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1. Introduction

Tachyon condensation is a pervasive phenomenon in phydibgnever a field theory has a
potential with a local maximum, surrounded by (possibly atcmum of) local minima, quanti-
zation around the maximum brings about the appearance oflmysical particle with negative
square mass, the tachyon. The tachyon is simply the maatif@siof the instability of the vacuum
chosen to quantize the theory. Any tiny disturbance takesylstem to a more stable configuration
based on alocal minimum (the tachyons have condensed)isT fas instance, the typical situation
of the spontaneous breakdown of a symmetry. The subjecesétlectures is tachyon condensation
in a system of infinite many patrticles, as described by sfiielg theory (SFT). The motivations
underlying the study of this system are both theoretical gpglicative, and stem from the over-
whelming role D—branes have assumed in the description ysdigal systems in the framework of
string theory.

D-branes mean open strings: open strings (unlike closewjsjrdo not exist as autonomous
entities but only when their endpoints can lie on D-brandsicly as the case may be, may fill
the space). On the other hand D—branes do not have an autae@ristence either: they are a
geometrical abstraction representing the dynamics of pes @trings attached to them. Studying
the dynamics of open strings is therefore of upmost impadand tachyon condensation is basic
in this respect. An example may be more illuminating than ynaords. A phenomenon like
inflation can be described by the attractive potential betwa D—brane and an anti—-D—brane, at
least as long as the two branes are far apart. However, wkérdibtance becomes smaller than the
string scale (after inflation has terminated) the stringctpen develops tachyons and the natural
evolution of the system is represented by tachyon condensat

In these lectures | will discuss bosonic open string fieltire Purely bosonic string theory
is, of course, by itself insufficient, if anything because spectrum does not contain fermions.
However open string field theory is a simplified playgroundhwiespect to the corresponding
superstring field theory versions. Exploiting the relatsimplicity of the bosonic theory it has
been possible in the last ten years to make significant pgegred, then, export it to some extent to
the superstring relatives. Therefore our playground wéltiise description of tachyon condensation
and related phenomena in the framework of Witten’s Opem&frield Theory (Witten 1987), and
the guideline for all these recent developments is reptedelny A.Sen’s conjectures (Sen 1998,
1999). The latter can be summarized as follows. Bosonic sjrérg theory in D=26 dimensions
is quantized on an unstable vacuum, an instability whichifests itself through the appearance
of the open string tachyon. The effective tachyonic po&ias, beside the local maximum where
the theory is quantized, a local minimum. Sen’s conjectuw@scern the nature of the theory
around this local minimum. First of all, the energy densiiffesience between the maximum and
the minimum should exactly compensate for the D25-bransidercharacterizing the unstable
vacuum (first conjecture): this is a condition for the (refa) stability of the theory at the minimum.
Therefore the theory around the minimum should not containguantum fluctuation pertaining
to the original (unstable) open string theory (second adgje). The minimum should therefore
correspond to an entirely new theory, which can only be theobiz closed string theory. If so,
in the new theory one should be able to find in particular @l ¢fassical solutions characteristic
of closed string theory, the D25-brane as well as all the@uot solutions representing lower
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dimensional D—branes (third conjecture).

The evidence in favor of these conjectures has accumulatedtioe years although not with
a uniform degree of accuracy and reliability, until the fingb conjectures were rigorously proved
(Schnabl 2006, Ellwood and Schnabl 2007): an explicit @majpon—perturbative) SFT solution
was provided which links the initial vacuum to the final oné &was shown that this vacuum does
not contain perturbative open string modes. As for the tbindjecture the most important evidence
we have gathered so far of solitonic solutions comes fronvteeium String Field Theory (VSFT),
an approximate version of the full SFT, which is believeddpresent rather faithfully the theory
near the minimum, at least as far as static solutions aresconed.

The D25-brane and its lower dimensional companions arabiestbecause there is no con-
served charge (like in the corresponding supersymmetdortas) associated to them. Therefore
SFT must contain also time—dependent solutions that destireir decay. This issue has been dis-
cussed (Sen 2002, 2003a) and approximate solutions hawefdg®d in SFT, but exact solutions
are still lacking.

Finally, a very far—reaching consequence of Sen’s conjestis so far remained rather implicit
in the literature. It is evident that if the three conjectiage true and the new vacuum is the closed
string vacuum, then it means that the closed string degfdessalom can be represented (although
non—perturbatively) in terms of the open string ones. Than exciting possibility that has not been
methodically explored so far.

The aim of this review is not a full account of the entire sebjef SFT and tachyon conden-
sation, which would take an article the size of a book. Thezeateady several reviews the reader
can consult (Ohmori 2001, Are'feva et al. 2002, Bonora etG® Taylor and Zwiebach 2003,
Fuchs and Kroyter 2008), which cover different aspects affierent subjects. My aim is to give
a general survey and convey the main messages withoutimgsisb much, wherever possible, on
too many details.

2. Open string field theory

Before we come to the formal definition of string field thearg. second quantized string
theory, we need a short summary of first quantized open stniegry.

