The fact that
the signal decreases with increasing dimension shows that the additidumalevelement from the
n-sphere integration is less than théVl, suppression from each additional dimension.

Virtual gravitons at the LHC demand a markedly different analysis sinceelfipition these
signals do not produce gravitational missing energy. The dimensionf@tope”(s).7 as shown
in eq.[1.2B) is induced by integrating out a whole graviton tower exchangehiannel processes
at the LHC such as

oA

In the Standard Model some of these final states, leptons and weak lgasges, can only
be produced by gq initial state. Because at LHC energies the protons mostly consist of gluons,
such indirect graviton signatures get a head start. The Tevatron moditl/flmoin two-photon or
two-electron final state$ [BO]. At the LHC the cleanest signal taking intowtt backgrounds as
well as experimental complications is a pair of mudn$ [23]. In Higgs physiEsdhresponding
channeH — ZZ — 4y is referred to as the ‘golden channel’, because it is so easy to extract.

In the Standard Model the Drell-Yan process mediates muon pair produditres-channel
exchange of on-shell and off-sh@lndZ bosons. Aside from the squared amplitude for graviton
production, these Standard Model amplitudes interfere with the graviton adgliéffecting the
total rate as well as kinematic distributions. This mix of squared amplitudes anigietece effects
make it hard to apply any kind of golden cut to cleanly separate signalasidjtound. One useful
property of thes-channel process is that the final state particles decay from alpuese (spin-2)
state. This results in a distinctive angular separafigrof the final state muon$ [B5].

What we are most interested in, though, is the theoretical basis of the dimehsjoerator,
i.e. its derivation from the KK effective theory. Its dimensiopint* coefficient arises partly from
the coupling and partly from the propagator structure

1 1
Zs—mﬁK’

It exhibits a sum over the KK tower with its typical small mass spacing. To repldoy an integral
we need a quantity acting &sngx which when sent to zero provides the Riemannian measure. In

(9= 10 (1.36)

Planck
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a similar vein to the real mission case we can replegnck With its definition in terms oM.
The factor ofr" appearing in the denominator is preciséymg )2. This gives us an integral over
KK masses. Next, recalling thatkx ~ |fi|/r we realize that the only relevant coordinate in the
KK state space is the radial distance. Therefore, it is possible to petf@rangular integration
explicitly:

1 1
:5”(3) = |\/|*2+n/danKs_m§K'

—1

— I\j%_‘rln /dm&Ksiﬁnf%K
The crucial point is that similar to e[.(1]35) this integral is divergentrfor 1, i.e. for most
phenomenologically relevant scenarios. This divergence of the itgeigraqs.(1.3%,1.37) is the
unique feature of ADD models which are based on an effective field yhadagravity. It can only
be cured by going a step beyond the effective theory and employ somefkiid completion of
extra-dimensional gravity.

(1.37)

Previously, we mentioned that summing over virtual graviton states is similar formeéng
a loop-type integral. However, unlike for renormalizable gauge theorie®ffective theory of
gravity has no such thing as a well-defined counter term to absorb thevgxydnce. The remedy
we use in this first discussion is to cut off the integral explicitly at the limiting sobteir effective
theory. In the spirit of an effective theory we study the leading ternsgAg, .

Acuto -1
7= 2 [ ame M

NV S— M2y
Si1 (/\cum>”—2{ ( s >] Sii 1
= 1+0 ~ il (1.38)
M#(n—2) \ M, N2 it n—2 M

where in the final line we identifivl, = Acutoff, lacking other reasonable options. Obviously, this
relation should be considered an order-of-magnitude estimate ratherrtbtaet relation valid
to factors of two. For simplicity this term is further approximated in terms of a memeass
scale.” = 4rr/M# in the literature [12[ 20]. A number of interesting properties of virtual goav
exchange diagrams we can summarize.

— The identification in ed.(1.B8) only parameterizes the effects of the transitala between
the well known linearized theory of gravitons and whatever new physicare above the
scaleM,, assuming the effective theory captures the dominant effects.

— The generic 2- 2 s-channel amplitude #/M*- .7 requires powers of the process energy
in the numerator. Unitarity is violated at sorasignifying the breakdown of our effective
theory. For first collider predictions it suffices to make a hard cut ontsweith /S > Acyofr.
This as it will turn out poor approximation will be addressed later.

— The function(s) includingAcutoff Can be integrated analytically for a Wick rotated graviton
propagator 1(s+mg, ), but the interpretation of particles in an effective field theory will be
lost beyond a leading approximatisn> Mg, or s < Mgy .
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Figure 2: 50 discovery contours for discovery of extra dimensions vitual graviton contributions to the
Drell-Yan process. Figure from Reﬂ.[g].

Moving on to some results, the LHC reachNf, is given in Fig[R, again in the presence of a
variable cutoffAqufr. As opposed to the real emission case shown in[Fig. 1, the result is clearly
sensitive toA\quor. Only for n = 1 this is not true, reflecting thqg”dm rm% in fact converges.
Along a similar thread of thought, the sensitivity becomes more pronouncedimnitbasingn
as the integral is more divergent. The value/\Qf depends on the details of the transition to
UV behavior. Phrased differently, the LHC production cross sectioalwing virtual graviton
exchange is seriously sensitive to the UV physics of quantum gravity.clibidf dependence and
the non-unitarity of gravitational scattering amplitudes will be our main focusdrfittal section
of these notes.

