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Many years of experimental tests have lead us to accept the Standard Model as the effective
theory valid at and below the weak energy scale. This includes its range in terms of direct particle
searches as well as high-precision tests of quantum effects, both of them related by the renormaliz-
ability of gauge theories. However, the crucial ingredient of electroweak symmetry breaking is not
yet understood,i.e. we still have not seen a fundamental scalar Higgs boson or any kind of indi-
cation of strong interactions breaking the electroweakSU(2)L ×U(1)Y symmetry to the observed
electromagneticU(1)Q. While the search for some variation of a simple fundamental Higgs scalar
has been the major motivation in experimental searches as well as theory modelbuilding for at least
the past 25 years there is a little more to it. To date we see four serious problemswith our Standard
Model

1. experimentally, it does not include dark matter, even though generically dark matter could
be explained by a stable weak-scale particle with typical weak-scale Standard Model cou-
plings [1].

2. theoretically, a truly fundamental quantum theory including masses for theW andZ gauge
bosons should either include a Higgs boson or an additional strong interaction with its ap-
propriate resonances. All we know to date is that a light Higgs scalar is consistent with
electroweak precision data [2].

3. if the Higgs boson is a fundamental scalar, its mass has to be protected. Otherwise, quantum
corrections would betray the underlying principle of fundamental gauge theories and force us
to order by order fine tune a counter term to stabilize the fragile Higgs mass — thehierarchy
problem [3]. Decoupling a corresponding new-physics sector from the electroweak precision
data mentioned in point (2) can be achieved with a discrete symmetry which in passing
introduces a stable dark matter particle as required by point (1).

4. gravity is not included in this picture of particle physics, even though we know that it includes
the remaining fourth fundamental force between particles.

Note that this is of course not a complete list of problems in fundamental physics, which would
have to include the cosmological constant, the baryon asymmetry of the Universe, or the absence
of gravitational waves. This list simply includes issues which might well be solved by TeV-scale
new physics.

On the other hand, this list makes it obvious that Higgs searches, or searches for the mechanism
of electroweak symmetry breaking, cannot be separated from searches for TeV-scale new physics.
Both are different sides of the same medal. Proof that all four problems can indeed be linked
together is given by supersymmetry: by roughly doubling the Standard Model’s particle spectrum
above the TeV scale it provides a dark matter candidate, radiatively breaks electroweak symmetry,
stabilizes the Higgs mass, allows for a perturbative extrapolation to high energies (including a
grand unified theory) and links the Standard Model to a local theory of gravity. The problem is that
even the minimal supersymmetric Standard Model can be viewed as more on the elaborate than on
the minimal side. Instead, we can ask the question: how far can we get in solving as many of the
above issues with as little extra input as possible?
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Tackling the last of the problems listed above we run into a fundamental problem of field theory
— we know from the classical theory that the gravitational coupling carriesa mass dimension,
which means we cannot quantize it in a perturbatively renormalizable manner. What we can do
is explicitly exclude the possibly dangerous high-energy regime and treat gravity as an effective
field theory, i.e. a theory with a built-in cutoff scale which should nevertheless describe low-
energy observables well. In Sections 1 and 2 we will construct two such effective theories of
extra-dimensional gravity valid up to LHC energies and show the limitations of thisapproach. In
Section 3 we will compute the same observables based on two ultraviolet completions of gravity
which cure the poor ultraviolet behavior of the effective theory of gravity.

1. Flat extra dimensions

One answer to this question is given by large extra dimensions [4, 5]. This model has the
most important feature that it does not introduce any additional states, which in turn means that we
would have to invoke some other mechanism to explain dark matter. But as we willsee below, it
does successfully tackle the three other problems and might even offer anexplanation for the small
cosmological constant.

Initially, large extra dimensions were suggested as an explanation for the observed hierarchy
between the electroweak and Planck [4] or GUT [6] scales while allowing theHiggs mass to re-
main comfortably at a mass around 100 GeV. Such models with large (comparedto the Planck
length) and flat extra dimensions are referred to as ADD models. Their basis is a low fundamen-
tal Planck scale (M⋆ ∼ TeV) which also locates the onset of quantum gravitational effects. This
new scale serves as the ultraviolet cutoff in the loop contributions to the renormalized Higgs mass,
which limits the size of quadratic quantum corrections. This construct appears to be in clear con-
tradiction to all 4-dimensional data which determines the Planck mass from Newton’s constant
GN ∼ 1/M2

Planck, describing the force on an object in a gravitational field. The ADD model solves
this apparent contradiction by deriving the observed value ofMPlanck from the fundamental Planck
massM⋆ and a a particular geometry of space-time.

At the classical level we can see how this occurs in a universe with extra spatial dimensions.
The Einstein-Hilbert action in any number of(4+n) dimensions is given as

Sbulk = −1
2

∫
d4+nx

√
−g(4+n) Mn+2

⋆ R(4+n). (1.1)

We denote 4-dimensional space-time coordinates with Greek indicesµ,ν ,α = 0,1,2,3 and extra
dimensional coordinates with lower case Roman lettersa,b,c = 5,6,7, · · ·n. These are unified to
capital Roman lettersM,N,L = 0,1,2,3,5, · · ·n. The 4-dimensional coordinates we write asxµ ,
while the(4+n)-dimensional coordinates areya, such thatzM = xµ +ya.

The Einstein Hilbert action has a number of interesting features: first of all,the propagating
degrees of freedom are carried exclusively by the the metricgMN. To act as a metric in the con-
ventional sense (most notably connecting vectors to form inner products) it is symmetric, and to
produce the correct mass dimensions,gMN must be dimensionless. The mass dimension of the
Ricci scalar is independent of the underlying space-time dimension. This is merely the statement
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that the dimensionality ofR is completely determined by derivatives and not fields. The action
eq.(1.1) enjoys full(4+ n)-dimensional invariance under general coordinate transformation with
an arbitrary parameterξM(z)

zM → zM + ξM(z), (1.2)

where the induced variation in the metric is

δgAB = ∂Aξ MgMB +∂Bξ MgMA + ξ M∂MgAB. (1.3)

The ADD model breaks this symmetry explicitly by treating the 4-dimensional spacexµ and then-
dimensional spaceyi differently. Coordinate transformation can no longer mix these components.
The requirements on the space described by metricgi j are

– spatial: the signature for then extra dimensions is(−1,−1, · · ·).

– separable: the extra dimensions must be orthogonal to the brane so that the measured4+nz is
well defined. In other words, the metric decomposes as a product spaceg(4+n) = g(4)⊗g(n).

– flat: the dimensions must be flat so that they can be integrated out explicitly in the action. In
standard gravity the same is true unless sources induceTi j 6= 0. We therefore restrict matter
to theyi = 0 brane:

TAB(x;y) = η µ
A η ν

B Tµν (x)δ(n)(y) =

(
Tµν (x)δ(n)(y) 0

0 0

)
. (1.4)

The assumption of an infinitely thin brane for our 4-dimensional world might have to be
weakened to generate realistic higher-dimensional operators for flavorphysics or proton de-
cay [7, 8]. Einstein’s equation purely in the extra dimensions

Rjk −
1

n+2
g jkR= 0. (1.5)

contracted withg jk requiresR= 0. The full Ricci scalar is then

R= gMNRMN = gµν Rµν +gi j R
i j +giµRiµ = gµν Rµν = R(4) , (1.6)

usingg jkRjk = 0 along with the fact thatgµ i no longer transforms under general coordinate
transformations.

– compact/periodic: the simplest compact space is a torus with periodic boundary conditions
and a radiusr of the compactified dimensionyi = yi +2πr.

In addition to the Ricci scalar, the Einstein–Hilbert action contains explicit dependency on the
determinant of the metric

√
−g(4+n). Since the extra dimensions are flat and spatial, the contribu-

tion to det(gMN) ≡ g is at most a sign. We assume that
√−g is synonymous with

√
|g|. Now, it is

straightforward to simplify the higher–dimensional bulk action

Sbulk = −1
2

Mn+2
⋆

∫
d4+nz

√
−g(4+n) R(4+n)

= −1
2

Mn+2
⋆ (2πr)n

∫
d4x

√
−g(4) R(4)

≡−1
2

M2
Planck

∫
d4x
√
−g(4) R(4). (1.7)
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In the last line we have matched the two theories,i.e. we have assumed that from a 4-dimensional
point of view the actions have to be identical, as long as we do not probe highenough energy scales
to observe quantum gravity effects.

This leads us to the basis of extra dimensions as a solution to the hierarchy problem: our 4-
dimensional Planck scaleMPlanck∼ 1019 GeV is not the fundamental scale of gravity. It is merely
a derived parameter which depends on the fundamental(4+n)–dimensional Planck scale and the
geometry of the extra dimensions,e.g. the compactification radius of then–dimensional torus.
Matching the two theories translates into

MPlanck= M⋆ (2πrM⋆)
n/2 (1.8)

If the proportionality factor(2πrM⋆)
n is large we can postulate that the fundamental Planck scale

M⋆ be not much larger than 1 TeV. In that case the UV cutoff of our field theory is of the same
order as the Higgs mass and there is no problem with the stability of the two scales.

AssumingM⋆ = 1 TeV we can solve the equation above for the compactification radiusr —
transferring the hierarchy problem into space-time geometry:

n r

1 1012 m
2 10−3 m
3 10−8 m
... ...
6 10−11 m

At least in the simplest modelδ = 1 is ruled out by classical bounds on gravity as well as astrophys-
ical data. A possible exception is if there is a non trivial mass gap between massless and massive
excitations [9]. For larger values ofn we need to test Newtonian gravity at small distances [10].
Note that the analysis in this section is purely classical, and it is obvious that its physical degrees
of freedom do not survive compactification. For this we resort to the original ideas of Kaluza and
Klein and decompose the higher-dimensional gravitational theory as an effective 4-D theory with
residual gauge symmetries [11].