2.1 First quantized open strings

First quantized open string theory in the critical dimensi®=26 is formulated in terms of
quantum oscillatorsrl), —oo < n < oo, u=0,1,...,25, which come from the mode expansion of
the string scalar field
alf S0

XH(2) =5

lx“ — = p“lnz+ ;
having set the characteristic square length of the stiing 1. They satisfy the algebfah, aY] =
mnHY &, mo, N being the space-time Minkowski metric. The vacuum is defimgarf'|0) = 0
for n> 0 andp”|0) = 0. The states of the theory are constructed by applying tovalcaum the
remaining quantum oscillatomﬁ”r = a¥, with n > 0. Any such statép) is given momentunk*
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by multiplying it by the eigenstate¥*. This state with momentum will be denoted fag,k). In
order for such states to be physical they must satisfy thditons

LYok =0, n>0, (LY-1)pk =0 (2.1)
whereLﬁx) are the matter Virasoro generators
x) 1. &
LX) — 5 kz al . a¥ Ny (2.2)

where we have saip = p and :: denotes normal ordering. The conditions (2.1) arejtientum
translation of the classical vanishing of the energy—mdomartensor.

The conditions (2.1) define the physical spectrum of therihéa D=26). All the states are
ordered according to the level, the level being a natural memspecified by the eigenvalue of
LE,X) + L(()gh) — p?. The lowest lying state (level 0) is the tachyon represebiethe vacuum with
momentunk and square ma$g? = —1. The next (level 1) is the massless vector sfate” |0)e*
with k? = 0 and{ - k = 0, which is interpreted as a gauge field. The other statesllamaasive,
with increasing masses proportional to the Planck masssqua

To each of these states is associated a vertex operatongtance, to the tachyon we associate
Vi (k) =: €% :; to the vector stat®/a(k,¢) =: ¢ - XX :, where the dot on top ok denotes the
tangent derivative with respect to the world-sheet boun@e real axis in the UHP); and so
on. In this way one can formulate rules to calculate any kihéraplitude of these operators
(Vi(k1)...Wn(kn)), as far as these amplitudes areshell At low energya’ — 0 such amplitudes
reproduce those of the corresponding field theory (for mstathe amplitudes &fs reproduce the
amplitudes of a Maxwell field theory). If we want to compuaié-shellamplitudes, in general we
have to resort to a field theory of strings. This was one of tiigiral motivations for introducing
a string field theory.

So far we have ignored ghosts. Indeed lthe ghosts, which come from the gauge fixing of
reparametrization invariance via the Faddeev—Popov eepipy a minor role in perturbative string
theory. They play a much more important role in SFT. They ée expanded in modes andb,
and one can construct the corresponding Virasoro gensrator

Lo = Z(2n+ K) b_kCiin : (2.3)
Both (2.2) and (2.3) obey the same Virasoro algebra
c

[Ln,Lm] = (n—=m)Lnim+ 1—2(n3 —n) (2.4)

The central charge equals the number of fields in the matter case (i.e. 26), while it equals -26
in the case of thé,c ghosts. So the total central charge vanishes in D=26. Thasagtees the
absence of any trace anomaly, and therefore consistendyedidsonic string theory as a gauge
theory.

The previous results about ghosts and critical dimensian e usefully reformulated in terms
of BRST symmetry and its charg@ Q is defined by

1
Q=Y :c <L%X> + EL,(F’h)) : (2.5)

n
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It is hermiteanQ" = Q and its basic property is nilpotency
Q=0

in critical dimension. The study of the physical spectrum t& reformulated in terms of the
cohomology ofQ: the physical states of perturbative string theory are ttedest of ghost number
1 that are annihilated by Qdefined up to states obtained by acting wi@tton any state of ghost
number 0. They can be represented by the old physical statkstensored with the ghost factor
Cl|0>.

With this at hand we can now turn to string field theory.

2.2 The SFT action and star product
The open string field theory action proposed by E.Witten yego (Witten 1987) is

Y(W):—g—];z). (%W*QW—I—%W*W*W). (2.6)
This action is clearly reminiscent of the Chern—Simonscactn 3D. In this expressiol is the
string field. It can be understood either as a classical fanat of the open string configurations
W(xH(z)), or as a vector in the Fock space of states of the open stramyyth Altough the first
representation is more pictorial, the second is far morecsiffe from a practical viewpoint. In the
following we will consider for simplicity only this secondomt of view. In the field theory limit
it makes sense to represeHtas a superposition of Fock space states with ghost numbeiti, w
coefficient represented by (infinite many) local fields,

W) = () +Au(a: T + .. )cy|0). 2.7)

The BRST charg® is the same as the one introduced above for the first quargided theory.