2. Warped extra dimensions

Our main focus thus far have been large flat dimensions as suggestedAiyEhmodel. How-
ever, there is the alternative Randall-Sundrum mdde¢I[[36, 37] with a wefgithenomenological
applications [38[ 39]. It also solves the hierarchy problem using am extace dimension and
claiming that the fundamental Planck scale resides around the TeV scaenddhanism which
generates the large hierarchy betwdgnandMpanck Utilizes a spatially warped extra dimension.

For completeness, we also mention a third class of phenomenologically redetendimen-
sional models, universal extra dimensions UED [40]. In this model alldat@hModel particles
exist in the higher dimensional space, but the geometry is such that therexperimentally con-
strained mass gap between the ground state and the first excited state LAChee would for
example expect to see KK resonances of the gliiena massive color octet vector particle. Since
UED models do not provide a straightforward link to quantum gravity effeetsvill not consider
them in detail.

For the Randall-Sundrum model, we compactify our 5th dimengion aS'/Z, orbifold.
S' simply means a circle, equivalent to periodic boundary conditi@®gz, means we map one
half of this circle on the other, so we really only look at half a circle with ndqukc boundary
conditions, but two different branes yat= 0 andy = b. The key observation now is that nobody
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can stop us from postulating a 5-dimensional metric of the kind

—2Kly|
df = e M, dedd —dy? & gae=(C 0 (2.1)
0 Nik
The metric in the four orthogonal directionsyaepends ony|. The absolute value appearing in
ly| corresponds to th&, (orbifolding) asS'/Z,. When looking at our (3+1)-dimensional brane we
can take into account the warp facer®! in two ways (with some caveats):

1. Usegyuy = Nuve M everywhere, which is a pain but possible.

2. Replace in five dimensions by effective coordinates!dg* andgy,, by G,y = v where
the tilde indicates 4-dimensional variables.

The second version means we shrink our effective 4-dimensional mktrig yaand forget about
the curved space, because the warp factor does not depetid ®he general—relativity action for
Newtonian gravity we can write in terms of the 5-dimensional fundamental PksadeMgs. In
our hand—waving argument we have to transform the 5-dimensionalsRialeir. Just looking at the
mass dimensions we see tiRtias mass dimension two (or by looking at the definitioRefe find
space dimension minus two). This suggests that the 4-dimensional Ricai Reiauld roughly
scale likex 2 ~ % 2exp(+2K|y|), leading us to guesk ~ Rexp(+2Kly|). The Einstein—Hilbert
action with separatexiandy integrals reads

b
S— —;/ dy/ d*xe Y RME
0
Mis [® o oy [ aoss
~ _T/o dye /d XR

Mis (1 _ efzkb> / d*R

Tk
M3 ~
~ _TRkS/ d*sR assumingkb>> 1
M2 ~ . M3
— _%/ d*% R with M3k~ Z—Rks : (2.2)

In the last step we have applied the usual matching with 4-dimensional Newtgraaity. Note
that this does yet not solve the hierarchy problem becsiige~ k ~ Mpjanck ~ 10'° GeV looks
like the most reasonable solution to the matching condition.

Fortunately, this is not the whole story. Consider now the Standard Maighlhgian on the
TeV brane ¥ = b) in thex* coordinatesj.e. including the warp factor. To solve the hierarchy
problem, the scalar Higgs Lagrangian is obviously crucial

Ssm :/d4>”<e‘4kb [(DuH)T(DFH) — A (HTH —v2)2 4] 2.3)

From the Higgs mass term we see that we can rescale all Standard Mialishfid mass parameters
— in this caseH as well asy — by the warp factor on the TeV brane gxpkb). The same we have
to do for the space coordinate, as described above and for gaugedjgidaring in the covariant
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derivative. To get rid of the entire pre-factor from the warped metrioeed to absorb four powers
of exp(—kb) in each term contributing to the Standard Model Lagrangian.

Four is a magic number in Lagrangians of renormalizable gauge theoriesedttfie mass
dimension of the Lagrangian. This means that if we only consider contrilsutm&’sy, of mass
dimension four, we can simply rescale all Standard Model fields accorlthgir mass dimension:

H =ePH scalars
Q=e*29  fermions (2.4)

which also means for all masses
fi=e *'m
K

e Kby (2.5)

v

Yukawa couplings as dimensionless parameters are not affected. twassumdb ~ 35 we do
solve the hierarchy problem:

The fundamental Higgs mass and the fundamental Planck mass are indeedaie order, only
the 4-dimensional Higgs mass (like all mass scales on the TeV brane) aspealter, because of
the warped geometry in the 5th dimension. In contrast, on the Planck branésnitharp factor
exp(—k|y|) = 1 nothing has happened.

