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1. Introduction

This is a review of the results obtained in [1, 2, 3] concerning the calculation of the Hawking
radiation of a black hole with anomaly–related methods. These methods use in an essential way
the effective reduction to two dimensions of the near–horizon dynamics of bosonic or fermionic
matter fields in a black hole background, and the ensuing effective conformal invariance of the
action. Under these circumstances one can use either the trace or the diffeomorphism anomaly
method in order to compute the integrated Hawking radiation. The Hawking radiation [4, 5] does
not depend on the details of the collapse that gives rise to a black hole. Therefore one expects that
the methods to calculate it should have the same character ofuniversality. The anomaly method
has such characteristics. The first attempt to compute the Hawking radiation by exploiting trace
anomalies was made by Christensen and Fulling, [6] (see also[7]), and re-proposed subsequently
by [8, 9] in a modified form. More recently a renewed interest in the same problem has been raised
by [10], which makes use of the diffeomorphisms anomaly. This last paper has been at the origin of
a considerable activity, see [3] for references. As we shallsee the trace and diff anomaly methods
are strictly related. As one can easily realize, they both stem from the Virasoro algebra symmetry
underlying the theory.

However this is not the end of the story. As already pointed out, the trace and diff anomaly
methods apply to the calculation of the integrated Hawking radiation and do not describe its spec-
trum. But one of the most interesting features of the Hawkingradiation is precisely its Planckian
spectrum. The latter can be ‘Fourier analyzed’ and expressed in terms of its higher moments or
fluxes. It is therefore of upmost interest to be able to describe not only the integrated Hawking radi-
ation but also such fluxes. An interesting proposal was made by the authors of [14, 15, 16, 17], who
attributed these fluxes to phenomenological higher spin currents, i.e. higher spin generalizations of
the energy–momentum tensor.

In [1, 2, 3] it was shown that such higher currents do describethe higher spin fluxes of the
Hawking radiation. By analogy with the case of the overall Hawking radiation, one would be
tempted to attribute such predictive power to trace or diff anomalies in the higher spin currents, but
the main result of [1, 2, 3] is that this is actually not due to anomalies, but rather the the underlying
W(1+)∞ algebra structure of the near horizon effective theory. In fact it was shown in the same
references that these higher spin currents cannot have neither trace nor diff anomalies (or, rather,
that, if there are anomalies, they are trivial). In [1] and [2] the analysis was limited to bosonic
higher spin currents, in [3] the analysis and the conclusions were extended to fermionic currents.
The only difference between the two is that the bosonic theory is characterized by aW∞, while the
fermionic theory by aW1+∞ algebra (the 1 stands for the extension of theW∞ algebra to include
a U(1) current).

Therefore the generalization to higher fluxes is not conveyed by higher spin current anomalies
but by some other features of the higher spin currents. It is well-known that both diff and trace
anomaly in 2d stem from the so–called Gelfand–Fuks (or Virasoro) cocycle, which is is constructed
by means of a Schwarzian derivative. There are infinite many higher spin generalizations of the
Schwarzian derivative. It is these higher Schwarzian derivatives, incorporated in the conformal
transformation properties of the higher spin currents, that are at the origin of the higher Hawking
radiation fluxes. On the other hand such higher Schwarzian derivatives, contrary to original lowest
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Schwarzian derivative, are totally disconnected from anomalies.
Now, the requirement to describe higher fluxes of the Hawkingradiation does not uniquely

determine by itself the higher spin currents. But if we add the request that the currents be anomaly
free (as they must) we come to the conclusion that they must form aW(1+)∞ algebra. The main
conclusion of our series of papers is that the Hawking radiation and, in particular its Planckian
spectrum, points toward the existence in the near horizon region of a symmetry much larger than
the Virasoro algebra, that is aW∞ or aW1+∞ algebra.

In this review we will start (section 2) from a Kerr–like metric in 4D and consider bosonic or
fermionic matter coupled to the relevant background. We will review how to reduce the problem
to two dimensions. Then the boson or spinor field will be expanded in the appropriate spherical
harmonics. After integrating the action over the polar angles one is left with infinite many free
two–dimensional boson or spinor fields interacting with thebackground gravity specified by the
metric

ds2 = f(r)dt2− 1

f(r)
dr2 (1.1)

as well as to the electromagnetic field.f(r) near the horizon behaves likef(r) ≈ 2κ(r− rH),
whereκ is the surface gravity.

2. Reduction to two dimensions

In [3] we have shown that if the 4 dimensional action

S =

∫

d4x
√−gψ̄ 6∇ψ (2.1)

represents a spinor in the background of a Kerr metric

ds2 =
∆

Σ

(

dt−asin2 θdφ
)2− sin2 θ

Σ

(

adt−
(

r2 +a2
)

dφ
)2−

(

r2 +a2 cos2 θ
)

(

dr2

∆
+dθ2

)

with Σ = r2 +a2cos2θ, ∆ = r2−2Mr+a2) the near horizon (r ≈ r+, wherer+ + r− = 2M and
r+r− = a2) dynamics becomes effectively two–dimensional. This can be seen by expandingφ as
ψ=

∑

lmψlm(t,r)Slm(θ)e−imφ, where the functionsSlm are normalized so that
∫

dθ
√

Σ sinθS∗
lm(θ)Sl′m(θ)=

2δll′ . Integrating the action overθ andφ on finally gets

S =

2
∑

s=1

∑

lm

4π

∫

dtdrΦχ̄(s)lm 6Dχ(s)lm (2.2)

where the covariant derivative includes the gauge partDα = (2)∇α − iqAα, and the chargeq of
χ(s)lm ism. This is the2D action for an infinite number of two components fermionsχ(s)lm in the
background given by the dilatonΦ

Φ =
√

r2 +a2, (2.3)

the gauge fieldAα

At =
e0

φ

e0t
=

a

r2 +a2
, Ar = 0 (2.4)
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and the metric of the type (1.1)

ds2 = f(r)dt2− 1

f(r)
dr2

where

f(r) =
∆(r)

r2 +a2
, ∆ = (r− r+)(r− r−)

We are interested in the near horizon region. In this region the dilaton is approximately constant, so
we may disregard it: the equations of motion are those of freefermions in two dimensions, coupled
to the metric and the gauge field. This theory is conformal invariant.