One of the most fundamental ingredients is the star prodRitgsically it represents the string
interaction, that is the process of two strings coming tgeto form a third string. More precisely
the product of two string field$’1, W, represents the process of identifying the right half of the fi
string with the left half of the second string and integrgtaver the overlapping degrees of freedom,
to produce a third string which correspondsHtg= W,. This can be implemented in different ways,
either using the classical string functional (as in theioagformulation by Witten), or using the
three string vertex (see below), or the conformal field thdanguage (Leclair et al. 1989).

Finally the integration in (2.6) corresponds to bendingléfehalf of the string over the right
half and integrating over the corresponding degrees ofdfseein such a way as to produce a
number.

The following rules are obeyed

Q* =0,

[aw=o

(W1 W)« W3 =Wy x (WaxW3),

Q(W1 xWy) = (QW1) % Wa+ (—1) V1w 5 (QWy), (2.8)
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where |¥| is the Grassmannality of the string fie#, which, for bosonic strings, coincides with
the ghost number. The action (2.6) is invariant under the BR&sformation

OW=0AN+WxA-AxWY. (2.9

Finally, the ghost numbers of the various objeQt$P, A\, *, [ are 11,0,0,—3, respectively.

Let us now see in more detail how to implement the star produet us consider three unit
semi-disks in the upper hatf (a= 1,2, 3) plane. Each one represents the string freely propagating
in semicircles from the origin (world-sheet tinfe= —) to the unit circle|z;| = 1 (t = 0), where
the interaction is supposed to take place. We map each unitdisk to a 120 wedge of the
complex plane via the following conformal maps:

fa(za) = a* 2f(za),a=1,2,3, (2.10)
where
1+iz\ 3
f(z)_(l_iz) . (2.11)

Herea = €%, In this way the three semi-disks are mapped to non-overgpf@xcept along the

edges) regions in such a way as to fill up a unit disk centeréldeadrigin. The curvature is zero
everywhere except at the center of the disk, which represiiet common midpoint of the three
strings in interaction, see Fig.(1)

a2

% M

f2(z,)

Figure 1: The conformal maps from the three unit semi-disks to thettuedges unit disk

The interaction vertex is defined by means of a correlatiotion on the disk in the following
way

[ @rx = (20 (0) f20 9(0) fa0 X(0) (2.12)

So, calculating the star product amounts to evaluatingeetpoint function on the unit disk.
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3. Tachyon condensation

Following the rules of the previous section it is possiblexplicitly compute the action (2.6).
For instance, in the low energy limit, where the string fieldynibe assumed to take the form (2.7),
the action becomes an integrated functioof an infinite series of local polynomials (kinetic and
potential terms) of the fields involved in (2.7):

S (W) = /d26xF(¢i,a¢i,...). 3.1)

To limit the number of terms one has to limit the gigantic BR§mmetry of OSFT, by choosing a
gauge, which is usually the Feynman-Siegel gauge: this srteabhwe limit ourselves to the states
that satisfy the conditionbp|W) =0

Still the action with all the infinite sets of fields contained¥ remains unwieldy. As it turns
out, it makes sense to limit the number of fields4h provided we insert all the fields up to a
certain level. This is calletevel truncationand turns out to be an excellent approximation and
regularization scheme in SFT. Let us see this in more degaihfstring field which includes the
tachyong(x) and the vector field\,(x). The action turns out to be (Ohmori 2001)

1 1 1 1 1
Fo1) = Z / d?6x <—§du(pd“(p+ z(pz— §B3(p3— zduAvd“A" (3.2)

~ BoAA - B (0,0,6R0RY 1 G, R 0,8 23, (bavA“AV)>

wheref3 = 37‘@’ is a recurrent number in SFT. One can see the kinetic ternhétachyon and the
gauge field (the latter is in the gauge fixed form because tgarRan—Siegel gauge corresponds
in the field theory language to the Lorentz gauge) and therigirmass term for the tachyon. The
fields appearing in the interactions terms carry a tilde sTheans, for any fielg

F(x) =P g ()

Incidentally, the fact that the interaction is formulataderms of tilded fields is a manifestation of
the strong (exponential) convergence properties of sthiegry in the UV.

Let us now consider the potential and study its minimum. Waeimel the reader that this
theory is supposed to represent the open strings attachadspace—filling D—brane, the D25—
brane. It may also represent lower dimensional branes. drCRT language such configurations
are described by boundary CFT’s. The first important rem&n(1998) is that this potential is
universal, it does not depend on the details of the theary,dn a particular boundary conformal
field theory.