Before we introduce gravitons as metric fluctuations into our RS model, it turhtode
useful to rewrite the metric by rescaling the 5th dimengien z with

d< = e 4@ (g dxdx’ —d2) (2.7)

To simplify things we assume for the following brief discussyon 0. This is obviously justified,
as long as we limit our interest to the TeV brane. First, we def{izg= 2ky and rewrite the metric

1
—2ky _ ~—A@2) _ _ akyqo_ a—A2)/2
e =g Ad = A1 kae =  dy=eYWdz=e"9/2(z (2.8)

The Planck brane at= 0 sits atz= 0. Assumingk > 0 we find thaty > O corresponds ta > O.
The derivative indeed produces the correct pre-factoizf

To introduce tensor gravitons we expand the 4-dimensional part of theemetr
d? = e 4@ (nuy + hy(x,2) dxdx’ — dZ) (2.9)

Einstein’s equation without sources but in the preseno&pf includes a linear term which does
not look at all like an equation of motion and which we therefore do not like.céh get rid of it
rescaling (as usual),, = e@kv/4h , according to its bosonic mass dimensfah= m(2"/2,
This gives

1
2

3c0Chy, + 2%” 9°A dchyy = —

1

2

- 9 3 -
d%achyy + <32A’2 — 8A”> hyy =0 (2.10)
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as the equation of the motion for the rescaled graviton ﬁgl;d We can solve this equation of the
motion by separating variablés,, (X, z) = hy,y(X) ®(z) and by giving mass to the tensor graviton
solvingd,0¥hy,, = m?h,,. The equation of motion

9 3
92 YN U —
@¢+<mA 4A)¢ mo (2.11)
is a Schrodinger-type equation férwith a potential term
9 4k 3 2K 15 K
V(z) = = ° e S 2.12
@ = T6iZ+12 a2~ 4 (N2 + 12 (2.12)
This equation is first of all solved by the zero mode
h;lo\} = et3A/ 4EL03 = gt3n/4 ﬁ;ﬁ}(x) o0 (z) = HLO‘Z(X) (2.13)

which in terms of the 5th coordinatemeans®(© (y) = e 3kVI/4 = e=3kb/4 on our TeV brane. So
indeed, gravity on the TeV brane is weak because of the exponentiallyesged wave-function
overlap.

Again, using the Schrodinger-type equation witfe) as given in eq[(2.12) we can compute
the KK graviton masses in our 4-dimensional effective theory The boyrmaditionsd,h,, =0
on the branes are given by the orbifold identification- —y and assuming > 0. On the two
different branes we find

3

07D = — kP 3k

- 2kz+1

920 — (2.14)

Planck TeV

The solution of the equation of motion can now be expressed in terms ofIBessgons, which
are numbered by an index which corresponds to the mass introduceet abov

Pn(z) = \/%H [amYz (m <z+ i)) + bmJ2 <m <z+ i))] (2.15)

The masses of these modes are given in terms of the roots of the Bess@rfui(x;) = 0 for
j = 152)374"'

m; = xj ke ® ~ x; Mpiancke ® ~x; TeV  with x; =3.8,7.0,10.2,165- -- (2.16)

This means that the KK excitations in the Randall-Sundrum model with one dvaxbe dimen-
sions are almost, but not quite equally spaced. If we remember that wenoasekb ~ 35 to
solve the hierarchy problem they are in the TeV ranige,in contrast to the ADD model not only
resolvable by the LHC experiments put most likely out of reach beyoad.

In the last step we need to compute the coupling strength of these heavyatKogs to
matter, like quarks or gluons. Remember that in the ADD case we find tiny Prmgressed
couplings for each individual KK graviton, which corresponds to amlisg-TeV-scale coupling
once we integrate over the KK tower. For the warped model the relativglingustrengths on
the Planck brane and on the TeV brane are approximately given by theftdalie wave function
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overlaps. While the zero-mode graviton has to be strongly localized on thekaane, to explain
the weakness of Newtonian graviton the TeV brane, the KK gravitons tloave strongly peaked
wave functions in the additional dimension. From leq.(2.15) we can reatheffatio of wave
functions — assuming that the Bessel functions with their normalized arguméht®t make a
big difference

QJ(Z) ‘Tev N m‘Planck ~ 1 1Tev

(D(Z) ‘Planck v kZ—I— l‘TeV ekb/2 MPIanck

The coupling of the KK states is given by the left-hand side of Einstein'atgopus which enters
the Lagrangian just as for the large extra dimensions. We have to distingetateen the flat
zero mode with un-suppressed wave function overlap and the KK modeshigthatio of wave
functions

(2.17)

1 0) 1 (m)
L~ 7T“Vh( —— _THYS h 2.18
Mplanck HY Mpiancie kP z HY ( )

We see that the heavy KK gravitons indeed couple with TeV-scale gravishtstrength and can
be produced at colliders in sufficient numbers, provided they are ndtgavy. Similarly to the

flat extra dimensions, the couplings of the different KK excitations arpr(emately) universal.

Remembering the way the effective theory of gravity breaks down in ADDaisode see that
integrating over an ultraviolet regime of a KK tower of gravitons is not a lgmmbin RS models.

However, in the large-energy limit we do find that first of all scattering amggislcomputed in the
effective RS model violate unitarity, and that secondly in the ultraviolet re¢imgraviton widths

become large, which means the effective KK picture becomes inconsistatht.oBthese reasons
again ultimately require an ultraviolet completion of gravity.

Obviously, this is phenomenologically very different from the flat (ADRjra dimensions.
For warped extra dimensions we will not produce a tightly spaced KK toludrfor example
distinct heavys-channel excitations. One advantage of such a scenario is of coatsedhcan
measure things like the KK masses and spins at colliders diréclly [35]. Thewdistage for phe-
nomenology is that such resonance searches are boring and canpedroag’ searcheq[41, #2]
one-to-one.