A similar conclusion was obtained in [13] by considering a scalar field in 4D instead of a
spinor: in the near horizon region the dynamics is describedby infinite many two–dimensional
scalar free fields in a background similar to the above one.

3. The Diff and Trace anomaly method

Having reduced the problem to two dimensions let us review now the two anomaly methods
used to compute the integrated Hawking radiation. To start with we consider the simplified situation
in which the electromagnetic background field is decoupled(m = 0). The method employed in
[10] is based on the diffeomorphism anomaly in a two–dimensional effective field theory near the
horizon of a radially symmetric static black hole. The basicargument is that, since just outside
the horizon the ingoing modes cannot classically influence the physics outside the black hole, they
can be integrated out, giving rise to an effective theory of purely outgoing modes. So the physics
in that region can be described by an effective two–dimensional chiral field theory (of infinite
many fields). This implies an effective breakdown of the diffeomorphism invariance. The ensuing
anomaly equation can be utilized to compute the outgoing fluxof radiation. The latter appears as
the quantum agent that restores the diffeomorphism symmetry.

3.1 Diff anomaly method

Let us describe in detail the corresponding derivation as given, in a somewhat simplified form,
in [11]. The range ofr contains two relevant regions: the regiono, defined byr > rH + ǫ, rH
being the horizon radius, and the regionH, defined byrH < r < rH + ǫ. The regionH is where
the ingoing modes have been integrated out, therefore the effective field theory there is anomalous,
while in o we expect a fully symmetric theory. This is expressed by a vanishing energy momentum
tensor covariant divergence

∇µT
µ

ν(O) = 0, (3.1)

while in theH region we have

∇µT
µ

ν(H) =
h̄cR
96π

ǫνµ∂
µR (3.2)

This is the covariant form of the diffeomorphism anomaly, with a coefficient appropriate for chiral
(outgoing or right) matter with central chargecR. In (3.2)ǫµν =

√−gεµν , whereε is the numerical
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antisymmetric symbol (ε01 = 1). In the case of the background metric we are considering, the
determinant is -1. Since the metric is also static, the two equations above take, forT r

t , a very
simple form:

∂rT
r
t(o) = 0 (3.3)

and

∂rT
r
t(H) = ∂rN

r
t ≡ ∂r

(

h̄cR
96π

(ff ′′− 1

2
(f ′)2)

)

(3.4)

respectively. Now we integrate these equations in the respective regions of validity

T r
t(o) = ao (3.5)

and

T r
t(H)(r) = aH +N r

t (r)−N r
t (rH) (3.6)

We remark thatao, being constant, determines (together with the condition that there is no ingoing
flux from infinity) the outgoing energy flux. This is the quantity we would like to know. To this
end we define the overall energy–momentum tensor.

T r
t = T r

t(o)θ(r− rH − ǫ)+T r
t(H) (1− θ(r− rH − ǫ)) (3.7)

It is understood thatǫ is a small number which specifies the size of the region where the energy–
momentum tensor is not conserved. If we take the divergence of (3.7), we get

∂rT
r
t = (ao−aH +N r

t (rH))δ(r− rh − ǫ)+∂r (N r
t (r)H(r)) (3.8)

whereH(r) = 1− θ(r− rH − ǫ). We can now define a new overall tensor

T̂ r
t (r) = T r

t (r)−N r
t (r)H(r) (3.9)

which is conserved

∂rT̂
r
t = 0 (3.10)

provided that

ao−aH +N r
t (rH) = 0 (3.11)

Now, the condition that at the horizon the energy–momentum tensor vanishes, leads toaH = 0 (see
(3.6)). Therefore

ao =N r
t (rH) =

h̄κ2

48π
cR (3.12)

This is the outgoing flux at infinity and coincides with the total Hawking radiation (see below)
emitted by the black hole specified by the metric (1.1). We remark thatT̂ r

t is constant everywhere.
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3.2 Trace anomaly method

The method based on the trace anomaly was put forward long agoby Christensen and Fulling,
[6] (see also [7]) and has been re-proposed in different forms in [8, 9] and, in particular, in [15]
and [17] (see also [1, 2]). This approach is based on the argument that the near–horizon physics
is described by a two–dimensional conformal field theory (see above). Classically the trace of the
matter energy momentum tensor vanishes on shell. However itis generally nonvanishing at one
loop, due to the anomaly:Tα

α = c
48πR, whereR is the background Ricci scalar.c is the total central

charge of the matter system. The idea is to use this piece of information in order to compute the
same constantao calculated with the previous method. Here we do not have to split the space in
different regions, but we consider a unique region outside the horizon.

With reference to the metric (1.1) it is convenient to transform it into a conformal metric.
This is done by means of the ‘tortoise’ coordinater∗ defined via ∂r

∂r∗
= f(r). Next it is useful to

introduce light–cone coordinatesu= t−r∗,v= t+r∗. Let us denote byTuu(u,v) andTvv(u,v) the
classically non vanishing components of the energy–momentum tensor in these new coordinates.
Our black hole is now characterized by the background metricgαβ = eϕηαβ , whereϕ= logf . The
energy–momentum tensor can be calculated by integrating the conservation equation and using the
trace anomaly. The result is (see below)

Tuu(u,v) =
h̄cR
24π

(

∂2
uϕ− 1

2
(∂uϕ)2

)

+T (hol)
uu (u) (3.13)

whereT (hol)
uu is holomorphic, whileTuu is conformally covariant. Namely, under a conformal

transformationu→ ũ= f(u)(v→ ṽ = g(v)) one has

Tuu(u,v) =

(

df

du

)2

Tũũ(ũ,v) (3.14)

Since, under a conformal transformation,ϕ̃(ũ, ṽ) = ϕ(u,v)− ln
(

df
du

dg
dv

)

, it follows that

T
(hol)
ũũ (ũ) =

(

df

du

)−2(

T (hol)
uu (u)+

h̄cR
24π

{ũ,u}
)

(3.15)

where{ũ,u} denotes the Schwarzian derivative. Near the horizon good coordinates are the Kruskal
ones,(U,V ), defined byU = −e−κu andV = eκv. Under this transformation we have

T
(hol)
UU (U) =

(

1

κU

)2(

T (hol)
uu (u)+

h̄cR
24π

{U,u}
)

(3.16)

Now we require the outgoing energy flux to be regular at the future horizonU = 0 in the Kruskal
coordinate. Therefore at that pointT (hol)

uu (u) is given by cRκ2

48π . We remark that this implies in
particular thatTuu(r = rH) = 0.