1.1 Gravitons in extra dimensions

The first step towards a viable description of extra dimensional effects in experiment is deriv-
ing the properties of spin-2 gravitons in these extra dimensions [12, 13]. Generically, a massless
graviton in higher dimensions can be described by an effective theory ofmassive gravitons and
gauge fields in four dimensions. The inclusion of massive spin two fields is particularly interesting
from a theoretical point of view since the Pauli–Fierz mass term [14] and thecoupling to matter
fields is highly restricted. In particular, it is inconsistent to introduce massive spin-2 fields not
originating from some type of Kaluza–Klein decomposition [15].

We start with the(4+n)-dimensional Einstein equation

RAB−
1
2

gABR =
TAB

M2+n
⋆

(1.9)
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and rewrite the metric in terms of our flat background metricηAB and a fluctuating spin-2 fieldhAB

gAB = ηAB+2
hAB

M1+n/2
⋆

. (1.10)

The prefactor ensures thath (and with it the kinetic term in the Lagrangian) has the appropriate
mass dimension for a propagating bosonic field[h] = m(2+n)/2. In terms ofh, Einstein’s equations
to linear order give

M1+n/2
⋆

(
RAB−

1
2

gABR

)
= �hAB−∂A∂ChCB−∂B∂ChCA+∂A∂BhC

C−ηAB�hC
C +ηAB∂C∂ DhCD

= − TAB

M1+n/2
⋆

. (1.11)

The equation of motion follows from the bilinear action which we refer to as the linearized Einstein–
Hilbert action:

L =− 1
2

hMN�hMN +
1
2

h�h−hMN∂M∂Nh+hMN∂M∂LhN
L −M−(1+n/2)

⋆ hMNTMN, (1.12)

The slightly circumvent logic (Einstein–Hilbert action→ Einstein’s equation→ linearized Ein-
stein’s equation→ linearized Einstein–Hilbert action) leading us to eq.(1.12) is necessary because
the energy momentum tensor is generated throughTµν = 2/

√−g δS/δgµν when computing the
equations of motion. Had we inserted the graviton decomposition into the Einstein–Hilbert action
directly, the resulting linearized Einstein equations would describe a freely propagating field. The
linearized variation analogous to eq.(1.3) is

δhAB = ∂Aξ M +∂Bξ M , (1.13)

leaving the linearized action invariant up to termsO(ξ 2) with h andξ treated as the same order.

The ADD model breaks this full symmetry by compactifying the extra dimensions.Periodic
boundary conditions allow us to Fourier decompose they component of the graviton field

hAB(z) =
∞

∑
m1=−∞

· · ·
∞

∑
mn=−∞

h(~n)
AB(x)√
(2πr)n

ein j y j/r

= h(0)
AB(x)+

∞

∑
n1=1

· · ·
∞

∑
nn=1

1√
(2πr)n

[
h(~n)

AB(x)ein jy j/r +h†(~n)
AB (x)e−in jy j/r

]
(1.14)

whereh(~n)
AB(x) is a four dimensional bosonic field with mass dimension one. The second step is

possible becausehAB(z) is real.

To avoid confusion we emphasize thath†(~n)
AB (x) does not constitute an additional degree of

freedom in the theory. The internal index~n can be thought of as a discretized momentum index,
such thath(~n)

AB(x) andh†(~n)
AB (x) differ only by the sign of the extra-dimensional momentumh†(~n)

AB (x) =

h(−~n)
AB (x). This is also obvious from the fact thath(~n)

AB(x) andh(~n′)
AB (x) are not distinct field excitations.

It is now simple to work out the form of Einstein’s equations in terms of the fieldh(~n)
AB(x). For

7
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example, the first term in eq.(1.11) decomposes as

�(4+n)hAB(z) = ∑
n j

1

(2πr)n/2
∂C∂C

[
h(~n)

AB(x) ei(n·y)/r
]

= ∑
mj

1

(2πr)n/2
∂C

[(
δC

µ ∂ µh(~n)
AB(x)+δC

j h(~n)
AB(x)

in j

r

)
ei(n·y)/r

]

= ∑
mj

1

(2πr)n/2

[
�(4)− n jn j

r2

]
h(~n)

AB(x) ei(n·y)/r

(1.15)

Multiplying by e−i(n·y)/r and using the energy momentum tensor from eq.(1.4) eliminates the ex-
ponential on the right-hand side of eq.(1.11). An independent check onthe consistency of this
method is that the 4-dimensional massive graviton fieldh(~n)

µν (x) only has a Pauli–Fierz mass term,
∝
[
hµν −ηµν h

]
and no mass terms originating from mixed index derivatives. This is requiredfor

a consistent spin-2 field [14].

From the Einstein equations we can brute force derive the action bilinear in the fieldsh(~n)
AB(x).

This field does not transform irreducibly under the Lorentz group in four dimensions. As an ansatz
we introduce a field decomposition [12] which forms irreducible representations. Using the con-
venient definitions ˆn ≡ ~n/r andκ ≡

√
3(n−1)/(n+2), the action in terms of these new fields

manifestly carries the correct degrees of freedom:

G(~n)
µν = hµν +

κ
3

(
ηµν +

∂µ∂ν

n̂2

)
H(~n)−∂µ∂ν P+∂µQν +∂ν Qµ

V(~n)
µ j =

1√
2

(
ihµ j −∂µPj − n̂ jQµ

)

S(~n)
jk = h jk −

(
η jk +

n̂ j n̂k

n̂2

)
H(~n)κ
n−1

+ n̂ jPk + n̂kPj − n̂ j n̂kP

H(~n) =
1
κ

[
h j

j + n̂2P
]

Q(~n)
µ = −i

n̂ j

n̂2h j
µ

P(~n)
j =

n̂k

n̂2hk
j + n̂ jP

P(~n) =
n̂kn̂ j

n̂4 h jk (1.16)

The fieldsQµ ,Pj andP are not invariant under general coordinate transformations eq.(1.13)and
cannot appear independently in the effective 4-dimensional action. In this sense they are gauge
degrees of freedom and settingQµ = Pj = P= 0 corresponds to a unitary gauge with no propagating
ghosts.

The decompositions is similar in spirit to the well-known Kaluza–Klein [11] decomposition
where a 5-dimensional metricgAB is decomposed into a 4-dimensional metricgµν , a vectorAµ

and a scalarφ. At the massless level these fields decouple and the five degrees of freedom for
a 5-dimensional graviton decompose appropriately as 2+ 2+ 1. Including masses the vector and

8
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scalar fields are eaten by the graviton to build a massive 4-dimensional graviton with five degrees
of freedom.

Similarly, starting from eq.(1.16) our unitary gauge choice allowsG~n
µν to become massive by

eatingP andQµ . However, as opposed to the 5-dimensional case this does not exhaustthe degrees
of freedom; there is an additional massive(n−1)-multiplet of vectorsVµ j which eatPj to obtain
their longitudinal polarization. Finally, there are(n2−n−2)/2 scalars in the symmetric tensorSjk

as well as the singlet scalarH. The total number of degrees of freedom is

1·5 + (n−1) ·3 +
n2−n−2

2
·1 + 1·1 =

(n+4)(n+1)

2
. (1.17)

A similar analysis of(4+n)-dimensional gravity gives an identical counting of degrees of freedom:
the only physical field is a symmetric tensorhAB with (4+ n)(5+ n)/2 components. These are
reduced by fixing the gauge; typically, the harmonic condition∂AhA

B = ∂hA
A/2 amounts to 4+ n

constraints. Furthermore, we are free to add terms to the variation parameterin eq.(1.13) with�ξM

leaving the action invariant. Altogether there are 2(4+n) constraints, and counting of degrees of
freedom is identical to eq.(1.17).

In terms of the new physical fields Einstein’s equations simplify to

(�+ n̂2)G(~n)
µν =

1
MPlanck

[
−Tµν +

(
∂µ∂ν

m̂2 +ηµν

)
Tλ

λ
3

]

(�+ n̂2)V(~n)
µ j = 0

(�+ n̂2)S(~n)
jk = 0

(�+ n̂2)H(~n) =
κ

3MPlanck
Tµ

µ (1.18)

so that the linearized Lagrangian eq.(1.12) in terms of the fields eq.(1.16) reads (omitting the sum
over the index~n for all fields)

L ∼− 1
2

G†µν (�+m2
KK )Gµν −

1
2

G†µ
µ (�+m2

KK )Gν
ν −G†µν ∂µ∂ν Gλ

λ

+G†µν ∂µ∂λ Gλ
µ −

1
2

H†(�+m2
KK )H

− 1
MPlanck

[
Gµν − κ

3
η µν H

]
Tµν + · · · (1.19)

where the ellipses stand for free field kinetic terms. Here and henceforth we definem2
KK ≡ n̂2 =

~n2/r2. The structure of Einstein’s equations eq.(1.18) reveals a few particularities: the fieldsVµ j

andSjk do not couple to the energy momentum tensor,i.e. to the Standard Model. The massive
gravitonsGµν do couple to the Standard Model. Their Fourier coordinate only appears as a mass-
squared ˆn2 and in the coupling to the trace of the energy-momentum tensor. This means their
couplings are level–degenerate and their masses and couplings depend only on the length, but not
on the orientation of the vector ˆn.

We focus on the properties of conformally invariant theories, whereTµ
µ = 0, because this is

a good approximation of all relevant particle masses as compared to the LHC energy. For such

9
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massless theories

(�+m2
KK ) G(m)

µν = − Tµν

MPlanck
(1.20)

describes physical gravitons produced by quark or gluon interactionsand either vanishing or de-
caying to leptons. The scalar modeH plays a special role. Its massless radion mode corresponds
to a fluctuation of the volume of the compactified extra dimension. We assume that the compacti-
fication radiusr is stabilized in some way [16], giving mass to the radion [17]. More importantly,
the radion only couples to a massive theory, so it is not surprising that as ascalar with no Standard
Model charge it will mix with a Higgs boson without too drastic effects.