3. Ultraviolet completions

As explicitly seen in the last two sections, the effective field theory desanifmifoextra-
dimensional gravity breaks down once the LHC energies approachrbe of the fundamental
Planck scale. This feature is expected — if a coupling constant has tiveagass dimension the
relevant scale in the denominator has to be cancelled by an energy in theatonm®©nce this
ratio of the typical energy over the Planck scale becomes large gravigéaepi become strongly
interacting and will eventually encounter ultraviolet poles. These polesxotée absorbed by our
usual perturbative renormalization, which means we cannot meaningtudhytige gravity without
an additional modification of this ultraviolet behavior.

We know several possible modifications of this dangerous ultravioletvirhdf3]: most
well known, string theory includes its own fundamental sddtewhich is related to a finite size
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of its underlying objects. Such a minimum length acts as a an ultraviolet cutofeierikrgy,
which regularizes all observables described by the gravitational iniemd@4,[4%]. An alternative
approach which avoids any ad-hoc introduction of radically differényfsjrs above some energy
scale is based on the ultraviolet behavior of gravity itdelf [46]: the asympafiety scenario is
based on the observation that the gravitational coupling develops anialitdixed point which
avoids the ultraviolet divergences naively derived from power tiogid7, [48,[4P[ 50} §1].

Going back to large flat extra dimensions and the ADD model the diverggftbe integral
representing the sum over KK states (for example shown ifi ed.(1.37)) ipaphanomenological
problem. The unphysical cutoff dependence seriously weakenshdity & make precise LHC
predictions or interpret possible LHC results. Furthermore, at a ctunaldpvel this break-down of
the KK effective theory already at LHC energies insinuates the immediatEfoie® more complete
description of gravity[[32] §3]. There are a number of effectiveth@ooposals which side-step
this complication by defining the integral in a cutoff independent scheme. sOcle treatment
relates to the eikonal approximation to the-22 process[[34], another involves introducing a finite
brane thicknesg [55]. In this example, the gravitational coupling is exyiatly suppressed above
M, by a brane rebound effect. This is applied to the case of high energyicosys interacting via
KK graviton exchange[[$6]. However, none of these models offenapatiing UV completion for
the KK effective theory.

The fundamental deficiency in the description of extra-dimensional grasgtgiscuss based
on two approaches: in the context of string theory, one initial motivatiothi®ADD model [5],
the expectation is for string Regge resonances to appear above thessti@gOn the other hand,
following our original motivation for the ADD model — its minimal structure with nad#bnal
states and a very straightforward geometry — we will focus on a UV compléEsed on the
observation of asymptotic safetly [46] 58]. This idea can be applied to Liddgmenology in
ADD [p7] or RS [63] models.

3.1 String theory

One possible ultraviolet completion of gravity could be string theory with its finiteérmmim
length scale regularizing the ultraviolet behavior of transition amplitudes.ekample, we can
compute the scatterirg — p* u~ using open string perturbation theory. Without tagging a certain
vacuum with the Standard Model as its low-energy limit, we can neverthedessract realistic
string amplitudes for generic gauge and fermion fields. The first step istiictehe (massless)
fields to a D3 brane. Gauge bosons are included by adding Chan—laatorsﬂﬁ‘ at the string
endpoints. Fof, j running from 1 toN this impliesN? additional degrees of freedom, identical to
the generators fdd (N). The Standard Model subgroupsl(2) andU (1) are thus easily embedded.
The helicity amplitudes for 2+ 2 scattering are simply analytic functionsgn andu together with
the common Veneziano amplitude][44]

rl-oa’s)f(1—a't)

7S = rl1-oa's—a't)

(3.1)
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in terms of the inverse string scaié = 1/M§. While we do not exactly know the size of this scale
it should lie between the weak scale= 246 GeV and the fundamental Planck sddle For our
purposes it suffices to consider three distinct limits:

— In the hard scattering limé — o and for a fixed scattering angle (or equivalently fixed
Mandelstam ratio of variablegs) the amplitude behaves as

y(s,t) ~ e—a’(slogs+t logt) (3.2)

This can be seen by applying Stirling’s approximation. The physics is immedagipbrent:
due to the finite and dimensionful string scate= 1/M3 all scattering amplitudes becomes
weak in the UV. Unfortunately, this particular limit is not very useful for Lig@enomenol-

ogy.

— The Regge limit for small angle high energy scattering in terms of Mandelssaiables
meanss — oo with t fixed. In this limit the poles in th€ functions determine the structure:
for /s> Ms there appear single poles at negative integer arguments/il2 = —(n+ 1)
wheren=1,2,.... These poles lie &= nMg, which tells us that string resonances appear
as a tower of resonances in teehannel. Starting from the energies arouvg this UV
completion consists of a string of real particles with masged/s.

— The leading corrections im’ valid for energies,/s below the string scale is

r(1-s/M3)r(1-t/m3 . m st 1
FA-(sruM2) L6 ﬁ(l\/lé) (33)

This form of the string corrections corresponds to our KK effectivil fieeory, modulo a
normalization factor which relates the two mass schesndMpianck Hence, this series in
Ms is not what we are interested as the UV completion of our theory.

— The physical behavior for scattering amplitudes above the string scaleocislination of
Regge and hard scattering behavior. In other words, equally sp&imgl resonances to-
gether alongside exponential suppression, but at colliders the ressmshould be the most
visible effects.