Since the background is static,T (hol)
uu (u) is constant int and therefore also inr. So atr=∞ it

takes the same valueh̄cRκ2

48π . On the other hand we can assume that atr = ∞ there is no incoming

flux and that the background is trivial (so that the vev ofT
(hol)
uu (u) andTuu(u,v) asymptotically

coincide).
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Finally the asymptotic flux is

〈T r
t 〉 = 〈Tuu〉 − 〈Tvv〉 =

h̄κ2

48π
cR (3.17)

This outgoing flux coincides with the constantao calculated above.
Summarizing we can say that the basic ingredients of the two methods are:

• (a) in the first case the integration of the anomalous and non-anomalous conservation of
the energy-momentum tensor, in the second case the integration of the energy–momentum
conservation in the presence of a trace anomaly;

• (b) in both cases we have the condition that the energy–momentum tensor vanishes at the
horizon and there is no incoming energy flux from infinity.

What energy–momentum tensor vanishes at the horizon will beclarified below.

3.3 Comparison between the two methods

The generic case of a chiral two–dimensional theory with central chargecR and cL for the
holomorphic and anti–holomorphic part, respectively, is characterized by the presence of both dif-
feomorphism and trace anomaly, i.e.

∇µT
µ

ν =
h̄

48π

cR − cL
2

ǫνµ∂
µR (3.18)

and

Tα
α =

h̄

48π
(cR + cL)R (3.19)

Let us rewrite these equations in terms of the light–cone coordinatesu andv introduced before.
In this basis the nonvanishing metric elements take the form:

guv =
1

2
eϕ = −ǫuv, guv = 2e−ϕ = ǫuv (3.20)

and eq.(3.18) becomes

∇uTuv +∇vTuu =
h̄

48π

cR − cL
2

ǫuv∂uR (3.21)

∇uTvv +∇vTuv = − h̄

48π

cR− cL
2

ǫuv∂vR (3.22)

On the other hand (3.19) becomes

Tuv =
h̄

48π

cR + cL
4

Reϕ (3.23)

Replacing this withR= −4∂u∂vϕe
−ϕ in (3.22), we get

∂vTuu =
h̄

24π
cR ∂vTuu (3.24)
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where

Tuu = ∂2
uϕ− 1

2
(∂uϕ)2 (3.25)

Integrating (3.24) we get

Tuu(u,v) =
h̄

24π
cR Tuu(u,v)+T (hol)

uu (u) (3.26)

whereT (hol)
uu depends only onu.

Similarly, integrating (3.21), one obtains

Tvv(u,v) =
h̄

24π
cL Tvv(u,v)+T (a−hol)

vv (v) (3.27)

whereTvv = ∂2
vϕ− 1

2(∂vϕ)2, andT (a−hol)
vv depends only onv. The two equations (3.26) and (3.27)

are our basic result. They are equivalent to the two equations (3.18) and (3.19).

In the “trace anomaly" method we have utilized eq.(3.26), required that the energy–momentum
tensor be conserved and imposed the conditions (b) of the previous section. This, in particular,
amounts to requiringcR = cL in the region outside the horizon. We see now that the possibility to
integrate (3.18) in the presence of (3.19) is actually insensitive to the relation betweencL andcR 1.

In the ”diff anomaly" approach we integrated (3.18) in the near horizon region and the con-
served energy–momentum divergence away from the horizon. Then we imposed vanishing of
energy–momentum tensor at the horizon. It is obvious that weused again (3.26) and (3.27) in
disguise.

It is actually possible to be more specific. We have already noticed that in the trace anomaly
methodTuu(r = rH) = 0. On the other hand we point out thatT (a−hol)

vv is constant inr andt, for
the same reason asT (hol)

uu is, and thus vanishes upon the request of no ingoing flux from infinity. It
is also easy to see that, ifcR = cL, Tuu = Tvv . ThereforeT r

t = Tuu −Tvv is constant everywhere
and equals the outgoing flux (3.17) at infinity. Therefore theT r

t of subsection 2.2 equalŝT r
t of

subsection 2.1. And it is also clear that the energy–momentum tensor vanishing at the horizon in
subsection 2.1 is to be compared withTuu(u,v) of subsection 2.2.

It was important to stress the basic role of (3.26) and (3.27)because, as we will see, when we
come to higher spin currents, it is not possible to describe the higher flux moments by means of
anomalies (either trace or diff), but the analogues of (3.26) and (3.27) still hold and provide the
desired description.

4. Higher moments of the Hawking radiation

The bosonic spectrum of the black hole is given by the Planck distribution

N(ω) =
g∗

eβω −1
(4.1)

1In other words we can integrate the trace anomaly even ifcR 6= cL. This is clearly only a characteristic of two
dimensions

8
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where1/β is the Hawking temperature andω = |k|, the absolute value of the momentum.g∗ is the
number of physical degrees of freedom in the emitted radiation. In two dimensions we can define
the flux moments as follows

FB
n =

g∗
4π

∫ +∞

−∞

dk
ωkn−2

eβω −1

They vanish forn odd, while forn even they are given by

FB
2n =

1

2π

∫ ∞

0
dωω2n−1N(ω) = g∗

(−1)n+1

8πn
B2nκ

2n (4.2)

whereBn are the Bernoulli numbers (B2 = 1
6 ,B4 = − 1

30 , ..). Therefore the outgoing flux (3.17) is
seen to correspond toFB

2 wheng∗ = cR. FB
2 is the total integrated outgoing flux.