Before deriving Feynman rules we will briefly outline the significance of Kaluza–Klein towers
of massive gravitons: first of all, the basic relation derived at the classical level can be rewritten
as M2

Planck≡ M2
⋆N whereN ∼ (2πrM⋆)

n is the number of Kaluza–Klein species existing below
the scaleM⋆. A heuristic argument for this relies on the spacing between consecutive KK modes
δmKK ∼ 1/r, so thatrM⋆ = M⋆/δmKK gives the number of KK modes with the vector~n occupied
only in one directioni.e. ~n = ( j,0,0, · · ·) with j being some integer. A generic vector hasn
such directions, so in general there are(rM⋆)

n possibilities. Realistic numbers forM⋆ ∼ TeV give
N∼ 1032. A similar result is achieved by considering black hole evaporation [18]. This multiplicity
of states is what determines the visible effects of ADD models at the LHC.

As a side remark, it is not altogether mysterious that we are summing over a very large number
of KK states. In(4+ n)-dimensional language the graviton propagator is simply 1/(pApA). The
momentumpA obeys momentum conservation at each vertex to two Standard Model particles. This
way 4-dimensional external lines fix the momentum in four directions, leaving an integration over
p j ∫

dnp j
1

pApA
=
∫

dnp j
1

pµ pµ − p j p j
∼ ∑

mKK

(δmKK )n

pµ pµ −m2
KK

. (1.21)

For KK modes as intermediate states, proper treatment of the KK tower implies a closed integral,
similar to an additionaln-dimensional loop integral

∫
M . A similar argument reveals that the

additional momentum directions available for final state KK particles amounts to a modified phase
space integral

∫ |M |2.

To summarize our main results relevant for ADD phenomenology; the spin-2 graviton field
couples to the energy momentum tensor universally for massless states, suppressed by the 4-
dimensional Planck scaleMPlanck. This predicts the production of massive gravitons at the LHC
from gluon as well as quark initial states. The index structure of the massive graviton propagator
and vertices are a mess, but theoretically well defined in our effective field theory. There are a large
number of gravitons organized by a KK tower which again couple universally to Standard Model
fields. The mass splitting between the KK states inside the tower is given by 1/r which translates
into (M⋆ = 1 TeV as before):

δmKK ∼ 1
r

= 2πM⋆

(
M⋆

MPlanck

)2/n

=





0.003 eV (n = 2)

0.1 MeV (n = 4)

0.05 GeV (n = 6)

(1.22)
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On the scale of high-energy experiments or the weak scale (mZ ∼ 91 GeV), this mass splitting
is tiny. For example the LHC will be unable to resolve such mass differences,which allows us
to generally replace the sum over graviton modes (either as intermediate statesor as final states)
by an integration over a continuous variable. We will show this conversion toan integral in the
next section. What we can also see from this mass splitting is that gravitons in thismodel might
well be stable, just because they are too light to decay to two Standard Model particles even via a
gravitational interaction. A KK tower of gravitons appears as missing energy at the LHC.

1.2 Feynman rules

To lowest order in the graviton field the coupling to massless matter is given by eq.(1.19). We
illustrate the extraction of the vertices from the energy-momentum tensor in a manifestly symmetric
way using the QED Lagrangian

LQED =

√−g
M̄P

(
iψ̄γa

Daψ − 1
4

Fµν Fµν
)

(1.23)

where the covariant derivative contains a gauge and coordinate connection. Taking the variation in
the metric for only the gauge field and notingδ

√−g = −√−g gµν δgµν/2 we find

Tµν
gauge=

2√−g
δ

δgµν

√−g

(
−1

4
FρσFαβ gρα gσβ

)

=
η µν

4
Fαβ Fαβ +Fµ

α Fαν (1.24)

and for the the purely fermionic contribution

Tµν
fermion =

i
4

ψ̄ (∂ µγν +∂ ν γµ)ψ − i
4

(∂ µψ̄γν +∂ ν ψ̄γµ)ψ (1.25)

All momenta are incoming to the vertex. To derive the Feynman rules we need to symmetrize the
graviton and gauge boson indices separately.

In the following, we will quote the Feynman rules relevant to our LHC analysis. Because
gravity couples to every particle in and beyond the Standard Model there are in fact many other
graviton vertices [12, 13]. The fermion–graviton and gluon–graviton vertices are

f (k1)

¯f (k2)

Gµν = − i
4MPlanck

[
Wµν +Wνµ

]

and

εb
α (k1)

εa
β (k2)

Gµν = − iδab

MPlanck

[
Wµναβ +Wνµαβ

]

11
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with

Wµν =(k1−k2)µγν

Wµναβ =
1
2

ηµν
(
k1βk2α −k1 ·k2ηαβ

)
+ηαβ k1µk2ν +ηµα

(
k1 ·k2ηνβ −k1βk2ν

)
−ηµβ k1ν k2α

(1.26)

The non-abelian part of the field strength does not contribute, and the color factorδab reflects the
fact that the graviton is a gauge singlet. The final ingredient needed is thegraviton propagator,
which is the momentum-space inverse two-point function from the bilinear terms ineq.(1.19).
This Lagrangian describes the physical fields and — as opposed to the massless graviton — no
additional gauge fixing is required.

Gµν (k) G†
αβ (k) =

iPµναβ

k2−m2

with

Pµναβ =
1
2
(ηµα ηνβ +ηµβηνα −ηµν ηαβ )

− 1

2m2
KK

(ηµα kν kβ +ηνβ kν kα +ηµβkν kα +ηνα kµkβ)

+
1
6

(
ηµν +

2

m2
KK

kµkν

)(
ηαβ +

2

m2
KK

kα kβ

)
. (1.27)

It is easy to recognize the first line in eq.(1.27) as (ignoring overall normalization) the massless
graviton in the De Donder gauge. A good exposition on different forms (different weak field
expansions) of the massive and massless propagator is given in Ref.[19].

The amplitude for a generics-channel process mediated by virtual gravitons will then look
like

A ∼ 1

M2
Planck

∑Tµν
Pµναβ

s−m2
KK

Tαβ

=
1

M2
Planck

∑Tµν
ηµα ηνβ +ηµβηνα −ηµν ηαβ +ηµν ηαβ /3

2(s−m2
KK )

Tαβ

=
1

M2
Planck

∑ 1

s−m2
KK

Tµν Tµν

≡ S (s) T . (1.28)

On the way we use the conservation and tracelessness of the energy momentum tensori.e. Tµ
µ =

kµTµν = 0. This form is useful because the field contentT ≡ Tµν Tµν and an appropriate coeffi-
cient form a general dimension-8 operatorS T .

In addition, a loop-induced dimension-6 operator will be generated by diagrams of the form

12
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The resulting four-fermion interactions couples two axial-vector currents

c6∑
(
ψ̄γ5γµψ

)2
(1.29)

where the sum is over all fermions in the theory. The coefficientc6 can be estimated by naive
dimensional analysis [20]. Such KK graviton contributions can be compared to effects from a
modified theory with non-symmetric connection [21]. Generically, all these loop effects will affect
electroweak precision observables.

Our final consideration is real graviton emission off any kind of StandardModel process,
preferably a so-called standard candle [22] which we expect to understand well from a theory as
well as an experimental perspective. Calculating amplitudes corresponding to diagrams such as

requires polarization tensors for external gravitons. We can for example construct five tensors
εs

µν wheres= (1,2, · · ·5) by taking outer products of the three massive gauge boson polarization
vectors. A convenient parameterization is given in Ref. [13]. Most importantly, theεs

µν obtained
this way satisfy

∑
s

εs
µν (k)εs

αβ (k) = Pµναβ (k) (1.30)

when summed over all polarization states. This brief review of calculational details now puts us
into a position to discuss LHC processes.

1.3 Collider observables

In this section we summarize possible direct and indirect signatures for massive Kaluza–Klein
gravitons at colliders [12, 23, 24, 25, 26]. There is also a large amountof phenomenological work
confronting electroweak precision data [27] or astrophysical data [28] and large extra dimensions,
in part orthogonal to their collider effects [9], which we will not have space to cover here. Current
limits strongly constrain ADD models with few extra dimensions favoringn> 2. As we will see in
the following sections, such a scenario is also the most conceptually interesting. For two to seven
extra dimensions, strong direct constraints onM⋆ come from recent Tevatron data [29, 30].

Of the two classes of collider observables we first consider the real emission of Kaluza–Klein
gravitons at the LHC [12, 31]. The outgoing gravitons cannot be detected in our detectors — similar
to neutrinos or possible dark matter agents — so they appear as missing transverse momentum or
missing transverse energy/ET . One process to radiate gravitons off is single jet production [24].
The Feynman rules discussed above allow us to compute squared-averaged amplitudes for partonic
sub-processes such asqg→ qG, qq̄→ gG andgg→ gG all of which lead to the same final state:
one hard QCD jet and missing transverse energy/ET . Due to the strong QCD coupling this is the
most likely real emission search channel.

For the graviton–jet final state there is an obvious irreducible background coming fromqq̄→
Zg where the gluon is emitted from an initial-state quark and theZ decays into neutrinos. This
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background is known to next-to-leading order [32], but at large partonic event energies the theo-
retical rate prediction becomes increasingly hard, due to large logarithms. Extracting new physics
from pure QCD signatures at the LHC will therefore always be tough andsomewhat dangerous (as
we have seen in the past at the Tevatron, where many signals for new physics have come and gone
over the years).

Due to the structure of the parton densities of quarks and gluons inside a proton, Tevatron
searches for large extra dimensions concentrate onγ/ET final states. Similarly, at the LHC a one
photon final state could be resolved in the detectors optimized for Higgs searches in theH → γγ
decay channel. Hard single photon events would constitute a revealing signature for physics beyond
the Standard Model.

Similarly, the Drell–Yan processqq̄→ γ∗,Z → ℓ+ℓ− with two leptons (electrons or muons) in
the final state is the arguably best known hadron collider process [33].A large amount of missing
energy in this channel would be a particularly clean signal for physics beyond the Standard Model
at the LHC [34]. Depending on the detailed analysis, both of these electroweak signatures do
have smaller rates than a jet+graviton final state, but the lack of QCD backgrounds and QCD-sized
experimental and theory uncertainties result in discovery regions of similarsize [12, 31].