So far, we have only considered the exchange of string resonah&asmalard Model gauge
bosons, not graviton exchange. The string theory equivalent gdfrogess generating the effective
dimension-8 operator is the scattering of four open strings via the exelwdragclosed string. This
amplitude is insignificant compared to the string excitations in the vicinity of the stdalg, where
eq.(3.B) is valid[45]. Most notably, the KK mass integration is finite fonallie to an exponential
suppression of similar origin as the hard scattering behavior noted abowéields confined to a

D3 brane this integral is
ga'(s—n"?)/2

F(8) ~ /demw . (3.4)

24



UV-Complete Extra Dimensions Tilman Plehn

UIQ/[QI 00g/syueAy
do/dcos8/o

do/dM (pb/GeV)

1000 2000 3000 ~1.0 -05 0.0 0.5 1.0
M(ll) (GeV) cosé

Figure 3: Left: invariant mass distribution for LHC dilepton prodigt. The parametef = 1 is the Chan-
Paton number. Figure from R45]. Right: normalized dagdistributions forJ = 1,2, 3 resonances.
Figure from Ref.[[4p].

An explicit exponential factor regularizing thne integral also appears in the modification using a

finite brane thicknes$ [b5]

g—a'm?
Y(s)w/dem ——

These results are thus approximately equivalent in theJ@vegion for them integration. The
finite brane thickness approach still violates unitarity for lasge

(3.5)

Matching the string theory result with the effective theory amounts to a mattleitvgeen the
string scale and the cutoff scale appearing in the dimension-8 operatorvasstia eq[(1.38)

1 =g (3.6)
M4 32Mm¢

This is the basis on which to argue that Regge string excitations are the domiaeess for high
energy patrticle scattering. Discovering string degrees of freedora &HE is primarily concerned
with observing these resonances. An example for a possible distributiois @iven in the left
panel of Fig:B. In addition, the partial wave decomposition of a string Regygitude shows
superposition of different angular momentum state. Each resonancgegaeatate with respect

to the angular momentum numbgr This degeneracy manifests itself in the angular correlations
between final states mchannel processes (right panel of [ig.3).

As mentioned above, the issue with the naive phenomenology of RS graageved| as string
excitations is no experimental or phenomenological challenge to the TewatrétC communities.
For example the Tevatron experiments have been searching for (argloutjrheavy gauge bosons,
for a long time. So while a discovery ofZ resonance at the LHC would trigger a great discussion
of its origin, including KK gravitons, string resonances, KK gauge besan simple heavy’
gauge bosons from an additional gaugéd) symmetry [4R], there is little to learn from such
scenarios at this stage. Most of the papers you will find on the topic h@veauch to say about
the generic structure and challenges of such signatures at hadroerllid
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3.2 Fixed-point gravity

If all hints concerning the asymptotic safety of gravity should hold there iweed at all to alter
the structure of gravity at high energies — gravity will simply be its own ultravicéenpletion [4p,
@1, [48] For our phenomenological discussion we will only sketch sométafiie features of
asymptotic safety[[39, #9, pP,]51]. Although most in this field is developedlindimensions, the
results generalize in a straightforward manre} [58]. This allows us to gplijeher results from
two seemingly disjoint fields and consider asymptotic safety in extra dimensioodéls. The
major principles for asymptotic safety in gravity are

— The metric carries the relevant degrees of freedom in both the clagstguantum regime.

— IR and UV physics lie on a single trajectory and are connected by themetiration group
flow.

— Relevant degrees of freedom are anti-screening.

— the UV behavior is determined by an interacting (non-gaussian) fixed pbthe gravita-
tional coupling.

— Residual interactions appear 2-dimensional

Evidence for asymptotic safety comes in many forms: the concept of asympadtity or non-
perturbative renormalizability was proposed originally in 1980 [46]. The fiints that gravity
might have a UV fixed point were uncovered usingia&expansion for the space-time dimension-
ality [BQ]. Further evidence was collected in théNLexpansion wher#\ is the number of matter
fields coupled to gravity[[47]. More modern results use exact renorntializgroup methodg48].
There are a number of reviews of the subjdci [59], and on the neyessa-perturbative tech-
niques, namely the exact flow equation for the effective average aatMfetterich equation[[81].
Gravitational invariants including® and minimal coupling to matter are consistently included in
flow equations without destroying the fixed poift][59]. More recentlyai been shown that in-
cluding invariants proportional to divergences in perturbation theomyal@ive divergent results
non-perturbatively[[82]. Furthermore, there is independent evilémcasymptotic safety com-
ing from recent lattice simulations, causal dynamical triangulatiprs [63}esal quantities, like
e.g. critical exponents, computed using this method agree non-trivially with regderdiged using
renormalization group methods.

The key point for our application is that in the UV the coupling exhibits a finitedfipoint
behavior. This ensures that the UV behavior of the complete theory is dmdibg fixed point
scaling, rendering all our computed transition rates weakly interacting enatfjy scales.