The fermionic spectrum of the Kerr black hole (per degree of freedom) is given by the Planck
distribution

N(ω) =
1

eβ(ω−mΩ) +1

whereΩ is the total angular momentum, in our caseΩ = At evaluated at the horizon andm is the
charge.

Let us consider first the casem = 0. In two dimensions we can define the flux momentsFn,
which vanish forn odd, while forn even they are given by, [18],

F2n =
1

2π

∫ ∞

0
dω

ω2n−1

eβω +1
=
κ2nB2n

4πn
(1−21−2n)(−1)n+1 (4.3)

whereBs’s are the Bernoulli numbers(B2 = 1/6 , B4 =−1/30 , . . . ) andκ= 2π/β is the surface
gravity of the black hole.

Whenm 6= 0 we do not have similar compact formulas, however it makes sense to sum over
the emission of a particle (with chargem) and the corresponding antiparticle (with charge−m). In
this case the flux moments become

FΩ
n+1 =

1

2π

(
∫ ∞

0
dx

xn

eβ(x−mΩ) +1
− (−1)n

∫ ∞

0
dx

xn

eβ(x+mΩ) +1

)

=
(mΩ)n+1

2π(n+1)
−

[(n+1)/2]
∑

k=1

(−1)k
n! (1−21−2k)κ2k

2π(2k)!(n+1−2k)!
B2k(mΩ)n+1−2k (4.4)

Unlike the bosonic case, once we knowFΩ
n we do not have enough information to reconstruct the

full spectrum withm 6= 0, but if one is able to reproduce the momentsFΩ
n it is anyhow an important

positive test.

5. A W(1+)∞ algebra and higher spin currents

In order to derive the higher Hawking fluxes we postulate the existence of conserved higher
spin spin currents. The latter can be either bosonic or fermionic. In [1, 2] the case of currents
constructed out of a chiral bosonic field was dealt with, while in [3] we considered currents bilinear
made of chiral fermions of the 2D effective field theory near the horizon. These currents will play

9
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a role analogous to the energy–momentum tensor for the integrated radiation (the lowest moment).
For reasons of brevity here we limit ourselves to reviewing the case of fermionic currents.

To construct the fermionic currents we start from aW1+∞ algebra defined in an abstract flat
space spanned by a local coordinatez. These currents were introduced in [12]:

j(s)z...z(z) = −B(s)

s

s
∑

k=1

(−1)k
(

s−1

s−k

)2

: ∂s−k
z Ψ†(z)∂k−1

z Ψ(z) : (5.1)

B(s) ≡ 2s−3s!

(2s−3)!!
qs−2 s= 1,2,3, . . . (5.2)

whereq is a deformation parameter. These currents form aW1+∞ algebra.
The spins currentsj(s)z...z(z) are linear combinations of bilinears

j(m,n)
z...z (z) ≡ : ∂mΨ† ∂nΨ : ≡ lim

z1,z2→z

(

∂m
z1

Ψ†(z1)∂
n
z2

Ψ(z2)−∂m
z1
∂n

z2

〈

Ψ†(z1)Ψ(z2)
〉)

We wish to relate the currents written in two different coordinate systems, connected by coordinate
changez→w(z). That is, our aim is to obtain a relation analogous to the one found for the energy
momentum tensor,

j(s)z...z(z) →
(

1

κw

)s
(

j(s)z...z + 〈XF
s 〉
)

(5.3)

and specify this to a transformationw(z) = −e−κz so as to obtain the value ofj(s)z...z(z) at the
horizon by requiring regularity.

Using the transformation property of holomorphic fermionic field

Ψ(z) = (w′(z))1/2 Ψ(w)

and

: ∂m
z1

Ψ†(z1)∂
n
z2

Ψ(z2) : = ∂m
z1
∂n

z2

(

(w′
1(z1))

1/2(w′
2(z2))

1/2 : Ψ†(w1)Ψ(w2) :
)

+∂m
z1
∂n

z2

(

(w′
1(z1))

1/2(w′
2(z2))

1/2
〈

Ψ†(w1)Ψ(w2)
〉

−
〈

Ψ†(z1)Ψ(z2)
〉)

where
〈

Ψ†(z)Ψ(w)
〉

=
λ

z−w (5.4)

is the propagator of the fermionic field andλ a constant to be determined, one finds

〈

XF
s

〉

= −λκ
sBs

s
(1−21−s)(4q)s−2 = −〈j(s)z...z〉h (5.5)

where〈·〉h denotes the value at the horizon. Notice that
〈

XF
s

〉

= 0 for an odd spins. Fors > 1 this
is becauseBs = 0 for odds > 1. Fors= 1 it is because of the other factor in (5.5). The value ofλ is
determined in such a way as to reproduce the transformation properties of the energy–momentum
tensor and, in physical units, is proportional toh̄. Eventually we will setλ= h̄.