Going back to the theoretical basis, the partonic cross section for the emission of one graviton
is not the appropriate observable. What we are interested in is the entire KKtower contributing to
the missing energy signature

dσ tower = ∑
~n

dσgraviton=
∫

dN dσgraviton (1.31)

where
∫

dN is an integration over ann-dimensional sphere in KK density space

∫
dN≡ Sn−1 |~n|n−1 d|~n| Sn−1 =

2πn/2

Γ(n/2)
(1.32)

In the ultraviolet the sum over~n is truncated to those states which satisfy kinematic constraints. In
particular, the KK mass satisfiesmKK = |~n|/r <

√
swhere

√
s is the partonic center of mass energy

(related to the proton center of mass energy vias= (14 TeV)2 x1x2).
The KK state density we can rewrite into a mass density kernel usingdmKK/d|~n| = 1/r

dN = Sn−1 rnmn−1
KK dmKK =

Sn−1

(2πM⋆)n

(
MPlanck

M⋆

)2

mn−1
KK dmKK . (1.33)

This implies for the production of a Kaluza–Klein tower

dσ tower = dσgraviton Sn−1mn−1
KK dmKK

(2πM⋆)n

(
MPlanck

M⋆

)2

. (1.34)

The key aspects of this formula are:

– The factorM2
Planck from the KK tower summation can be absorbed into the one-graviton

matrix element squared. The effective coupling of the entire tower at the LHC energy scale
E is thenE/M⋆ & 1/10 instead ofE/MPlanck, i.e. roughly of the same size as the Standard
Model gauge couplings.
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Figure 1: Left: production rates for graviton–jet production at the LHC. The cut on the transverse mass of
the jet indirectly acts as a cut on the transverse momentum from the graviton tower, without the additional
experimental smearing from measuring missing transverse energy. For the curve (a) a cutoff procedure sets
σ(s) = 0 whenever

√
s> M⋆. For curve (b) themKK integration in eq.(1.34) includes the region

√
s> M⋆.

Figure from Ref. [12]. Right: 5σ discovery contours for real emission of KK gravitons in the plane ofM⋆

and the UV cutoff onσ(s). The transition to thin lines indicates a cutoffΛcutoff aboveM⋆. Figure from
Ref. [9]. Note thatMD in both figures corresponds toM⋆ in the text.

– In particular for largern the integral is infrared finite with the largest contributions arising
from higher mass modes. This is the effect that KK modes are more tightly spaced as we
move to higher masses and even more so for a increasing number of extra dimensionsn.

– AlthoughmKK appears explicitly in the polarization sum and thus is naively present in the
amplitude, it does not appear once we square the amplitude due to the arguments following
eq.(1.28). ThemKK integration at least on the partonic level —i.e. without the parton
densities — can be done without specifying the process.

∫
dN =

∫ Λcutoff

0

Sn−1

(2πM⋆)n

(
MPlanck

M⋆

)2

mn−1
KK dmKK =

Sn−1

(2πM⋆)n

(
MPlanck

M⋆

)2 Λn
cutoff

n
(1.35)

In this form we indeed see that our effective theory of KK gravity requires a cutoff to reg-
ularize an ultraviolet divergence, simply reflecting the fact that gravity is not perturbatively
renormalizable. The crucial question becomes if the prediction of LHC observables is sensi-
tive toΛcutoff.

– For real graviton production the kinematic constraintM = 0 formKK >
√

sprovides a natural
ultraviolet cutoff on then-sphere integration. Therefore the result is insensitive to physics far
above the LHC energy scale, which might or might not cover the fundamental Planck scale.

In the left panel of Fig.1 we see that the jet +/ET cross section becomes seriously dependent
on physics aboveM⋆ the moment the Planck scale enters the range of available energies at the LHC√

s. 3 TeV. Above this threshold the difference between curves (a) and (b)is small.
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In the region where the curves differ significantly, UV effects of our modelling of the KK
spectrum become dominant and any analysis based on the Kaluza–Klein effective theory will fail.
Luckily, the parton distributions, in particular the gluon density, drop rapidlytowards larger parton
energies. This effects effectively constrains the impact of the UV regionwhich includes

√
s> M⋆.

In the right panel of Fig.1 we see the 5σ discovery reach at the LHC with a variable ultraviolet
cutoff Λcutoff on the partonic collider energy. For each of the lines there are two distinct regimes: for
Λcutoff < M⋆ the reach inM⋆ increases with the cutoff. Once the cutoff crosses a universal threshold
around 4 TeV the discovery contours reach a plateau and become cutoffindependent. This universal
feature demonstrates and quantifies the effect of the rapidly falling partondensities. The fact that
the signal decreases with increasing dimension shows that the additional volume element from the
n-sphere integration is less than the 1/M⋆ suppression from each additional dimension.

Virtual gravitons at the LHC demand a markedly different analysis since bydefinition these
signals do not produce gravitational missing energy. The dimension-8 operatorS (s)T as shown
in eq.(1.28) is induced by integrating out a whole graviton tower exchange ins-channel processes
at the LHC such as

In the Standard Model some of these final states, leptons and weak gaugebosons, can only
be produced by aqq̄ initial state. Because at LHC energies the protons mostly consist of gluons,
such indirect graviton signatures get a head start. The Tevatron mostly looks for in two-photon or
two-electron final states [30]. At the LHC the cleanest signal taking into account backgrounds as
well as experimental complications is a pair of muons [23]. In Higgs physics the corresponding
channelH → ZZ→ 4µ is referred to as the ‘golden channel’, because it is so easy to extract.

In the Standard Model the Drell–Yan process mediates muon pair productionvia thes-channel
exchange of on-shell and off-shellγ andZ bosons. Aside from the squared amplitude for graviton
production, these Standard Model amplitudes interfere with the graviton amplitude, affecting the
total rate as well as kinematic distributions. This mix of squared amplitudes and interference effects
make it hard to apply any kind of golden cut to cleanly separate signal and background. One useful
property of thes-channel process is that the final state particles decay from a pured-wave (spin-2)
state. This results in a distinctive angular separation∆φ of the final state muons [35].

What we are most interested in, though, is the theoretical basis of the dimension-8 operator,
i.e. its derivation from the KK effective theory. Its dimension 1/m4 coefficient arises partly from
the coupling and partly from the propagator structure

S (s) =
1

M2
Planck

∑ 1

s−m2
KK

. (1.36)

It exhibits a sum over the KK tower with its typical small mass spacing. To replace it by an integral
we need a quantity acting as∆mKK which when sent to zero provides the Riemannian measure. In
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a similar vein to the real mission case we can replaceMPlanck with its definition in terms ofM⋆.
The factor ofrn appearing in the denominator is precisely(∆mKK )2. This gives us an integral over
KK masses. Next, recalling thatmKK ∼ |~n|/r we realize that the only relevant coordinate in the
KK state space is the radial distance. Therefore, it is possible to performthe angular integration
explicitly:

S (s) =
1

M2+n
⋆

∫
dnmKK

1

s−m2
KK

.

=
Sn−1

M2+n
⋆

∫
dmKK

mn−1
KK

s−m2
KK

(1.37)

The crucial point is that similar to eq.(1.35) this integral is divergent forn > 1, i.e. for most
phenomenologically relevant scenarios. This divergence of the integrals in eqs.(1.35,1.37) is the
unique feature of ADD models which are based on an effective field theory of gravity. It can only
be cured by going a step beyond the effective theory and employ some kindof UV completion of
extra-dimensional gravity.

Previously, we mentioned that summing over virtual graviton states is similar to performing
a loop-type integral. However, unlike for renormalizable gauge theories our effective theory of
gravity has no such thing as a well-defined counter term to absorb the UV divergence. The remedy
we use in this first discussion is to cut off the integral explicitly at the limiting scaleof our effective
theory. In the spirit of an effective theory we study the leading terms ins/Λ2

cutoff.

S (s) =
Sn−1

M2+n
⋆

∫ Λcutoff

0
dmKK

mn−1
KK

s−m2
KK

=
Sn−1

M4
⋆(n−2)

(
Λcutoff

M⋆

)n−2[
1+O

(
s

Λ2
cutoff

)]
≈ Sn−1

n−2
1

M4
⋆

(1.38)

where in the final line we identifyM⋆ ≡ Λcutoff, lacking other reasonable options. Obviously, this
relation should be considered an order-of-magnitude estimate rather than an exact relation valid
to factors of two. For simplicity this term is further approximated in terms of a generic mass
scaleS = 4π/M4 in the literature [12, 20]. A number of interesting properties of virtual graviton
exchange diagrams we can summarize.

– The identification in eq.(1.38) only parameterizes the effects of the transitionscale between
the well known linearized theory of gravitons and whatever new physics occurs above the
scaleM⋆, assuming the effective theory captures the dominant effects.

– The generic 2→ 2 s-channel amplitude 4π/M4 ·T requires powers of the process energy
in the numerator. Unitarity is violated at somes signifying the breakdown of our effective
theory. For first collider predictions it suffices to make a hard cut on events with

√
s> Λcutoff.

This as it will turn out poor approximation will be addressed later.

– The functionS (s) includingΛcutoff can be integrated analytically for a Wick rotated graviton
propagator 1/(s+m2

KK ), but the interpretation of particles in an effective field theory will be
lost beyond a leading approximations≫ m2

KK or s≪ m2
KK .
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Figure 2: 5σ discovery contours for discovery of extra dimensions via virtual graviton contributions to the
Drell–Yan process. Figure from Ref.[9].

Moving on to some results, the LHC reach inMD is given in Fig.2, again in the presence of a
variable cutoffΛcutoff. As opposed to the real emission case shown in Fig. 1, the result is clearly
sensitive toΛcutoff. Only for n = 1 this is not true, reflecting that

∫ ∞
0 dm m−2

KK in fact converges.
Along a similar thread of thought, the sensitivity becomes more pronounced withincreasingn
as the integral is more divergent. The value ofΛcutoff depends on the details of the transition to
UV behavior. Phrased differently, the LHC production cross section involving virtual graviton
exchange is seriously sensitive to the UV physics of quantum gravity. Thiscutoff dependence and
the non-unitarity of gravitational scattering amplitudes will be our main focus in the final section
of these notes.