Let us concentrate on the D25—brane and evaluate the t@egyeaf the system brane + string
modes. The brane has its intrinsic energy, whose densitgigensiort, which in our conventional
units (@’ = 1), is given byt = Flgg The string modes are represented by the action and, inia stat
situation, their total energy is given by the negative acti/e precisely wish to study this system in
the vacuum. Since we want Lorentz invariance, only Loreo#tess can acquire a VEV. Therefore
in (3.2) one must set the tensor fields and all the derivativés Setting{) = t, what remains of
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the action (divided by the total volume) can be written imterof the functioru(t) as follows
S B 1, 1 54
V_ru(t)_2n2< ot +3Bt> (3.3)

This is the total tachyon potential energy density extidétem the action.
The total energy of the system will be given by the sum of (ar8) the D25—brane tension

U(t) = T(1+u(t)) (3.4)

This potential is cubic, and it is easy to determine bothllozaximum and minimum. The latter
is given by
1
ﬁ?
Let us recall that the first conjecture by Sen is that the taokyenergy should exactly com-
pensate for the D25-brane tension. Therefore (3.5) doesnatth this result, but we should
remember that ours has been a very rough approximatiorg siechave retained only two fields,
the tachyon and the Maxwell field. It can be shown that by agldiore and more fields to the

string fieldsW, that is truncating it at a higher level, the valueuty) gets closer and closer tol.
The asymptotic situation is represented in Fig.(2)

t=ty= u(t) ~ —0.684 (3.5)

Figure 2: The tachyon potential

This was historically the first evidence that the first Sewsjecture is correct.

4. The analytic solution

In this section | will explain how the first analytic solutitmthe SFT equation of motion (5.3)
was found (Schnabl 2006). This solution is a string statedpecifies the (locally) stable vacuum,
to be identified as the closed string vacuum. In the oversiiagllanguage of the figure (2) it
would correspond t¢¥p) = toc1|0), but it actually identifies the vev of all the infinite many kga
fields that feature in the most general string field.

To start with | have to introduce one of the important ingeedis of this solution, the wedge
states.
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4.1 Wedge states and the new coordinate patch

Wedge states are particular surface states. The lattetates simply defined by a map from
the half—disk to the unit disk or, equivalently, to the uppalf plane. The definition is as follows:
take any mag from the half—disk to a surface (inscribed in the unit disk or in the UHP); consider
any fieldp and the statép) = ¢(0)|0) in the Fock space of the theory; then the surface $@tis
defined by

(Se) = (fog)s (4.1)

The definition is implicit and may seem at first not very harimy, one can reduce the calculation to

very simple test statdg), much in the same way as we do in calculating the Neumann ciegits

for the three strings vertices in Appendix. One can see thairtace state can be written as a

squeezed state represented by a Neumann n&tfipboth for the matter and the ghost patrt.
Wedges states are particularly simple. Their defining fionstare

2 = <1+iz>% 42)

1-iz

where, for simplicity, we take to be a positive integer. This means that the image of the map i
wedge of angle?rﬂ in the unit disk. They can be shown to satisfy the recursidation

Iy x|s) =|r+s—1) (4.3)

In particular we see that calling) the result of taking —  in |r), we recove=2 = =. This may
seem formal, but it can be shown to give rise precisely tolillerswhich is a surface state defined
by a wedge of vanishing angle (see next section for a moreaecdefinition). So, in particular,
wedge states approximate the sliver.

Figure 3: Star product of two wedge statg « |2) = |4)

The star product of wedge states takes a particularly sirfgoha if we use the coordinate
Z=arctarz. In this new representation a wedge stajas a cylinder in thee UHP, see fig.(3). It is
in fact an infinite strip in the imaginary direction of widi. It is formed by two external strips of
width 7 each (the ruled strips in the figure), and an internal striwioth (r — 1) 7. The rightmost
and leftmost sides are identified so as to form a cylinder. tae product of two such states is
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simply obtained by dropping the rightmost ruled strip of fiist state and the leftmost ruled strip
of the second and gluing the two cut cylinders along the daghe in fig.(3). In this language the
wedge state witlh = 2 corresponds to the vacuu®).

Pure wedge states, as we have just described them, are najletw describe the analytic
solution we are looking for. We need wedge states with ir@grthat is wedge states with the
insertion of an operator at some point of the unruled patchbe|n) wedge state itself can be seen

as such.
2\ %
m=(2) "o @4)

where % will be introduced in a moment.

These states will play a major role in what follows. What wecd@ow is exploit the new
coordinatez’= arctare to get a few basic definitions and relations. To start with wénd the
Virasoro generators in the new coordinate patch

dz . .
that is
00 2(_1)k+l
=L o S
Ho=bot ) o1
as well asZ. 1. They satisfy[.%,, Zn| = (N— M) Zhim.
Other useful operators are

Lok (4.5)

g 2(_1)k+1

PBo = bo+ Z bok
k=1

L 4k2—1
By =by+b_;
and

B=B; = %Bl+%<%o+%g>

1 1
R_ +p & t
BY = 5Bi— (%OJF%O)
and usingK; = L1 +L_; we can introduce

101
K=Kt = §K1+7—T<.,%+$J)

1

Kf = §K1—7—J:[<go+gg)

For instance we have the 'semi—derivation’ rules
KL (Wi Wo) = (KEWp) x Wy
KR(WyxWy) = Wy« (KRWy)
and the wedge states can also be written as
) = e2(™1X|1)

From this equation and (4.4) we see that it makes sense tideonsa real variable rather than an
integer, and therefore also to differentiate with respedt.t

10
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4.2 The solution

Schnabl chose the gaugéy|¥) = 0, rather than the Feynman-Siegel one. He than made the
ansatz