10
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6. Higher spin covariant currents

The holomorphic currents of the previous section are definedon a background with a trivial
Euclidean metric. But we need currents defined in the appropriate non trivial background that char-
acterizes a Kerr black hole. In order to construct the covariant higher-spin currents from fermionic
fields in such background, we will follow [17]. First we recall some properties of fermions in two
dimensions. The equation of motion for a right-handed fermion with unit charge is given by

(

∂u − iAv +
1

4
∂vϕ

)

ψ(u,v) = 0 (6.1)

In the Lorentz gauge, the gauge field can be written locally asAu = ∂uη(u,v) andAv =−∂vη(u,v)

whereη(u,v) is a scalar field. Since gravitational and gauge fields are notgenerally holomorphic,
ψ(u,v) is not holomorphic either. In order to construct holomorphic quantities from a fermionic
field, we define a new fieldΨ by

Ψ ≡ exp

(

1

4
ϕ(u,v)+ iη(u,v)

)

ψ(u,v) (6.2)

It is easy to show that the equation of motion implies∂vΨ = 0 and henceΨ is holomorphic.
Similarly we can defineΨ† as

Ψ† ≡ exp

(

1

4
ϕ(u,v)− iη(u,v)

)

ψ†(u,v)

The equation of motion again guarantees that∂vΨ
† = 0, so thatΨ† is also holomorphic. We will

useΨ andΨ† as the basic chiral fields to construct theW1+∞ algebra introduced in the previous
section. To covariantize the expressions of the currents wereduce the problem to one dimension
by considering only theu dependence and keepingv fixed. In one dimension a curved coordinate
u in the presence of a background metric

gµν = eϕ(u,v)ηµν

is easily related to the corresponding normal coordinatex by the equation∂x = e−ϕ(u,v)∂u. We
view u asu(x) and, by the above equation, we extract the correspondence betweenj(s)z...z andj(s)u...u

by identifyingu with the coordinatez of the previous section after Wick rotation. The expressions
we get in this way are not yet components of the covariant currents. We have to remember the
current conformal weights and introduce suitable factors in order to take them into account.

Under a holomorphic conformal transformationu→ ũ the functionϕ(u,v) and the fieldΨ(u)

transform according to

ϕ̃(ũ,v) = ϕ(u,v)− ln

(

dũ

du

)

Ψ̃(ũ) =

(

dũ

du

)
1

2

Ψ(u)

Thereforee−ϕ/2Ψ(u) (and analogously,e−ϕ/2Ψ†(u)) transforms as a scalar with respect to a holo-
morphic coordinate transformation.

11
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As a consequence the covariant derivative ofΨ(u) turns out to be

∇uΨ(u) =

(

∂u−
1

2
∂uϕ−2iAu

)

Ψ(u)

∇uΨ†(u) =

(

∂u−
1

2
∂uϕ+2iAu

)

Ψ†(u)

and for higher covariant derivatives we have,

∇m+1
u Ψ(u) =

(

∂u −
(

m+
1

2

)

∂uϕ−2iAu

)

∇m
u Ψ(u) (6.3)

∇m+1
u Ψ†(u) =

(

∂u −
(

m+
1

2

)

∂uϕ+2iAu

)

∇m
u Ψ†(u) (6.4)

It can be shown thate−(m+ 1

2
)ϕ∇m

u Ψ(u) ande−(m+ 1

2
)ϕ∇m

u Ψ†(u) transform as scalars under holo-
morphic coordinate transformation, for everym ∈ N.

After these preliminaries the covariant currents are constructed using the following bricks:

J (m,n)
u...u = e(m+n+1)ϕ(u,v) lim

ǫ→0

(

e
2i

R

u+
u−

Au(u′,v)du′

(6.5)

e−(m+1/2)ϕ(u+ ,v)∇m
u Ψ†(u+)e−(n+1/2)ϕ(u+ ,v)∇n

uΨ(u−)− cfm,n

ǫm+n+1

)

where we have used the abbreviationsu+ ≡ u(x+ ǫ/2) andu− ≡ u(x− ǫ/2). The numerical
constantscfm,n, defined by

cfm,n = λ(−1)m(m+n)!

are determined in such a way that all singularities are canceled in the final expressions forJ (m,n).

Finally, let us define the covariant currents correspondingto theW1+∞ fermionic currents:

J (s)
u...u = −B(s)

s

s
∑

k=1

(−1)k
(

s−1

s−k

)2

J (s−k,k−1)
u...u (6.6)

B(s) ≡ 2s−3s!

(2s−3)!!
qs−2

The first few covariantW1+∞ fermionic currents can be written in pretty simple form, using

12
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the abbreviationT ≡ ∂2
uϕ− 1

2 (∂uϕ)2

J (1)
u = j(1)u +

iλ

2q
Au (6.7)

J (2)
uu =

(

2A2
u −

T

12

)

λ−2AuJ
(1)
u + j(2)uu (6.8)

J (3)
uuu = −4J (1)

u A2
u −4J (2)

uu Au +

(

8A3
u

3
− AuT

3

)

λ+
TJ

(1)
u

6
+ j(3)uuu (6.9)

J (4)
uuuu = +λ

(

4A4
u −

7TA2
u

5
− 2

5

(

∇2
uAu

)

Au +
7T 2

240
+

3

5
(∇uAu)2

)

(6.10)

−8J (1)
u A3

u −12J (2)
uu A

2
u +

(

1

5
∇2

uJ
(1)
u +

7TJ
(1)
u

5
−6J (3)

uuu

)

Au −
3

5
(∇uAu)

(

∇uJ
(1)
u

)

+
1

5

(

∇2
uAu

)

J (1)
u +

7TJ
(2)
uu

10
+ j(4)uuuu

For higher order currents see [2].
Using these explicit expressions of the currentsJ (s),one can write down their covariant deriva-

tives,

guv∇vJ
(1)
u = −λFu

u (6.11)

guv∇vJ
(2)
uu =

1

24
λ(∇uR)+Fu

uJ (1)
u (6.12)

guv∇vJ
(3)
uuu = 2Fu

uJ (2)
uu − 1

12
(∇uR)J (1)

u (6.13)

guv∇vJ
(4)
uuuu =

3

10
(∇uFu

u)
(

∇uJ
(1)
u

)

− 1

10
Fu

u
(

∇2
uJ

(1)
u

)

− 1

10

(

∇2
uFu

u
)

J (1)
u

− 7

20
(∇uR)J (2)

uu +3Fu
uJ (3)

uuu (6.14)

In the case of lowest spin current,J (1), (6.11) gives rise to the gauge anomaly

gµν∇µJ
(1)
ν = − h̄

2
ǫµνFµν (6.15)

Apart from the gauge anomaly in the first current we are interested to check whether there are
trace anomalies in the other currents. This is done as follows. After the RHS of the above equation
is expressed in terms of covariant quantities, terms proportional to h̄ (which is present only inλ)
are identified as possible anomalies by proceeding in analogy to the energy–momentum tensor.
One assumes that there is no anomaly in the conservation lawsof covariant currents, that is that the
covariant derivatives of the higher spin currents with the addition of suitable covariant terms (these
terms are classical i.e. not proportional toh̄, see for instance the terms in the LHS of (6.12,6.13))
vanish. Since

(∇·J)u...u + . . .= guv∇vJu...u + guv∇uJvu...u + . . .= 0,

where dots denote the above mentioned classical covariant terms, one relates terms proportional
to h̄ in the u derivative of the trace (vu...u components) to the terms proportional toh̄ in the v
derivative ofu...u components of the currents.