2. Warped extra dimensions

Our main focus thus far have been large flat dimensions as suggested by the ADD model. How-
ever, there is the alternative Randall–Sundrum model [36, 37] with a wealthof phenomenological
applications [38, 39]. It also solves the hierarchy problem using an extra space dimension and
claiming that the fundamental Planck scale resides around the TeV scale. The mechanism which
generates the large hierarchy betweenM⋆ andMPlanckutilizes a spatially warped extra dimension.

For completeness, we also mention a third class of phenomenologically relevant extra dimen-
sional models, universal extra dimensions UED [40]. In this model all Standard Model particles
exist in the higher dimensional space, but the geometry is such that there is an experimentally con-
strained mass gap between the ground state and the first excited state. At theLHC, we would for
example expect to see KK resonances of the gluon,i.e. a massive color octet vector particle. Since
UED models do not provide a straightforward link to quantum gravity effectswe will not consider
them in detail.

For the Randall–Sundrum model, we compactify our 5th dimensiony on aS1/Z2 orbifold.
S1 simply means a circle, equivalent to periodic boundary conditions.S1/Z2 means we map one
half of this circle on the other, so we really only look at half a circle with no periodic boundary
conditions, but two different branes aty = 0 andy = b. The key observation now is that nobody
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can stop us from postulating a 5-dimensional metric of the kind

ds2 = e−2k|y|ηµν dxµdxν −dy2 ⇔ gAB =

(
e−2k|y|ηµν 0

0 η jk

)
(2.1)

The metric in the four orthogonal directions toy depends on|y|. The absolute value appearing in
|y| corresponds to theZ2 (orbifolding) asS1/Z2. When looking at our (3+1)-dimensional brane we
can take into account the warp factore−2k|y| in two ways (with some caveats):

1. Usegµν = ηµν e−2k|y| everywhere, which is a pain but possible.

2. Replacexµ in five dimensions by effective coordinatese−k|y|dx̃µ andgµν by g̃µν = ηµν where
the tilde indicates 4-dimensional variables.

The second version means we shrink our effective 4-dimensional metric along y and forget about
the curved space, because the warp factor does not depend onxµ . The general–relativity action for
Newtonian gravity we can write in terms of the 5-dimensional fundamental Planck scaleMRS. In
our hand–waving argument we have to transform the 5-dimensional Ricciscalar. Just looking at the
mass dimensions we see thatRhas mass dimension two (or by looking at the definition ofRwe find
space dimension minus two). This suggests that the 4-dimensional Ricci scalar R̃ should roughly
scale likex−2 ∼ x̃−2exp(+2k|y|), leading us to guessR∼ R̃exp(+2k|y|). The Einstein–Hilbert
action with separated ˜x andy integrals reads

S= −1
2

∫ b

0
dy
∫

d4x̃e−4k|y| RM3
RS

∼−M3
RS

2

∫ b

0
dye−2k|y|

∫
d4x̃R̃

= −M3
RS

4k

(
1−e−2kb

)∫
d4x̃ R̃

∼−M3
RS

4k

∫
d4x̃R̃ assumingkb≫ 1

≡−M2
Planck

2

∫
d4x̃ R̃ with M2

Planck∼
M3

RS

2k
. (2.2)

In the last step we have applied the usual matching with 4-dimensional Newtonian gravity. Note
that this does yet not solve the hierarchy problem becauseMRS ∼ k ∼ MPlanck∼ 1019 GeV looks
like the most reasonable solution to the matching condition.

Fortunately, this is not the whole story. Consider now the Standard Model Lagrangian on the
TeV brane (y = b) in the x̃µ coordinates,i.e. including the warp factor. To solve the hierarchy
problem, the scalar Higgs Lagrangian is obviously crucial

SSM =
∫

d4x̃e−4kb [(DµH)†(DµH)−λ (H†H −v2)2 + ...
]

(2.3)

From the Higgs mass term we see that we can rescale all Standard Model fields and mass parameters
— in this caseH as well asv — by the warp factor on the TeV brane exp(−kb). The same we have
to do for the space coordinate, as described above and for gauge fields appearing in the covariant
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derivative. To get rid of the entire pre-factor from the warped metric weneed to absorb four powers
of exp(−kb) in each term contributing to the Standard Model Lagrangian.

Four is a magic number in Lagrangians of renormalizable gauge theories: it fixes the mass
dimension of the Lagrangian. This means that if we only consider contributions toLSM of mass
dimension four, we can simply rescale all Standard Model fields accordingto their mass dimension:

H̃ = e−kbH scalars

Ãµ = e−kbAµ or D̃µ = e−kbDµ

Ψ̃ = e−3kb/2Ψ fermions (2.4)

which also means for all masses

m̃= e−kbm

ṽ = e−kbv (2.5)

Yukawa couplings as dimensionless parameters are not affected. If we now assumekb∼ 35 we do
solve the hierarchy problem:

ṽ∼ 0.1e−kb MPlanck∼ 0.1 TeV (2.6)

The fundamental Higgs mass and the fundamental Planck mass are indeed ofthe same order, only
the 4-dimensional Higgs mass (like all mass scales on the TeV brane) appears smaller, because of
the warped geometry in the 5th dimension. In contrast, on the Planck brane withits warp factor
exp(−k|y|) = 1 nothing has happened.

Before we introduce gravitons as metric fluctuations into our RS model, it turns out to be
useful to rewrite the metric by rescaling the 5th dimensiony→ zwith

ds2 = e−A(z) (gµν dxµdxν −dz2) (2.7)

To simplify things we assume for the following brief discussiony > 0. This is obviously justified,
as long as we limit our interest to the TeV brane. First, we defineA(z) = 2kyand rewrite the metric

e−2ky = e−A(z) =
1

(1+kz)2 ⇒ dy= e−kydz= e−A(z)/2 dz (2.8)

The Planck brane aty = 0 sits atz= 0. Assumingk > 0 we find thaty > 0 corresponds toz> 0.
The derivative indeed produces the correct pre-factor ofdz2.

To introduce tensor gravitons we expand the 4-dimensional part of the metric:

ds2 = e−A(z) (ηµν + hµν (x,z)dxµdxν − dz2) (2.9)

Einstein’s equation without sources but in the presence ofA(z) includes a linear term which does
not look at all like an equation of motion and which we therefore do not like. We can get rid of it
rescaling (as usual)hµν = e(2+n)kb/4h̃µν , according to its bosonic mass dimension[h] = m(2+n)/2.
This gives

−1
2

∂C∂Chµν +
2+n

4
∂CA ∂Chµν = −1

2
∂C∂Ch̃µν +

(
9
32

A′2− 3
8

A′′
)

h̃µν = 0 (2.10)
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as the equation of the motion for the rescaled graviton fieldh̃µν . We can solve this equation of the
motion by separating variables̃hµν (x,z) = ĥµν (x) Φ(z) and by giving mass to the tensor graviton
solving∂µ∂ µ ĥµν = m2ĥµν . The equation of motion

−∂ 2
z Φ+

(
9
16

A′2− 3
4

A′′
)

Φ = m2Φ (2.11)

is a Schrödinger-type equation forΦ with a potential term

V(z) =
9
16

4k2

(k|z|+1)2 +
3
4

2k2

(k|z|+1)2 =
15
4

k2

(k|z|+1)2 (2.12)

This equation is first of all solved by the zero mode

h(0)
µν = e+3A/4 h̃(0)

µν = e+3A/4 ĥ(0)
µν (x)Φ(0)(z) ≡ ĥ(0)

µν (x) (2.13)

which in terms of the 5th coordinatey meansΦ(0)(y) = e−3k|y|/4 = e−3kb/4 on our TeV brane. So
indeed, gravity on the TeV brane is weak because of the exponentially suppressed wave-function
overlap.

Again, using the Schrödinger-type equation withV(z) as given in eq.(2.12) we can compute
the KK graviton masses in our 4-dimensional effective theory The boundary conditions∂zhµν = 0
on the branes are given by the orbifold identificationy → −y and assumingz > 0. On the two
different branes we find

∂ 2
z Φ = −3

2
kΦ
∣∣∣∣
Planck

∂ 2
z Φ = −3

2
k

kz+1
Φ
∣∣∣∣
TeV

(2.14)

The solution of the equation of motion can now be expressed in terms of Bessel functions, which
are numbered by an index which corresponds to the mass introduced above:

Φm(z) =
1√

kz+1

[
amY2

(
m

(
z+

1
k

))
+bmJ2

(
m

(
z+

1
k

))]
(2.15)

The masses of these modes are given in terms of the roots of the Bessel function J1(x j) = 0 for
j = 1,2,3,4· · ·

mj = x j ke−kb ∼ x j MPlancke
−kb ∼ x j TeV with x j = 3.8,7.0,10.2,16.5· · · (2.16)

This means that the KK excitations in the Randall–Sundrum model with one warped extra dimen-
sions are almost, but not quite equally spaced. If we remember that we can choosekb∼ 35 to
solve the hierarchy problem they are in the TeV range,i.e. in contrast to the ADD model not only
resolvable by the LHC experiments put most likely out of reach beyondj = 1.