It is useful to start again from the Einstein—Hilbert action to calculate tHengdaehavior for

the gravitational couplin@ ~ 1/M3:P

' 1
M= / d9x NG| { 167Gn (—R+2Acc) + ﬁ(Rz) + Zmatter+ Lgauge fixing T fghost} . (3.7)

The gauge-fixing and ghost terms in the Lagrangian we will ignore in thewoilp The effective
action eq[(3]7) we truncate to only the cosmological constant and Ricci seates. It is necessary
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to include the cosmological constant because the flo@yns correlated with a flow im\¢, so
even ifA\qc is set to zero at some point, quantum effects will generate a non-zem valu

The dependence of dimensionless couplings on the energy scale isitéteuaderstanding
quantum effects and thus we define a dimensionless Newton corjsiaf5 {3, [4P]

G
O — 70y = Gulk) = oy

not to be confused with the determinant of the metyig, which will not appear anymore in the
following. The Callan-Symanzik equation fgfu) can be derived in the standard way: first, we
note that as we vary the energy scale Newton’'s constant undergoeslicatitip renormalization.
In addition, we defing) = —udlogZ(u)/du as its anomalous dimension. This anomalous di-
mension encodes how quantum effects affect the scaling behavior dheory. Applying the
differential operatoud/du = d/logu to the definition of the dimensionless coupling we see that

(3.8)

d

Po= dlogu

9(u) = [2+n+n] oK) . (3.9)
This is the exact beta function of Newton’s constant. Although it looks inaos enough at first
glance, the parameter(g) will in general contain contributions from all couplings in the La-
grangian, not only the dimensionless Newton’s constant. However, oratamp property is im-
mediately apparent: fag = 0 we have a perturbative gaussian fixed poiet, an IR fixed point
which corresponds to classical general relativity where we have bs#reed a running gravita-
tional coupling. Secondly, depending on the functional forrm ¢f) the prefactor 2- n+ n(g)
can vanish, giving rise to a a non-gaussian fixed pgint 0. The anomalous dimension at this
ultraviolet fixed point will take only integer values

n(g.) =-2-n. (3.10)

For two space-time dimensions the anomalous dimension vanishes in which edsedhpoint
is at zero coupling and becomes a gaussian fixed point, another manifestatie perturbative
renormalizability of two-dimensional gravity. It is tempting to think tie&g(u) will vanish at the
UV fixed point so gravity is really asymptotically free. However, Newtonfaehsionful constant
does not have a physical meaning itself, and only when divided by andares it acquire sig-
nificance. The corresponding dimensionless coupling does not vamsth means the correct
statement is that in 4 n dimensions the theory with, # O is still coupled, just not ultravio-
let divergent [64[ §8]. Using the exact renormalization group flonaéiqn we can compute the
anomalous dimensionf [51], which depends on the shape of the UV regilagdbeta function of
the gravitational coupling becomes — neglecting the cosmological constaiot) dies not alter
the qualitative behavior of the system

(1—4(4+n)g)(2+n)g 2(2+n)(6+n)g

Bol9) = 1— (44 2n)g (9)= 2(2+n)g—1 (3.11)

Indeed, we observe the two fixed points: the IR fixed pSit= 0 appears at zero coupling= 0
and the UV fixed poing. = 1/4/(4+ n) for an anomalous dimension gfg.) = —2—n.
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One way of interpreting the physical effects of the gravitational UV fixeohipis to mod-
ify the original calculations by defining a running Newton’s coupling araluste it at the energy
scale given by the respective process. This approach is in completelance with the usual QCD
calculations for high-energy colliders, based on a running stronglioguplo derive a renormal-
ization group equation for the gravitational coupling we can integrate this ¥aith respect to a

reference valugo = g(Lo) [B2]

g()  6+n Iogg(u)—g* _ (2+n) log X

Ll 3.12
g0 2(4+n) Jo — O« Ho (3.12)

log

To motivate one method of including the ultraviolet fixed point in a cross secttmulation
the renormalization group equation ¢g.(B.12) can be cast into the foffB3q53]

g(u)< %—0- )“9* <u>2+” . 6+n
= with w=—— 3.13
9o \9(H)—9. Ho 2(44n)g. (3.13)
For w ~ g. which happens to be a reasonable approximation this becomes simply
( u >2+n
Yo %
g(u) = >Th (3.14)
1_ % % <u>
O« O« \ Ho

As a very rough check this formula reproduces the non-gaussiangoiativaluesg(u) = g, for
u — oo as well as the gaussian fixed pogt O for u — 0. The dimensionful couplin@y (L)
which becomes Newton’s constad; (o = 0) = Gy in the far infrared is accordingly given by

Gn (Ho) [1 1 n+2]l
Gn(p) = =|=—+—U . (3.15)
VH) 14 Gn(Ho)U*t"  Gn(po)ug™ LGN g

O« O«

The leading effects from the renormalization group running of the grawialticoupling we
can now include into a correction (form factor) to the coupling which afgprathe Lagrangian

Gn = (V81M,) 2, e.g. in eq.(L.1p)

2\ 1+n/2 -1 2
! 141 <“> ] hMNTMN:iA(MhMNTMN (3.16)

MZen

1

hI\/INTMN =
2+n
Mzt

8rg, \ M2 2+n

*

which carries through in the decompositiorhgii to the 4-dimensional fiel®}}, . At high energies
U > M, the form factor scales likg (u?) O (M, /u)?*". The factor ¥(8mg.) is and(1) parameter
controlling the transition to fixed point scaling.