13
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For the covariant energy momentum tensor,J (2) we have Tr(J (2)) = 2gvuJ
(2)
vu =− h̄

12R which
is the well known trace anomaly. In the case ofJ (3) current the terms that carry explicit factors of
h̄ cancel out inguv∇vJ

(3)
uuu, which implies absence of̄h in the trace, and consequently the absence

of the trace anomaly. The same is true forJ (4) and the higher currents.

In conclusion anomalies make their appearance only in theJ (1) andJ (2) currents.

6.1 Higher moments of the Hawking radiation

After constructing the higher spin currents let us come to the description of the higher moments
of the fermionic Hawking radiation. We will follow the pattern outlined in section 3 and consider
first the case in which the electromagnetic field is decoupled(m= 0).

In section 5 we evaluated〈j(s)z...z〉h. If we identify j(s)z...z(z) via a Wick rotation withj(s)u...u(u)

we get the corresponding value at the horizon,〈j(s)u...u〉h. We notice that since the problem we are
considering is stationary andj(s)u...u(u) is chiral, it follows that it is constant int andr. Therefore
〈j(s)u...u〉h corresponds to its value atr = ∞. Sincej(s)u...u(u) andJ (s)

u...u(u) asymptotically coincide,
the asymptotic flux of these currents is

〈J (s)r

t...t〉 = 〈J (s)
u...u〉 − 〈J (s)

v...v〉 = 〈j(s)u...u〉h

If we setq = i
4 andλ = 1 in conventional units and, as in [1, 2] we multiply the currents by− 1

2π

in order to properly normalize the (physical) energy–momentum tensor, we get

− 1

2π
〈J (2n)r

t...t〉 = −(−1)n
κ2nB2n

4πn
(1−21−2n) (6.16)

while the odd currents give a vanishing value. These values correspond precisely to the fluxes of the
Hawking Planckian spectrum defined by (4.3) multiplied by two. This is so because our currents
carry both particle and antiparticle contributions.

Next we wish to take into account the presence of the gauge field, which, in our case, vanishes
at infinity but not at the horizon. This introduces a significant change in our method. In section
3 the basic criterion was to require regularity ofT (hol)

uu at the horizon. Now the presence of the
electromagnetic field interferes with the regularity ofT

(hol)
uu at the horizon. As a consequence this

criterion must be updated.

Let us start with the first current (6.7). From now on we understand that the electromagnetic
field Au absorbs also the chargem, so that in the final results the replacementAt → mAt is
understood. We easily get (remember that〈XF

1 〉 vanishes)

J
(1)
ũ = j

(1)
ũ +

iλ

2q
Aũ =

1

fu

(

j(1)u +
iλ

2q
Au

)

(6.17)

wherefu denotes the first derivative off(u) = ũwith respect tou. Now let us introduce the Kruskal
coordinatef(u) ≡ U = −e−κu. It is evident that we have to require regularity at the horizon of
j
(1)
ũ + iλ

2qAũ, not ofj(1)ũ alone. Therefore we get

〈j(1)ũ 〉h +
iλ

2q
〈Aũ〉h = 0 (6.18)

14
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where〈·〉h denotes the value at the horizon. Nowj(1)u (u) is constant int andr. Therefore〈j(1)u 〉h =

− iλ
2q 〈Au〉h corresponds to its value atr = ∞. Sincej(1)u (u) andJ (1)

u (u) asymptotically coincide,
becauseAu(u) asymptotically vanishes, we get

− 1

2π
〈J (1)r〉 = − 1

2π
〈J (1)

u 〉 +
1

2π
〈J (1)

v 〉

=
iλ

4πq
〈Au〉h =

1

2π
At =

Ω

2π
(6.19)

where 〈·〉 represents the asymptotic value and we have assumed that there is no incoming flux
〈J (1)

v 〉 from infinity.
From this example we learn the obvious lesson. We have to assume that the currentsJ (s)

U...U

are regular at the horizon in the Kruskal coordinateU =−e−κu. Since these currents are covariant,
we have

J
(s)
U...U =

1

(−κU)s
J (s)

u...u(u)

It then follows that the currentsJ (s)
u...u, and theirn−1 derivatives vanish. From (6.8)-(6.10), at the

horizon we must get

j(2)uu = −λ
(

2A2
u −

T

12

)

j(3)uuu = −λ
(

8A3
u

3
− AuT

3

)

(6.20)

j(4)uuuu = −λ
(

4A4
u −

7TA2
u

5
− 2

5

(

∇2
uAu

)

Au +
7T 2

240
+

3

5
(∇uAu)2

)

As already remarked, at infinity the background fieldsAu andφ vanish. So that

〈J (s)
u...u〉 = 〈j(s)u...u〉h (6.21)

Now, we evaluate the derivatives on right hand side of (6.20)at the horizon. Settingλ= h̄= 1 we
get