In the last step we need to compute the coupling strength of these heavy KK gravitons to
matter, like quarks or gluons. Remember that in the ADD case we find tiny Planck-suppressed
couplings for each individual KK graviton, which corresponds to an inverse-TeV-scale coupling
once we integrate over the KK tower. For the warped model the relative coupling strengths on
the Planck brane and on the TeV brane are approximately given by the ratioof the wave function
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overlaps. While the zero-mode graviton has to be strongly localized on the Planck brane, to explain
the weakness of Newtonian graviton the TeV brane, the KK gravitons do not have strongly peaked
wave functions in the additional dimension. From eq.(2.15) we can read offthe ratio of wave
functions — assuming that the Bessel functions with their normalized argumentswill not make a
big difference

Φ(z)
∣∣
TeV

Φ(z)
∣∣
Planck

∼
√

kz+1
∣∣
Planck√

kz+1
∣∣
TeV

∼ 1

ekb/2
∼ 1TeV

MPlanck
(2.17)

The coupling of the KK states is given by the left-hand side of Einstein’s equations which enters
the Lagrangian just as for the large extra dimensions. We have to distinguishbetween the flat
zero mode with un-suppressed wave function overlap and the KK modes withthis ratio of wave
functions

L ∼ 1
MPlanck

Tµν h(0)
µν +

1
MPlancke−kbTµν ∑h(m)

µν (2.18)

We see that the heavy KK gravitons indeed couple with TeV-scale gravitational strength and can
be produced at colliders in sufficient numbers, provided they are not too heavy. Similarly to the
flat extra dimensions, the couplings of the different KK excitations are (approximately) universal.
Remembering the way the effective theory of gravity breaks down in ADD models we see that
integrating over an ultraviolet regime of a KK tower of gravitons is not a problem in RS models.
However, in the large-energy limit we do find that first of all scattering amplitudes computed in the
effective RS model violate unitarity, and that secondly in the ultraviolet regimethe graviton widths
become large, which means the effective KK picture becomes inconsistent. Both of these reasons
again ultimately require an ultraviolet completion of gravity.

Obviously, this is phenomenologically very different from the flat (ADD) extra dimensions.
For warped extra dimensions we will not produce a tightly spaced KK tower,but for example
distinct heavys-channel excitations. One advantage of such a scenario is of course that we can
measure things like the KK masses and spins at colliders directly [35]. The disadvantage for phe-
nomenology is that such resonance searches are boring and can be mapped onZ′ searches [41, 42]
one-to-one.

3. Ultraviolet completions

As explicitly seen in the last two sections, the effective field theory description of extra-
dimensional gravity breaks down once the LHC energies approach the range of the fundamental
Planck scale. This feature is expected — if a coupling constant has a negative mass dimension the
relevant scale in the denominator has to be cancelled by an energy in the numerator. Once this
ratio of the typical energy over the Planck scale becomes large gravity appears to become strongly
interacting and will eventually encounter ultraviolet poles. These poles cannot be absorbed by our
usual perturbative renormalization, which means we cannot meaningfully quantize gravity without
an additional modification of this ultraviolet behavior.

We know several possible modifications of this dangerous ultraviolet behavior [43]: most
well known, string theory includes its own fundamental scaleMS which is related to a finite size

22



P
o
S
(
C
L
A
Q
G
0
8
)
0
0
9

UV-Complete Extra Dimensions Tilman Plehn

of its underlying objects. Such a minimum length acts as a an ultraviolet cutoff in the energy,
which regularizes all observables described by the gravitational interaction [44, 45]. An alternative
approach which avoids any ad-hoc introduction of radically different physics above some energy
scale is based on the ultraviolet behavior of gravity itself [46]: the asymptoticsafety scenario is
based on the observation that the gravitational coupling develops an ultraviolet fixed point which
avoids the ultraviolet divergences naively derived from power counting [47, 48, 49, 50, 51].

Going back to large flat extra dimensions and the ADD model the divergenceof the integral
representing the sum over KK states (for example shown in eq.(1.37)) is a major phenomenological
problem. The unphysical cutoff dependence seriously weakens our ability to make precise LHC
predictions or interpret possible LHC results. Furthermore, at a conceptual level this break-down of
the KK effective theory already at LHC energies insinuates the immediate need for a more complete
description of gravity [52, 53]. There are a number of effective-theory proposals which side-step
this complication by defining the integral in a cutoff independent scheme. Onesuch treatment
relates to the eikonal approximation to the 2→ 2 process [54], another involves introducing a finite
brane thickness [55]. In this example, the gravitational coupling is exponentially suppressed above
M⋆ by a brane rebound effect. This is applied to the case of high energy cosmic rays interacting via
KK graviton exchange [56]. However, none of these models offer a compelling UV completion for
the KK effective theory.

The fundamental deficiency in the description of extra-dimensional gravitywe discuss based
on two approaches: in the context of string theory, one initial motivation forthe ADD model [57],
the expectation is for string Regge resonances to appear above the stringscale. On the other hand,
following our original motivation for the ADD model — its minimal structure with no additional
states and a very straightforward geometry — we will focus on a UV completionbased on the
observation of asymptotic safety [46, 58]. This idea can be applied to LHC phenomenology in
ADD [52] or RS [53] models.

3.1 String theory

One possible ultraviolet completion of gravity could be string theory with its finite minimum
length scale regularizing the ultraviolet behavior of transition amplitudes. Forexample, we can
compute the scatteringqq̄→ µ+µ− using open string perturbation theory. Without tagging a certain
vacuum with the Standard Model as its low-energy limit, we can nevertheless construct realistic
string amplitudes for generic gauge and fermion fields. The first step is to restrict the (massless)
fields to a D3 brane. Gauge bosons are included by adding Chan-Paton factorsλ a

i j at the string
endpoints. Fori, j running from 1 toN this impliesN2 additional degrees of freedom, identical to
the generators forU(N). The Standard Model subgroupsSU(2) andU(1) are thus easily embedded.
The helicity amplitudes for 2→ 2 scattering are simply analytic functions ins, t andu together with
the common Veneziano amplitude [44]

S (s, t) =
Γ(1−α ′s)Γ(1−α ′t)

Γ(1−α ′s−α ′t)
. (3.1)

23



P
o
S
(
C
L
A
Q
G
0
8
)
0
0
9

UV-Complete Extra Dimensions Tilman Plehn

in terms of the inverse string scaleα ′ = 1/M2
S. While we do not exactly know the size of this scale

it should lie between the weak scalev = 246 GeV and the fundamental Planck scaleM⋆. For our
purposes it suffices to consider three distinct limits:

– In the hard scattering limits→ ∞ and for a fixed scattering angle (or equivalently fixed
Mandelstam ratio of variablest/s) the amplitude behaves as

S (s, t) ∼ e−α ′(s logs+t logt) (3.2)

This can be seen by applying Stirling’s approximation. The physics is immediatelyapparent:
due to the finite and dimensionful string scaleα ′ = 1/M2

S all scattering amplitudes becomes
weak in the UV. Unfortunately, this particular limit is not very useful for LHCphenomenol-
ogy.

– The Regge limit for small angle high energy scattering in terms of Mandelstam variables
meanss→ ∞ with t fixed. In this limit the poles in theΓ functions determine the structure:
for

√
s> MS there appear single poles at negative integer arguments 1− s/M2

S = −(n+ 1)

wheren = 1,2, .... These poles lie ats= nM2
S, which tells us that string resonances appear

as a tower of resonances in thes channel. Starting from the energies aroundMS this UV
completion consists of a string of real particles with masses

√
nMS.

– The leading corrections inα ′ valid for energies
√

s below the string scale is

Γ(1−s/M2
S) Γ(1− t/M2

S)

Γ(1− (s+ t)/M2
S)

= 1− π2

6
st

M4
S

+O

(
1

M6
S

)
. (3.3)

This form of the string corrections corresponds to our KK effective field theory, modulo a
normalization factor which relates the two mass scalesMS andMPlanck. Hence, this series in
MS is not what we are interested as the UV completion of our theory.

– The physical behavior for scattering amplitudes above the string scale is acombination of
Regge and hard scattering behavior. In other words, equally spaced string resonances to-
gether alongside exponential suppression, but at colliders the resonances should be the most
visible effects.

So far, we have only considered the exchange of string resonances of Standard Model gauge
bosons, not graviton exchange. The string theory equivalent of ourprocess generating the effective
dimension-8 operator is the scattering of four open strings via the exchange of a closed string. This
amplitude is insignificant compared to the string excitations in the vicinity of the stringscale, where
eq.(3.3) is valid [45]. Most notably, the KK mass integration is finite for alln due to an exponential
suppression of similar origin as the hard scattering behavior noted above.For fields confined to a
D3 brane this integral is

S (s) ∼
∫

d6m
eα ′(s−m2)/2

s−m2 . (3.4)
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Figure 3: Left: invariant mass distribution for LHC dilepton production. The parameterT = 1 is the Chan-
Paton number. Figure from Ref.[45]. Right: normalized angular distributions forJ = 1,2,3 resonances.
Figure from Ref. [45].

An explicit exponential factor regularizing them integral also appears in the modification using a
finite brane thickness [55]

S (s) ∼
∫

d6m
e−α ′m2

s−m2 . (3.5)

These results are thus approximately equivalent in the low
√

s region for them integration. The
finite brane thickness approach still violates unitarity for larges.

Matching the string theory result with the effective theory amounts to a matchingbetween the
string scale and the cutoff scale appearing in the dimension-8 operator written as in eq.(1.38)

1
M4 ∼ π2

32
g4

M4
S

(3.6)

This is the basis on which to argue that Regge string excitations are the dominant process for high
energy particle scattering. Discovering string degrees of freedom at the LHC is primarily concerned
with observing these resonances. An example for a possible distribution plot is given in the left
panel of Fig.3. In addition, the partial wave decomposition of a string Reggeamplitude shows
superposition of different angular momentum state. Each resonance is degenerate with respect
to the angular momentum numberj. This degeneracy manifests itself in the angular correlations
between final states ins-channel processes (right panel of Fig.3).

As mentioned above, the issue with the naive phenomenology of RS gravitonsas well as string
excitations is no experimental or phenomenological challenge to the Tevatronor LHC communities.
For example the Tevatron experiments have been searching for (and ruling out) heavy gauge bosons,
for a long time. So while a discovery of aZ′ resonance at the LHC would trigger a great discussion
of its origin, including KK gravitons, string resonances, KK gauge bosons, or simple heavyZ′

gauge bosons from an additional gaugedU(1) symmetry [42], there is little to learn from such
scenarios at this stage. Most of the papers you will find on the topic have not much to say about
the generic structure and challenges of such signatures at hadron colliders.
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3.2 Fixed-point gravity

If all hints concerning the asymptotic safety of gravity should hold there is noneed at all to alter
the structure of gravity at high energies — gravity will simply be its own ultraviolet completion [46,
47, 48] For our phenomenological discussion we will only sketch some qualitative features of
asymptotic safety [59, 49, 50, 51]. Although most in this field is developed in four dimensions, the
results generalize in a straightforward manner [58]. This allows us to splicetogether results from
two seemingly disjoint fields and consider asymptotic safety in extra dimensionalmodels. The
major principles for asymptotic safety in gravity are

– The metric carries the relevant degrees of freedom in both the classicaland quantum regime.