N
W= lim <Zo Y — wN> (4.6)

where
Yn = €1]|0) xB|n) x c1|0) 4.7)

and the prime denotes derivative with respeab.tdhe statal, is made out of wedges states with
insertions of the field and ofB. In particular forn = 0 we have

o= (cBg(0)[0), Yo =(cBK(0)[0)

We remark that in the RHS of (4.6) the second terighy is added only for regularization purposes.
The solution is obtained as a limit and it is constructed as

(o)

W, =5 AMLy (4.8)
PR

This is a pure gauge solution (action=0) fox 1, but it is not pure gauge anymore fdr= 1 and
it is the good solution. We will not prove it here. Rather wacentrate on the evidence about first
Sen’s conjecture.

4.3 First and second Sen’s conjectures

From the equation of motion we get

This equation has to be explicitly checked over the solu{®) — a rather nontrivial task —,
because one of the subtleties of SFT is that, evg#)ifis a solution to the equation of motion, it is
not automatically guaranteed that (4.9) holds.

On the other hand, from the explicit form of the solution omésg

3
(W.QW) = ——

Therefore, finally, the total energy of the string moded/isqthe total 26—th dimensional volume):

1

T (4.10)

S 1 /1 1

which is precisely the negative of the D25-brane tension
Let us now pass to briefly illustrate the proof of the secontjexture (Ellwood and Schnabl
2007). The purpose is to show that the cohomology about ®thrsalution is trivial. Relabeling

11
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Schnabl’s solution a¥/y, we are looking now for solutions to (5.3) of the ty@s + ¢, linearized
on (. Itis easy to see that the relevant (linearized) equationaifon is

2P = QU+ Wox— (—1) ¥y« Wy (4.12)

This defines a new BRST operatét (indeed.22 = 0) and defines the cohomology around Schn-
abl’s solution. The purpose is to prove that this cohomolisggmpty.
Let us introduce the symbol

W = |r+1)
Next let us define the state
2 1
A:——B/ W dr (4.12)
m Jo

Once again we make use of the fact that wedge states can bedifdimany real labet, not just
for an integralr. It is possible to prove that

A= |1) (4.13)
where the RHS represents the wedge state mithl. This is the identity state and satisfies
L *xP=bx|1) =P

for any ®.
Now supposey satisfies2y = 0, then, using these results, we get

2AxY) = (2A)+Y—Ax(2¢) = D)+ =y

which means thaty is BRST trivial. This is a very general result. It implies ranily that the
cohomology of ghost number 1 is trivial (i.e., there is no ibgl perturbative string mode in the
new vacuum), but that the cohomology is trivial for any ghastber state.

5. The third conjecture

The third of Sen’s conjectures has not been proven analytisa far, the reason being that
for this purpose one cannot use the elegant and simple analgthods of the previous section. In
fact the third conjecture predicts the existence of lowaratisional solitonic solutions (specifically
Dp-branes, witlp < 25). But these solutions bring along the breaking of tramsial symmetry
and background dependence. So far the evidence for sudiosslis overwhelming, but no exact
example has been found yet. It has been possible to find thémapproximate methods or with
exact methods but in related theories.

A related theory which has brought about significant develepts has been the so called
vacuum string field theory (VSFT). VSFT, (Rastelli et al. 2D0is a version of Witten’s open
SFT which is supposed to describe the theory at the minimutheftachyonic potential. The
argument is as follows: let us consider Schnabl’'s solutiosh @ll it Wy; the generic string field in

12
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the SFT action can be rewritten by shiftidg— W+ W. It is easy to see that the action maintains
the same functional form as the original SFT action. But tivenfof the BRST charge becomes
very complicated (see (4.11) above). One can at this pgirtbtsimplify it with the help of some
heuristic argument in order to complement our ignorancelyiRg on the evidence that, at the
minimum, the negative tachyonic potential exactly compésss for the D25—brane tension one
can conclude that no open string mode should be excited. édhd BRST cohomology must be
trivial. The possible BRST operators that satisfy this ¢ton are of course manifold. However
it is possible to find evidence that a consistent form is (blpw. This does not mean that VSFT
is equivalent to the true theory, but simply that it is a cetesit simplification thereof, near the
potential minimum.

In short the formulas relevant to VSFT are as follows. Théoadts

1/1 1
L (W) = _g_% <§<w|o@|w> + §<w|w*w>> , (5.1)
where
2=co+ ZO(_l)n(C2n+C_2n)' (5.2)

The equation of motion is
Y= _—Yx\y, (5.3)
We can now make an ansatz for nonperturbative solutions
W=WnLo W, (5.4)

whereWy andWy, depend purely on ghost and matter degrees of freedom, tesggecThen, since
2 depends only on the ghost modes, eq.(5.3) splits into

wherexg andx*n, refers to the star product involving only the ghost and matéet. The action for
this type of solution becomes

(W) = —6—;%<wg|9|wg><wm|wm>, 5.7)
(Wm|Wm) is the ordinary inner product¥,| being thebpzconjugate ofWp,).