〈j(2)uu 〉h =
〈T 〉h

12
− 〈At〉2

h

2

〈j(3)uuu〉h = −1

3
〈At〉3

h −
1

6
〈T 〉h 〈At〉h

〈j(4)uuuu〉h = −1

4
〈At〉4

h +
1

4
〈T 〉h 〈At〉2

h −
7

240
〈T 〉2

h

Therefore at infinity we get

− 1

2π
〈J (2)r

t 〉 =
κ2

48π
+

Ω2

4π

− 1

2π
〈J (3)r

tt 〉 =
Ω3

6π
+
κ2Ω

24π
(6.22)

− 1

2π
〈J (4)r

ttt 〉 =
7κ4

1920π
+

Ω2κ2

16π
+

Ω4

8π

where we have used〈f ′(r+)〉h = 2κ, 〈T 〉h = −κ2

2 , At(r) = r
r2+a2 , Ω = At(r+) = 〈At〉h. These

results agree with formula (4.4) after the replacementAt →mAt (see the comment before eq.(6.17).
We have checked, [2], the agreement up to spin 8 current〈J (8)r

t...t 〉 .
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7. Anomalies and higher spin currents

Each higher spin current carries to infinity its own component of the Hawking radiation. Just
in the same way as in the action the metric is a source for the energy–momentum tensor, these new
(covariant) currents will have in the effective action suitable sources, with the appropriate indices
and symmetries. We will represent such sources by means of background fieldsB(s)

µ1...µs
(which

will be eventually set to zero). So we have

J (s)
µ1...µs

=
1√
g

δ

δB(s)µ1...µs

S (7.1)

We assume that allJ (s)
µ1...µs

are maximally symmetric and classically traceless2.
In the previous section the covariant forms of the higher spin currents have not given rise to

any trace or diffeomorphisms or gauge anomaly. One might object that this may be due to the
particular currents we are considering and attribute it to an accident. For instance, in [17], the
authors, using higher spin currents defined by different combinations of thej(m,n)

z...z from (5.1), did
find anomalies. So the question is: is there a way to spell out this ambiguity? The answer is yes,
this can be done by means of cohomological (or consistency) methods applied to the effective field
theory.

Let us concentrate here, for simplicity, on trace anomalies. The much more complicated anal-
ysis of diff anomalies has been carried out in [2] and will notbe reviewed here. The consistency
conditions for trace anomalies are similar to the Wess–Zumino consistency conditions for chiral
anomalies and are based on the simple remark that, if we applytwo symmetry transformations in
different order to the action, the result must obey the grouptheoretical rules of the transforma-
tions. In particular, since Weyl transformations are Abelian, making two Weyl transformations in
opposite order must bring the same result. Although this explains the geometrical meaning of the
consistency conditions, proceeding in this way is often very cumbersome. The method becomes
more manageable if we transform it into a cohomological problem. This is simple: just promote
the local transformation parameters to anticommuting fields (ghosts). The transformations become
nilpotent and define a coboundary operator. It is in general possible to compute the non–trivial co-
cycles of such coboundary operators: they are local polynomials of the fields and their derivatives,
and they define the possible anomalies. This cohomological method however does not guarantee
that a given cocycle makes its appearance on the right hand side of a specific conservation law,
and consequently violates it, for the numerical coefficientin front of it may vanish. Therefore this
method by itself is not enough to fully determine anomalous conservation laws. On the other hand
it is very powerful if we can show that all the cocycles (that is, all the potential anomalies) are triv-
ial. In this case we are guaranteed that the corresponding conservation law will not be broken by
anomalies, or, if they are, the corresponding (trivial) anomalies can be absorbed by a redefinition
of the action.

We notice that the cohomological analysis of anomalies doesnot depend on whether we are
dealing with fermionic or bosonic currents, but only on the background fields. This said we can now
analyze the problem of the existence of trace anomalies in higher spin currents with cohomological

2Other background fields, beside theB ones, are needed in the effective action, as was discussed in[2]. But they
turn out not to be irrelevant in the anomaly discussion, so wewill drop them here.
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methods. The relevant background is formed by the metric, the completely symmetricB fields and
the electromagnetic field.

Of course the electromagnetic field gives rise to the gauge anomaly in the covariant derivative
of theJ (1) current, see (6.11). The latter is induced by the gauge transformationδλAµ = ∂µλ and
this exhausts our discussion of the gauge anomaly.

Next let us turn to the trace anomalies and recall the appropriate setting for this type of analysis.
We start from the analysis ofJ (3). SettingB(3)

µνλ = Bµνλ the Weyl transformation of the various
field involved are

δσgµν = 2σgµν

δσBµνλ = xσBµνλ (7.2)

δσAµ = 0 (7.3)

which induces the trace of the energy–momentum tensor, and

δτgµν = 0

δτBµνλ = τµgνλ +cycl (7.4)

δτAµ = 0 (7.5)

which induces the trace ofJ (3). Moreover, for consistency with (7.2), we must have

δστµ = (x−2)στµ (7.6)

wherex is an arbitrary number.
A comment on these transformations is in order. They are determined as follows: they must

be expressed in terms of symmetry parameters and of the basicbackground fieldsgµν andAµ

and nothing else; they must form a Lie algebra, as was mentioned above, and they must leave
unchanged the terms in the effective action, in particular the terms involving the matter fields. The
transformations are then dictated by the canonical dimensions of the various fields. The fieldsB(s)

have dimension2− s.
We must now repeat the analysis we have done in [1]. We promoteσ andτµ to anticommuting

fields so that

δ2σ = 0, δ2τ = 0, δσ δτ + δτ δσ = 0

Integrated anomalies are defined by

δσΓ(1) = h̄∆σ, δτΓ
(1) = h̄∆τ , (7.7)

whereΓ(1) is the one–loop quantum action and∆σ,∆τ are local functional linear inσ and τ ,
respectively. The unintegrated anomalies, i.e. for instance the tracesT µ

µ andJ (3)µ
µλ are obtained

by functionally differentiating with respect toσ andτλ, respectively.
By applying δσ,δτ to the eqs.(7.7), we see that candidates for anomalies∆σ and∆τ must

satisfy the consistency conditions

δσ ∆σ = 0, δτ ∆σ + δσ ∆τ = 0, δτ ∆τ = 0 (7.8)
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Once we have determined these cocycles we have to make sure that they are true anomalies,
that is that they are nontrivial. In other words there must not exist local countertermC in the action
such that

∆σ = δσC ≡ δσ

∫

d2x
√−gC (7.9)

∆τ = δτ C ≡ δτ

∫

d2x
√−gC (7.10)

If such aC existed we could redefine the quantum action by subtracting these counterterms and get
rid of the (trivial) anomalies.