– IR and UV physics lie on a single trajectory and are connected by the renormalization group
flow.

– Relevant degrees of freedom are anti-screening.

– the UV behavior is determined by an interacting (non-gaussian) fixed point of the gravita-
tional coupling.

– Residual interactions appear 2-dimensional

Evidence for asymptotic safety comes in many forms: the concept of asymptoticsafety or non-
perturbative renormalizability was proposed originally in 1980 [46]. The first hints that gravity
might have a UV fixed point were uncovered using a 2+ε expansion for the space-time dimension-
ality [60]. Further evidence was collected in the 1/N expansion whereN is the number of matter
fields coupled to gravity [47]. More modern results use exact renormalization group methods [48].
There are a number of reviews of the subject [59], and on the necessary non-perturbative tech-
niques, namely the exact flow equation for the effective average action or Wetterich equation [61].
Gravitational invariants includingR8 and minimal coupling to matter are consistently included in
flow equations without destroying the fixed point [59]. More recently, it has been shown that in-
cluding invariants proportional to divergences in perturbation theory donot give divergent results
non-perturbatively [62]. Furthermore, there is independent evidence for asymptotic safety com-
ing from recent lattice simulations, causal dynamical triangulations [63]. Universal quantities, like
e.g. critical exponents, computed using this method agree non-trivially with resultsderived using
renormalization group methods.

The key point for our application is that in the UV the coupling exhibits a finite fixed point
behavior. This ensures that the UV behavior of the complete theory is dominated by fixed point
scaling, rendering all our computed transition rates weakly interacting at allenergy scales.

It is useful to start again from the Einstein–Hilbert action to calculate the scaling behavior for
the gravitational couplingGN ∼ 1/M2+n

Planck

Γ =
∫

ddx
√

g

{
1

16πGN
(−R+2Λcc)+O(R2)+Lmatter+Lgauge fixing+Lghost

}
. (3.7)

The gauge-fixing and ghost terms in the Lagrangian we will ignore in the following. The effective
action eq.(3.7) we truncate to only the cosmological constant and Ricci scalar terms. It is necessary
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to include the cosmological constant because the flow inGN is correlated with a flow inΛcc, so
even ifΛcc is set to zero at some point, quantum effects will generate a non-zero value.

The dependence of dimensionless couplings on the energy scale is relevant to understanding
quantum effects and thus we define a dimensionless Newton constant [48,50, 51, 49]

GN → GN

Z(µ)
≡ GN(µ) ≡ g(µ)

µ2+n (3.8)

not to be confused with the determinant of the metric
√

g, which will not appear anymore in the
following. The Callan-Symanzik equation forg(µ) can be derived in the standard way: first, we
note that as we vary the energy scale Newton’s constant undergoes multiplicative renormalization.
In addition, we defineη = −µ d logZ(µ)/dµ as its anomalous dimension. This anomalous di-
mension encodes how quantum effects affect the scaling behavior of our theory. Applying the
differential operatorµ d/dµ = d/ logµ to the definition of the dimensionless coupling we see that

βg =
d

d logµ
g(µ) = [2+n+η ] g(µ) . (3.9)

This is the exact beta function of Newton’s constant. Although it looks innocuous enough at first
glance, the parameterη (g) will in general contain contributions from all couplings in the La-
grangian, not only the dimensionless Newton’s constant. However, one important property is im-
mediately apparent: forg = 0 we have a perturbative gaussian fixed point,i.e. an IR fixed point
which corresponds to classical general relativity where we have not observed a running gravita-
tional coupling. Secondly, depending on the functional form ofη (g) the prefactor 2+ n+ η (g)

can vanish, giving rise to a a non-gaussian fixed pointg⋆ 6= 0. The anomalous dimension at this
ultraviolet fixed point will take only integer values

η (g⋆) = −2−n. (3.10)

For two space-time dimensions the anomalous dimension vanishes in which case the fixed point
is at zero coupling and becomes a gaussian fixed point, another manifestation of the perturbative
renormalizability of two-dimensional gravity. It is tempting to think thatGN(µ) will vanish at the
UV fixed point so gravity is really asymptotically free. However, Newton’s dimensionful constant
does not have a physical meaning itself, and only when divided by an area does it acquire sig-
nificance. The corresponding dimensionless coupling does not vanish,which means the correct
statement is that in 4+ n dimensions the theory withg⋆ 6= 0 is still coupled, just not ultravio-
let divergent [64, 58]. Using the exact renormalization group flow equation we can compute the
anomalous dimensions [51], which depends on the shape of the UV regulator. The beta function of
the gravitational coupling becomes — neglecting the cosmological constant, which does not alter
the qualitative behavior of the system

βg(g) =
(1−4(4+n)g)(2+n)g

1− (4+2n)g
η (g)=

2(2+n)(6+n)g
2(2+n)g−1

(3.11)

Indeed, we observe the two fixed points: the IR fixed pointβg = 0 appears at zero couplingg = 0
and the UV fixed pointg∗ = 1/4/(4+n) for an anomalous dimension ofη (g∗) = −2−n.
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One way of interpreting the physical effects of the gravitational UV fixed point is to mod-
ify the original calculations by defining a running Newton’s coupling and evaluate it at the energy
scale given by the respective process. This approach is in complete accordance with the usual QCD
calculations for high-energy colliders, based on a running strong coupling. To derive a renormal-
ization group equation for the gravitational coupling we can integrate this form with respect to a
reference valueg0 = g(µ0) [52]

log
g(µ)

g0
− 6+n

2(4+n)
log

g(µ)−g∗
g0−g∗

= (2+n) log
µ
µ0

. (3.12)

To motivate one method of including the ultraviolet fixed point in a cross sectioncalculation
the renormalization group equation eq.(3.12) can be cast into the form [65,51, 53]

g(µ)

g0

(
g0−g∗

g(µ)−g∗

)ωg∗

=

(
µ
µ0

)2+n

with ω =
6+n

2(4+n)g∗
(3.13)

Forω ∼ g∗ which happens to be a reasonable approximation this becomes simply

g(µ) =

g0

(
µ
µ0

)2+n

1− g0

g∗
+

g0

g∗

(
µ
µ0

)2+n (3.14)

As a very rough check this formula reproduces the non-gaussian fixedpoint valuesg(µ) = g∗ for
µ → ∞ as well as the gaussian fixed pointg = 0 for µ → 0. The dimensionful couplingGN(µ)

which becomes Newton’s constantGN(µ0 = 0) ≡ GN in the far infrared is accordingly given by

GN(µ) =
GN(µ0)

1+
GN(µ0)µ2+n

g∗
− GN(µ0)µ2+n

0

g∗

=

[
1

GN
+

1
g∗

µn+2
]−1

. (3.15)

The leading effects from the renormalization group running of the gravitational coupling we
can now include into a correction (form factor) to the coupling which appears in the Lagrangian
GN = (

√
8πM⋆)

−2, e.g. in eq.(1.12)

1

M2+n
⋆

hMNTMN → 1

M2+n
⋆

[
1+

1
8πg∗

(
µ2

M2
⋆

)1+n/2
]−1

hMNTMN ≡ F(µ2)

M2+n
⋆

hMNTMN (3.16)

which carries through in the decomposition ofhMN to the 4-dimensional fieldGn
µν . At high energies

µ ≫M⋆ the form factor scales likeF(µ2) ∝ (M⋆/µ)2+n. The factor 1/(8πg∗) is anO(1) parameter
controlling the transition to fixed point scaling.

As for any renormalization scale choice, there is an inherent ambiguity where to choose the
scaleµ. In QCD calculations this scale dependence vanishes once we include arbitrarily high
orders in perturbation theory, which in our case will not help. For a collider process, the simplest
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Figure 4: Left: Missing transverse energy distribution for single jet + /ET signal. The black histogram
represents standard ADD result for 1000 fb−1 of LHC integrated luminosity. Colored data points are for
different parameterizations of the fixed point cross-over.Right: Resonance RS graviton production at the
LHC for a lightest KK graviton of 1TeV Again, colored lines are for different parameterizations of the
cross-over region. Both figures from Ref.[53].

choice isµ =
√

s, in which case the form factor only has a noticeable effect for center ofmass
energies close toM⋆, as one might expect.

With this form factor the KK mass kernel in our virtual graviton exchange amplitude can be
written as

S (s) =
1

M2+n
⋆

∫
dnmKK

1

s−m2
KK

→
[

1+

(
s

M2
⋆

)1+n/2
]−1

1

M2+n
⋆

∫
dnmKK

1

s−m2
KK

. (3.17)

Note that if we treatmKK and
√

sas separate scales and evaluate the form factor in terms of
√

s, the
mKK integration still requires a cutoff. On the other hand, as far as thes integration is concerned,
the form factor solves the unitarity problem associated with graviton scattering amplitudes at the
LHC. This can be seen by power counting: the amplitude for graviton production is proportional
to 1/M2

Planck. Summing over the KK tower replaces this factor with the fundamental Planck scale
1/M2

⋆ . In addition, the geometry factor from the integration adds a factor 1/Mn
⋆ , which together

gives the 1/M2+n
⋆ we observe for example in eq.(1.34). The form factor compensates this precisely

with its UV scalingF(s) ∝ (M⋆/
√

s)2+n. The only thing we have to ensure is that the numerical
factor 1/(8πg∗) does not spoil this counter-play [53].