As for any renormalization scale choice, there is an inherent ambiguityeviberhoose the
scaleu. In QCD calculations this scale dependence vanishes once we inclutlardybhigh
orders in perturbation theory, which in our case will not help. For a colfidecess, the simplest
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Figure 4: Left: Missing transverse energy distribution for singlé 4eE; signal. The black histogram
represents standard ADD result for 1000 ¥of LHC integrated luminosity. Colored data points are for
different parameterizations of the fixed point cross-oRight: Resonance RS graviton production at the
LHC for a lightest KK graviton of 1TeV Again, colored lineseafor different parameterizations of the
cross-over region. Both figures from R[53].

choice isu = /s, in which case the form factor only has a noticeable effect for centenasfs
energies close thl,, as one might expect.

With this form factor the KK mass kernel in our virtual graviton exchangelange can be
-1
1

written as
1+ <S >1+n/2 L /d”m (3.17)
M2 MZHn Csmmg

Note that if we treatnkx and./sas separate scales and evaluate the form factor in tergys, tfie
Mgk integration still requires a cutoff. On the other hand, as far as thiegration is concerned,
the form factor solves the unitarity problem associated with graviton scaftenmplitudes at the
LHC. This can be seen by power counting: the amplitude for graviton gtomiuis proportional

to 1/M3,,,cc Summing over the KK tower replaces this factor with the fundamental Plarati sc
1/M2. In addition, the geometry factor from the integration adds a factbt™L which together
gives the YM2™" we observe for example in ef.(1].34). The form factor compensates #tis@ly
with its UV scalingF (s) O (M,//S)?™". The only thing we have to ensure is that the numerical
factor 1/(8myg.) does not spoil this counter-play [53].

1 1
y(s):MEJrn/danKs_nﬁK -

SinceF (s) modifies the Planck scale or the gravitational coupling in general, we céyitfzp
virtual as well as real graviton emission, in the ADD model as well as in Rar@latidrum models.
One example is the production of the first KK graviton excitations in warp&d ekmensions. As
discussed before, those are single particles produced for examplemfgkion or quark-antiquark
scattering and decaying to jets or leptons. The obvious effect of the fawtor is to reduce the
number of gravitons produced at high energiés For the Randall-Sundrum model we can see
this in the left panel of Fig} 4.

Virtual graviton processes in models with warped extra dimensions can alswdified by
fixed point effects. The collider signal is dominated by resonant gragitoduction, as opposed

29



UV-Complete Extra Dimensions Tilman Plehn

0.6

1/0 do/dE (PP — I'T)

0.4 ! — FP

8

7
Epanon[TeV]

Figure 5: Normalized distribution of the partonic energy foy,) in the Drell-Yan channel fon = 3. The
non-trivial shape difference between thle = 5 TeV andM, = 8 TeV is the result of interference effects.
Figure from Ref.[[52]

to the unspecific KK tower in ADD models. The form factor modifies the couplisgd when
computing the width"; for the j-th RS graviton. For the production of one heavy state we run
into the convenient fact that there is only one scale in the prqeess/$ = m;. The form factor
becomes

11, (%)3 (3.18)

Without this form factor the width behaves like~ m?/M,%S and the resonance interpretation
becomes less and less valid at high energies (seff Fig.4). Field theoretiaily ittconvenient
since once the width becomes of the same order as the mass spacing betwlesntionaive
Breit-Wigner formalism breaks dowf [66]. Including the form factor thgmal if formed by well
defined resonances for higher masses, as shown [i} Fig.4.

An alternative (improved) method which is better suited for the case of vigaaditons is
based directly on the form of the anomalous dimension of the gravitop éq.{8®notivated by
renormalization group techniques from condensed matter physics or R&DIIfi this picture, as
usual there is a phase transition occuring at a critical point with anomailmemnsionn, = —2—n
for some energy at or beyond the Planck scale. At the critical pointeledion functions are
expected to scale by a function of the anomalous dimension. The momentuentgmapoint
function generically has the fordy(p) ~ 1/(p?)1~"/2, which reproduces the classical result for
smallnj. In the vicinity of the non-gaussian fixed point, this becomggd)~(4*"/2 [E7]. The
massive graviton propagator in the fixed point region is then modified as

1 /\12_+n
N
S—Miy  (S—mgy)@Hn/2

where the transition scal®r ~ M, in the numerator maintains the canonical dimensions for the
propagator. The graviton kernef(s) integrated over the entimexk range becomes

(3.19)

1 &'m 11 /w e NZT
MZH Jo Hs—mg T MZ “(s—mpy ) @2

S (s) — (3.20)
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This integral is finite to for alh and the transition scal&r parameterizes the crossover to fixed
point scaling. The low-energy and high-energy contributisfiguy (S) can be easily calculated to

leading order irs/A2
_Sh— /\T n-2 s
o () o (%))

() o) e

The transition from the IR to UV scaling we for now treat a8-function. The renormalization
group predicts a smooth transition, which can be modelled using & famiction. The follow-

ing approximations though will not be sensitive to the abruptness of thetiosuss so we forgo
implementing the smooth transition for the remainder of this work.

[EEY

N
IS

The combined IR and UV integral is given to leading order as

S = mf‘z)lw </|\>|T> " <1+ nf) (3.22)

This result has several basic features:
— We do not need any artificial cutoff scale.

— The result from thenkk integral has a small sensitivity to the precise value of the transi-
tion scale\t ~ M,, but including a more elaborate description of the transition region will
remove this.

— For hadronic cross sections there is an additional integralsoseming from the convolu-
tion with the parton distribution functions. Only in our leading-order approkonay is
independent o$.