Let us consider now the problem of the traceJ (3)µ
µλ. We could repeat the complete analysis

of [1], but there is a shortcut due to the simple form of the transformations (7.4). Suppose we find
cocycle∆

(3)
τ

∆(3)
τ =

∫

d2x
√−g τµ I(3)

µ (7.11)

whereI(3)
µ is a canonical dimension 3 tensor made of the metric, the gauge field and their deriva-

tives, such as∇µR or ∇νFµ
ν , or even a non–gauge–invariant tensor such asAµR. Then it is

immediate to write down a counterterm

C(3) ∼Bµλ
λ I(3)

µ (7.12)

which cancels (7.11).
As for the traceJ (4)µ

νλρ we can proceed in analogy toJ (3)µ
µλ. SettingB(4)

µνλρ ≡ Bµνλρ, the
relevant Weyl transformations are as follows. The variation δτ acts only onBµνλρ

δτBµνλρ = gµν τλρ +cycl (7.13)

and the other fields remain unchanged while the variation with respect to the ordinary Weyl param-
eterσ are

δσgµν = 2σgµν (7.14)

δστµν = (x−2)στµν (7.15)

δσBµνλρ = xσBµνλρ (7.16)

where, again,x is an arbitrary number. Now we can repeat the previous argument. Let a cocycle
have the form

∆(4)
τ =

∫

d2x
√−g τµν I(4)

µν (7.17)

whereI(4)
µ is a dimension 4 tensor made out of the metric, the gauge field and their derivatives,

such as∇µ∇νR. The counterterm

C(4) ∼Bµνλ
λ I(4)

µν (7.18)

cancels (7.17).
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It is not hard to generalize this conclusion to higher spin currents.

Out of conciseness the analysis in this section has been somewhat oversimplified. A more com-
plete analysis of trace anomalies can be found in [1] and, as far as the diffeomorphisms anomalies
are concerned, in [2]. See also complementary considerations in [3]. On the basis of these analysis
we conclude on a general ground that anomalies may not arise in the spin higher than 2 currents
under any condition, or if they arise they are trivial.

8. Conclusion

It is evident that the possibility to describe the higher moments of the Hawking radiation is
related to the transformation properties of the holomorphic higher spin currents, specifically to
the appearance of generalized Schwarzian derivatives in their conformal transformation properties.
Even in the case of the energy momentum tensor, the Hawking flux is related to Weyl or Diff
anomalies only in the sense that the latter determine the relation between the covariant and holo-
morphic part of the energy–momentum tensor (see our discussion in [2]). For higher spin currents,
as we have seen, there are no links with anomalies simply because anomalies cannot exist in the
conservation laws of these currents. This much seems definitely clear. There are however other
aspects of the problem which have remained so far implicit, but are crucial in order to understand
the central role of theW1+∞ algebra. In this section we would like to discuss these aspects.

Let us start from the remark that the summation overk in formula (5.1) does not affect the
crucial termκs

s (1− 2−(s−1))Bs in 〈XF
s 〉 except for an overall multiplicative factor. This means

that, had we used each one of the currents

j(s,k)
z...z (z) =: ∂s−k

z Ψ†(z)∂k−1
z Ψ(z) :, (8.1)

instead of (5.1), we would have obtained (up to normalization) the same final result for the moments
of the Hawking radiation. This seems at first to deprive of anyinterest the role of theW1+∞ algebra,
but the case is just the opposite. Using the currentsj

(s,k)
z...z (z) we have two enormous disadvantages.

The first is that we do not have any means of normalizing these currents, thus rendering the
results obtained by their means devoid of any predictive value. TheW1+∞ algebra structure tells us
how to normalize the currents in such a way as to get an algebra. There remain only two constants
to be fixedλ andq. The first is fixed in such a way as to get the right transformation laws (OPE)
of the energy–momentum tensor, the second is fixed by the U(1)algebra ofj(1). Once these two
constants are fixed the normalization for all the higher spincurrents is uniquely determined and in
agreement with the Planckian spectrum of the Hawking radiation.

The second disadvantage of using currents that do not form aW1+∞ algebra, such asj(s,k)
z...z (z),

is the appearance of anomalies in their traces or in the conservation laws of their covariant version.
This was shown in a very explicit way in [17]. As we have shown,these anomalies are cohomo-
logically trivial and can be eliminated by suitable redefinitions or subtractions. As a result one
ends up with the currents (5.1) and theirW1+∞ algebra. In other words theW1+∞ algebra is the
appropriate structure underlying the Planckian spectrum of the Hawking radiation.

It goes without saying that all these conclusions can be drawn also for the higher spin bosonic
currents and the correspondingW∞ algebra.

19



P
o
S
(
I
S
F
T
G
)
0
0
3

Hawking radiation and W∞ algebra L. Bonora

This result seems to entail a dramatic consequence. It has been known since long that the
dynamics near the horizon of a black hole is conformal. What we learn from the above analysis
is that the two–dimensional physics around the horizon is characterized by a symmetry larger than
the Virasoro algebra, such as aW∞ orW1+∞ algebra.

Finally there is an important facet of our results which is implicit in what we have said above,
but deserves to be spelled out more explicitly. The existence of (true) anomalies in higher spin
currents or, alternatively, the lack of an algebraic principle in the normalization of such currents,
would have meant the existence of ‘hairs’ corresponding thehigher spin charges, thus violating the
‘no hair’ theorem that must characterize the Hawking radiation. Therefore our conclusions are in
nice agreement with this theorem.
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