The remarkable characteristic of VSFT is factorization lvé tmatter and ghost part. The
solution for the ghost part has been found, (Hata and Kaw@0@)2 but it does not really matter
here since it is universal, and, due to factorization, ijpdrout of the interesting results. So let us
concentrate on the matter part, eq.(5.6). The solutionpenjectors of thex,, algebra. Thexy,
product is defined as follows

123V3|W1)1|W2)2 =3 (W1 *mW¥2, (5.8)

Litis fair to say that it has never been clarified in what precisnse VSFT is an approximation to SFT.

13
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where the three strings vert&gm) is defined in Appendix, (8.2).

The solutions to eq.(5.6) are projectors of thg algebra. The simplest one is tiséver,
(Rastelli et al. 200). Let us recall the main points congggrihe sliver solution. It is translationally
invariant. As a consequence all momenta can be set to zeeoinfégration over the momenta can
be dropped and the only surviving partBrwill be the one involving/22, with n,m> 1. The sliver
is defined by

(o)

2)=e @0, alsd= T allsnann. (5.9)

nm=1

This state satisfies eq.(5.6) provided the ma@patisfies the equation
V21
S=vi vy 1-sy)is <v12>’ (5.10)

where

S 0 Vll V12
(30, v-(Va ) 511
(see the Appendix below for notation). The proof of this facivell-known, (Kostelecky and
Potting 2001). First one expresses eq.(5.11) in terms dittsted matriceX = CV1 X, =CV1?
and X_ = CV?., together withT = CS= SC whereCym = (—1)"dm is the twist matrix. The

matricesX, X, ,X_ are mutually commuting, due to eq.(8.7). Then, requifingp commute with
them as well, one can show that eq.(5.11) reduces to theraigedmuation

(1-T)(XT2 = (1+X)T+X)=0. (5.12)

Apart form the identity solution, the significant solutiasthe sliver

T:§(1+X—\/(1+3X)(1—X)), (5.13)

which evidently commutes witK, X, , X_.
The normalization constant#” is calculated to be

D
2

N = (def1—37))%, (5.14)

whereD = 26. The contribution of the sliver to the matter part of thdac(see (5.7)) is given by
(Z]=) = P (5.15)

Both eq.(5.14) and (5.15) are ill-defined and need to be aggel.

The sliver solution represents the space—filling D25—hraimeorder to find D—brane solu-
tions of lower dimensions we have to define transverse diegti.e. directions along which the
solutions are not translational invariant. Tlnenpsolutions are engineered to represent a lower di-
mensional brane, therefore they are characterized by treking of translational invariance along

14
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a subset of directions. Accordingly we split the three gfsinertex into the tensor product of the
perpendicular part and the parallel part

V3) = V3.1) ® Vs,), (5.16)

and the exponertt, accordingly, a& = E| + E, . The parallel part is the same as in the sliver case
while the perpendicular part is modified as follows. FollogrRastelli et al. 2002), we denote by
x? p%, a =1,...,kthe coordinates and momenta in the transverse directiahi&mduce the zero
mode combinations

a0 = Tpina i Lgna, ﬁwﬂz;mdw+k%wm, (5.17)

where pt)? £ are the zero momentum and position operator ofrth string, and we have
introduced a numerical parameterlt follows that

[a)'? a5 = nafse. (5.18)

Denoting by|Qp) the oscillator vacuum4g |Qp) = 0), the relation between the momentum basis
and the oscillator basis is defined by

Q).

{p}123= <§T> exp[Zn“ﬂ< ~py’ pp '+ Vo) pp ——aOa aog)

Next we insert this equation insid€, and eliminate the momenta along the perpendicular direc-
tions by integrating them out. The overall result of this igpen is that, whilgV; ) is the same as
in the ordinary case, we have

Va1 ) =Ke & |Qp), (5.19)
with

23 13 /
== E' == (I’)O(TV rs ()BT ) 5.20
3(V00+b/2)2 2 SZ:lMgZOaM MNAN Tap ( )

The coefﬂmentsv are given in (Rastelli et al. 2002). The new Neumann coefftsienatrices
V™S satisfy the same relations as ME ones. In particular one can introduce the matrigés =
CV''s, whereCym = dnum, Which turn out to commute with one another. All the relatiarlid for
X, X4 hold with primed quantities as well. We can therefore repegbatimthe derivation of the
sliver from eq.(5.9) through eq.(5.15). The new solutiofi tave the form (5.9) witlSalong the
parallel directions ané replaced byS along the perpendicular ones. In tughis obtained as a
solution to eq.(5.10) where all the quantities are repldnedrimed ones. This amounts to solving
eq.(5.12) with primed quantities. Therefore in the tramsgalirectionsSis replaced byS, given

by

S=CT, T-= 1+ X' —/(14+3X)(1-X)). (5.21)