SinceF(s) modifies the Planck scale or the gravitational coupling in general, we can apply it to
virtual as well as real graviton emission, in the ADD model as well as in Randall–Sundrum models.
One example is the production of the first KK graviton excitations in warped extra dimensions. As
discussed before, those are single particles produced for example in gluon fusion or quark-antiquark
scattering and decaying to jets or leptons. The obvious effect of the formfactor is to reduce the
number of gravitons produced at high energies

√
ŝ. For the Randall–Sundrum model we can see

this in the left panel of Fig.4.

Virtual graviton processes in models with warped extra dimensions can also be modified by
fixed point effects. The collider signal is dominated by resonant gravitonproduction, as opposed
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Figure 5: Normalized distribution of the partonic energy (ormℓℓ) in the Drell–Yan channel forn = 3. The
non-trivial shape difference between theM⋆ = 5 TeV andM⋆ = 8 TeV is the result of interference effects.
Figure from Ref. [52]

to the unspecific KK tower in ADD models. The form factor modifies the couplingused when
computing the widthΓ j for the j-th RS graviton. For the production of one heavy state we run
into the convenient fact that there is only one scale in the processµ =

√
ŝ= mj . The form factor

becomes

F−1 = 1+
( mj

Me−πkr

)3
. (3.18)

Without this form factor the width behaves likeΓ ∼ m3
j /M2

RS and the resonance interpretation
becomes less and less valid at high energies (see Fig.4). Field theoretically this is inconvenient
since once the width becomes of the same order as the mass spacing between modes the naive
Breit-Wigner formalism breaks down [66]. Including the form factor the signal if formed by well
defined resonances for higher masses, as shown in Fig.4.

An alternative (improved) method which is better suited for the case of virtualgravitons is
based directly on the form of the anomalous dimension of the graviton eq.(3.9). It is motivated by
renormalization group techniques from condensed matter physics or QCD [68]. In this picture, as
usual there is a phase transition occuring at a critical point with anomalous dimensionη⋆ =−2−n
for some energy at or beyond the Planck scale. At the critical point, correlation functions are
expected to scale by a function of the anomalous dimension. The momentum-space two point
function generically has the form∆(p) ∼ 1/(p2)1−η/2, which reproduces the classical result for
small η . In the vicinity of the non-gaussian fixed point, this becomes 1/(p2)−(4+n)/2 [67]. The
massive graviton propagator in the fixed point region is then modified as

1

s−m2
KK

→ Λ2+n
T

(s−m2
KK )(4+n)/2

(3.19)

where the transition scaleΛT ∼ M⋆ in the numerator maintains the canonical dimensions for the
propagator. The graviton kernelS (s) integrated over the entiremKK range becomes

S (s) → 1

M2+n
⋆

∫ ΛT

0
dnmKK

1

s−m2
KK

+
1

M2+n
⋆

∫ ∞

ΛT

dnmKK
Λ2+n

T

(s−m2
KK )(4+n)/2

. (3.20)
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This integral is finite to for alln and the transition scaleΛT parameterizes the crossover to fixed
point scaling. The low-energy and high-energy contributionsSIR/UV(s) can be easily calculated to
leading order ins/Λ2

T

SUV =
Sn−1

4M4
⋆

(
ΛT

M⋆

)n−2[
1+O

(
s

Λ2
T

)]
.

SIR =
Sn−1

(n−2)M4
⋆

(
ΛT

M⋆

)n−2[
1+O

(
s

Λ2
T

)]
. (3.21)

The transition from the IR to UV scaling we for now treat as aθ-function. The renormalization
group predicts a smooth transition, which can be modelled using a tanhx function. The follow-
ing approximations though will not be sensitive to the abruptness of the transitions, so we forgo
implementing the smooth transition for the remainder of this work.

The combined IR and UV integral is given to leading order as

S =
Sn−1

(n−2)M4
⋆

(
ΛT

M⋆

)n−2(
1+

n−2
4

)
(3.22)

This result has several basic features:

– We do not need any artificial cutoff scale.

– The result from themKK integral has a small sensitivity to the precise value of the transi-
tion scaleΛT ∼ M⋆, but including a more elaborate description of the transition region will
remove this.

– For hadronic cross sections there is an additional integral overs coming from the convolu-
tion with the parton distribution functions. Only in our leading-order approximation S is
independent ofs.

– For the fullSUV(s) perturbative unitarity is maintained by the large-sbehaviorSUV(s)∼ s−2

given by dimensional analysis.SUV(s) andSIR(s) do not naively match perfectly at the
boundary

√
s= ΛT , which requires a more careful treatment of this matching for the final

numerical results.

– Phenomenologically, we do not expect resonance peaks or clearly distinctive features in the
UV regime of graviton production. This feature is clearly different from the string theory
completion.

The anomalous dimension shift may also be implemented by evaluating the Euclidean propa-
gator

SFP(s) =
1

M2+n
⋆

∫ ΛT

0
dnmKK

1

s+m2
KK

+
1

Mn−2
⋆

∫ ∞

ΛT

dnmKK
Λ2+n

T

(s+m2
KK )(4+n)/2

(3.23)
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Figure 6: 5-σ discovery contours at the LHC. The solid diagonal line is forM⋆ = Λcutoff. The plateau in the
discovery contours is the result of the UV fixed point (compare to Fig.2).

As we will see below, this agrees with the form factor provided that we evaluate the coupling at a
scale withµ = m, reminiscent of the RS form factor used to regulate the graviton width — except
that it is expected to hold in general off-shell. For large KK masses the form factor behaves as

1

M̄⋆
2+ndnm

[
1+

ω
8π

(
m2

KK

M̄⋆
2

)1+n/2
]−1

1

s+m2
KK

≈ Sn−1

[
8π
ω

]
dm

m5
KK

. (3.24)

This is in agreement with the anomalous dimension shift which gives
(

ΛT

M⋆

)2+n dnm

(s+m2
KK )n/2+2

≈ Sn−1

(
ΛT

M⋆

)2+n dm

m5
KK

. (3.25)

For thes integration there is no clear agreement between the two approaches. The form factor in
s falls of much quicker than the 1/s2 and gives a reduced cross section compared to our estimate.
This is expected since the second term in the expansion is of the opposite sign. Note that by
construction this Eucledian argument avoids real particle poles in the graviton propagator and is
hence limited when comparing to an effective field theory.

The search for extra dimensions at the LHC has two purposes. The firstis to pin down the
exact geometry of the non-visible space. The other and more interesting possibility is to ascertain
a viable theory of quantum gravity by probing energies beyondM⋆. The UV completion to the KK
integral can help us in both regards. First of all, the signal is enhanced by including the UV portion
of the integral. In some cases this increase can be significant. For Drell–Yan production leading to
final state muons the cross sections are given in the following table. Note thatthe LHC is expected
to provide∼ 100 fb−1 per year at full luminosity, which leads to a non-trivial event number for the
following scenarios.

σ [fb] n = 3 n = 6

M⋆ 2 TeV 5 TeV 8 TeV 2 TeV 5 TeV 8 TeV

SIR 173 0.72 0.0204 66 0.28 0.008
SIR +SUV 408 1.24 0.0317 398 1.21 0.031
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In addition, the graviton kernel has a distinctive shape which depends onthe number of extra
dimensionsn. In thes channel at lower partonic energies, the dominant interference term between
gravitons andZ/γ imply a scaling withS ∼ (n−1). For higher partonic energies the pure graviton
amplitude is dominant and the rate scales as(n− 1)2. This fact is demonstrated in Fig.5. The
combined LHC reach in the virtual graviton channel is given in Fig.6 and is mostly independent of
n for the casesn = 3−6.

In this section we present a rough description of the effects of a gravitational fixed point at the
LHC. Many of the technical and physical details are not worked out yet,because we are talking
about recent developments. However, we can convincingly argue thata gravitational UV fixed
point gives a consistent as well as complete description of extra-dimensional observables at the
LHC, clearly distinguishable from alternative scenarios.

4. Outlook

Large extra dimensions are a natural as well as truly minimal extension of the Standard Model
addressing the hierarchy problem. If they are realized in Nature, gravityeffects become relevant
at the TeV scale and probing a viable theory of quantum gravity becomes anexperimental en-
deavor. Two generic approaches are either a free number of large and flat extra dimensions (ADD
model) or one extra dimension with a warped metric (RS model). In both models onlygravity
with its fundamental TeV-sized Planck scale propagates into the extra-dimensional bulk, while
our 4-dimensional Planck scale is a derived observable. The relative size of the fundamental and 4-
dimensional Planck scales can be derived by matching of the effective 4-dimensional Kaluza–Klein
effective theory. The main phenomenological difference between the twomodels is the spacing of
the Kaluza–Klein masses, which is unobservably small in the ADD model and ofthe order of the
fundamental Planck scale in the RS model.

In particular for flat extra dimensions, the description by the KK effectivetheory becomes
increasingly unreliable once the experimental energy reaches the TeV scale. The geometry factors
from compactification imply that any kind of observation will be dominated by the respective UV
tail of the graviton tower. While real graviton emission at the LHC is accidentallywell described
by an effective KK theory (due to sharply falling parton luminosities) the prospect of discovery
via virtual graviton exchange depends on an unphysical cutoff schemeregulating the sum over the
states inside the KK tower. For warped extra dimension a similar problem occurs in the width of the
KK gravitons, which is determined by the UV completion of the model,i.e. the quantum gravity
regime. Being a theoretical ambiguity this generic UV cutoff dependence canact as a platform on
which to test candidate theories of quantum gravity.

This means that the moment we probe extra dimensions at the LHC we need to worry about
the fundamental structure of gravity. For example, asymptotic safety or fixed-point gravity allows
us to consider gravity as a UV-complete theory, without introducing additional states or ideas. For
the UV regime of gravity as probed at the LHC it predicts a smooth fall-off in graviton amplitudes,
clearly different from resonances as expected by a string theory completion. Once the LHC pro-
duces data we know there are a plethora of exciting possibilities — discerningamong candidate
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theories of quantum gravity, in the fortuitous scenario of large extra dimensions, ranks among the
most exciting prospects for the coming decade.
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