— For the full.#yy (s) perturbative unitarity is maintained by the largbehavior#{y (s) ~ s2
given by dimensional analysis#y(s) and.#ir(s) do not naively match perfectly at the
boundary,/s = A, which requires a more careful treatment of this matching for the final
numerical results.

— Phenomenologically, we do not expect resonance peaks or cledihctie features in the
UV regime of graviton production. This feature is clearly different frora #tring theory
completion.

The anomalous dimension shift may also be implemented by evaluating the Euclidean p
gator

Fen() = = [T g 1 L % 4hm Ar (3.23)
9=y Ty, ™ G |
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Figure 6: 5-0 discovery contours at the LHC. The solid diagonal line isNlgr= A¢yto. The plateau in the
discovery contours is the result of the UV fixed point (conep@r Fig[P).

As we will see below, this agrees with the form factor provided that we ataline coupling at a
scale withy = m, reminiscent of the RS form factor used to regulate the graviton width —péxce
that it is expected to hold in general off-shell. For large KK masses tine flactor behaves as

) 14+n/2 -1
M, 8\ M,

1

87’[} dm

zsn_l[ =

w

This is in agreement with the anomalous dimension shift which gives

At 2+n d™m N At 24n dm 305
() mrmgr = (ih) e 5:2)
For thes integration there is no clear agreement between the two approachesorith&aétor in
sfalls of much quicker than the/$? and gives a reduced cross section compared to our estimate.
This is expected since the second term in the expansion is of the oppositeNage that by
construction this Eucledian argument avoids real particle poles in the grguiépagator and is
hence limited when comparing to an effective field theory.

The search for extra dimensions at the LHC has two purposes. Thesficspin down the
exact geometry of the non-visible space. The other and more interesssipitity is to ascertain
a viable theory of quantum gravity by probing energies beydpdThe UV completion to the KK
integral can help us in both regards. First of all, the signal is enhanciedlnding the UV portion
of the integral. In some cases this increase can be significant. For Dnelpr¥duction leading to
final state muons the cross sections are given in the following table. NotiaghiatiC is expected
to provide~ 100 fb! per year at full luminosity, which leads to a non-trivial event number fer th
following scenarios.

olfb] n=3 n==6
M, 2TeV 5TeV 8TeV|2TeVv 5TeV 8TeV
SR 173 0.72 0.0204 66 0.28 0.008
AR+ FUv 408 1.24 0.0317 398 1.21 0.031
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In addition, the graviton kernel has a distinctive shape which depentleeatumber of extra
dimensionsh. In thes channel at lower partonic energies, the dominant interference terne&etw
gravitons an& /y imply a scaling with¥ ~ (n—1). For higher partonic energies the pure graviton
amplitude is dominant and the rate scalegras 1)?. This fact is demonstrated in Ai.5. The
combined LHC reach in the virtual graviton channel is given in[fFig.6 and islynosiependent of
n for the cases = 3—6.

In this section we present a rough description of the effects of a gravighfiged point at the
LHC. Many of the technical and physical details are not worked outhextause we are talking
about recent developments. However, we can convincingly arguetbedvitational UV fixed
point gives a consistent as well as complete description of extra-dimahsibeervables at the
LHC, clearly distinguishable from alternative scenarios.

4. Outlook

Large extra dimensions are a natural as well as truly minimal extension ofahde&8d Model
addressing the hierarchy problem. If they are realized in Nature, greffégts become relevant
at the TeV scale and probing a viable theory of quantum gravity becomegpatrimental en-
deavor. Two generic approaches are either a free number of ladgtaextra dimensions (ADD
model) or one extra dimension with a warped metric (RS model). In both modelsgoakity
with its fundamental TeV-sized Planck scale propagates into the extra-danahbulk, while
our 4-dimensional Planck scale is a derived observable. The rel@#&/efthe fundamental and 4-
dimensional Planck scales can be derived by matching of the effectliraeiRsional Kaluza—Klein
effective theory. The main phenomenological difference between thenvaels is the spacing of
the Kaluza—Klein masses, which is unobservably small in the ADD model atigbafrder of the
fundamental Planck scale in the RS model.

In particular for flat extra dimensions, the description by the KK effectiaory becomes
increasingly unreliable once the experimental energy reaches the &/ $te geometry factors
from compactification imply that any kind of observation will be dominated by éspective UV
tail of the graviton tower. While real graviton emission at the LHC is accidentally described
by an effective KK theory (due to sharply falling parton luminosities) thespeat of discovery
via virtual graviton exchange depends on an unphysical cutoff scheguéating the sum over the
states inside the KK tower. For warped extra dimension a similar problemsoicciine width of the
KK gravitons, which is determined by the UV completion of the model, the quantum gravity
regime. Being a theoretical ambiguity this generic UV cutoff dependencaataas a platform on
which to test candidate theories of quantum gravity.

This means that the moment we probe extra dimensions at the LHC we needyoalvout
the fundamental structure of gravity. For example, asymptotic safety al-fimgt gravity allows
us to consider gravity as a UV-complete theory, without introducing addlitgiates or ideas. For
the UV regime of gravity as probed at the LHC it predicts a smooth fall-off avigon amplitudes,
clearly different from resonances as expected by a string theoryletomp Once the LHC pro-
duces data we know there are a plethora of exciting possibilities — discesiniogg candidate
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theories of quantum gravity, in the fortuitous scenario of large extra dimesisianks among the
most exciting prospects for the coming decade.
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