2X’(
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In a similar way we have to adapt the normalization and entmgyulas (5.14,5.15). Once this is
done, one can compute the energy density, which, for a saltition, corresponds to the negative
of the action calculated via (5.7) divided by the volume. E&hsolute value of this energy is not
well defined (see below), but one can at least compute the fi@tithe tensions of two lumps of

contiguous dimensions,

ek 3 b (de(l-X)3detl+3X) i

2Mlos « \/znbs( bo+3) ( det(1— X)3def(1+ 3X) )
This ratio has been proven both numerically and analyicallbe 1. In this way we find the
expected value of the ratio of tension of D—branesdin= 1 units). Another confirmation of
the D—brane interpretation of a lump comes from the spacBl@revhich can be calculated by
contracting the lump solution with the coordinate eigetestef’) along the transverse directions.
After regularization or after introduction of a constantkgroundB field this profile turns out to
be a Gaussian centered at the transverse coordinate oridithas represents a space—localized
solution.

It has been shown that many other solutions exist, similéih bithe sliver (for instance the
butterfly) and to the lower dimensional lumps. They are &t sigebra projectors. In fact it is
possible to construct star algebras of such projectors anodiuce the notion of orthonormality
among them, see (Bonora et al. 2003).

In conclusion, the third conjecture by Sen has more than sgnoend, although it has not
been possible so far to prove it with the same rigour as thet¥irs conjectures. From the lump
construction in this section it is evident that one can hasedloid the oscillator formalism if one
wants to find the same kind of solutions in the full SFT. Onencarhope for a factorization of
matter and ghosts either. The way is much tougher and pdssegh a redefinition of the ghost
three strings vertex introduced in Appendix, the new velteixg defined with respect to the ghost
vacuum|0), rather than to the vacuumy |0) used in the Appendix. This result has already been
achieved (Bonora et al. 2009) and we would now like to briefljiew it.

(5.22)

6. The midpoint ghost vertex

If one wants to construct a ghost vertex with respect to thesghacuum0) the most natural
thing is to choose thaatural normal ordering instead of theconventionalone used in Appendix
(which is appropriate when the chosen vacuurg; |6)). The former is defined by taking, with
n < 1 andby, with n < —2 as creation operators. One of the main problems one hasddsahe
ghosts insertion, which is a priori free. We solve the prabley means of the operatdf(z) =
%dzc(z)ﬁc(z)c(z). We insert it at the string midpoirg= i and at its image-i. In this way we
obtain two vertices, which are defined in the following way.

We define the staté)) = c_1¢qc1|0) and the tensor product of states

123(@] = 1(0]2(0]3(0] (6.1)

carrying totalgh= 9. The ghost three strings vertices are

3 . 2w
Vsl = 123(@le5, By == 5 5 ok V%0l (6.2)
r,s=1n,m
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where

ge _fzypaw 1 1 ((§R@)° 1 gw)) &= oo
MM = f 27 | 2mi 20-1 wmt2 z—w '

and

(6.4)

(=00 F 275 J' 2mi 201 w2 -

g _ fdz pdw 1 1 (Lf(2) 1 5's
' diw) f(@—fsw) z—w

The first three rows of these matrices vanish, they are cotgtel satisfy the twist covariance
property
\7(ri§nm = (_1)n+m\7(s_ri)nm
that is the vertex witly insertion at is twist conjugate to the one with insertion-at.
Using the twist matriXCm = (—1)"dm one can define the Neumann matrio@(‘%) = C\/(rj[i).

With a minor modification one gets the matric)ééfi) which mutually commute. Definin’ =

X X+ =X"12andX'~ = X'? one can verify that
/ 1+ I—
Xy +X) +Xp) =1+ €
I !— 12 /
Xi X =Xn — X+ ¢ (6.5)
2 2 —\2
X + (X)) + (X)) =1
3 —\3 3 2
Apart from € these are the same relations one finds for the matter Neumainic@s. The matri¢
commutes with all the((’i)sand in fact it represents a minor complications. One cangnogreover
that all such matrices are diagonal in the basis in which tagimG definingK; = L1 +L_1 is.
Analogous relations can be obtained for theinserted vertex by twist conjugation. All these
properties allow us to carry out the star product much in teesway as for matter string states.

Let us consider the star product of two squeezed states such a

S = A exp(c'sb) |0) (6.6)
ie.
(V3]S1)|S) = (St (6.7)
The matrixS;, = CTyzis given by the familiar formula
1 X~
— + x—
T12_X—|—(X ,X )1_2127/212 <X+> (68)

where
cs 0 X Xt
212‘<0 C&) %‘(XX>
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These formulas hold for both vertices with insertioni @nd —i, respectively. It was shown in
(Bonora et al. 09a) that if5;) and|S;) represent wedge states (with ghost number 0, i.e. without
ghostinsertions) eq.(6.8) can be diagonalized irGiasis and the wedge states Neumann matrices
can be shown to satisfy the recursion relation (4.3), thggssting that our definition of the three
strings vertices is correct. However this is not enough targotee that the star product is the
correct one.For we remark that the states like (6.6) are defined on the tghasiber 0 vacuum
|0), while the resulting state in the RHS of (6.7) is defined in thesgnumber 3 vacuur).
Therefore(é(ii)lz\ is not yet the star product 9&;) and |S;). To certify this one must be able to
reconstruct the ghost number number 0 state corresponditigetghost number 3 ongS, )12|-
The explicit reconstruction goes far beyond the scope sfghbrt review, but it has actually been
done in (Bonora et al. 2009b). It has been shown there tha$ihgbothstates<§(i)12| and(é(,i)12|
one can indeed reconstruct the expected ghost number 0 weatgethus closing the circle. This
shows that there exists a definite procedure to perform Hrepsbduct of wedge (and other) states
using (only) the oscillator formalism.

Now, Y.Okawa (Okawa 06) has shown that, if we are allowedas-sbultiply the wedge states
as in (4.3), if|1) is the identity state and if the following properties hold

Q@ x @) = (Qr) Y2+ (— 1) g1 % (Q)

Q=0

Q|0) =0

Qc1|0) = —Coc1/0)

(Bf)? = (B)*=0

(BR+BY)|0) =0 (6.9)
(BY+Bf)c1|0) = |0)

{QBf} =Kt

{Q.Bf} =K{

(Bf@n) @ = —(—1) g (Bi )

where ¢ and ¢ are any two string states, it is a simple matter of algebrartwethat¥, =
S o ATy is a solution of the SFT equation of motion.

The relations (6.9), except the first and the last, are elégngmo prove in the oscillator for-
malism. Assuming, for simplicity, the validity of the firshd last relation, we can conclude that
Schnabl’'s solution can be demonstrated also in the oswilfatmalism. We hope this fact may
open the way to the analytic proof of third Sen’s conjecture.

7. Open—closed string duality

Sen’s conjectures tell us that the (locally) stable SFT uatis in fact the closed string vac-
uum. Apart from the formal proof of Ellwood and Schnabl, thare independent arguments. From
a physical point of view the D—branes in question are unstaht it has been shown (Lambert et
al. 2003, Sen 2003a, Sen 2003b, Gaiotto et al. 2004) that lsactes decay into heavy closed
string modes with negligible transverse velocity. Frommafal point of view we expect that, since
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the theory simply changes vacuum, the closed string degriefsedom may be expressible in
terms of the old ones. In the last part of this presentatievguld like to give some indication that
perhaps this is the case (for the following constructiore @re’'feva et al. 2002, Bonora et al.
2006)).

Using the sliver coefficients matri&,, let us define the operators

1
V1-&

and the conjugate ones, where the label® running from 1 to o are understoodSameans
Y m=1Shmam, etc.). Using the algebra of open string creation and afatibin operators, these new
operators can be shown to satisfy

H=w@+sdN =@ +sdNw, w=

(7.1)

[shho S ] = B (7.2)
Moreover, understanding the Lorentz indices,
$|Z) = e 2254 gy(a—Sd +Sd)|0) =0 (7.3)

Therefore the combinations, represent Bogoliubov transformations of the original betwrs,
which map the Fock space based on the initial vacl@no a new Fock space in which the role of
vacuum is played by the sliver.

One can define (Bonora et al. 2006) coefficidmisandby, so that, setting,

Bh="3 bmg',  Bh=—7 bus' (7.4)
I=1 =1
these operators satisfy the algebra

(B4, By = Oman*"
(B4 By = Gman ™

while all the other commutators vanish.

The operator$, andﬁn and their conjugates are characterized by a Heisenbergralggmor-
phic to the algebra of closed string creation and anniloitetiperators. They are natural candidates
as closed string creation and annihilation operators. R®rsime reason it is natural to interpret
the sliver|=) as the closed string vacuuit,).

This is very straightforward, but it takes a long way before ave able to claim that they do
represent the closed string oscillators and vacuum, régpbc Let us start first by considering
a complete set of states as possible candidates of peitertdosed string states. To this end
we define sequences of natural numhbees ny, ny, ..., where the label in n corresponds to the
oscillator type. For every typlehalf string oscillator we will have a collection of symmettiorentz
indicespy, 1, ..., iy, . Then for any two sequencesandm we define the states:

2OED™ out oyt auit v t—
At (iem) — ] (n|')m('B'ul BT BT (7.5)
l,r=1 S
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Note that in this new representation the labels (n,m) arerally interpreted as two independent
(left/right) spin quantities (number of symmetric indiges

The states (7.5) are string fields in the original OSFT andt ld@ perturbative closed string
states in the new vacuum. The relevant question is now: wieathe (open) string fields that
correspond to closed string Fock states created under theeatorrespondence? By closed string
states we mean both off-shell and on-shell states. Fomiosta graviton state with momentun
in closed string theory is given by

6uvatTal’|og k) (7.6)

where|Q, k) is the closed string vacuum with momentilkmand the symmetric tensdl,, is the
polarization. This state is on-shell wh&h = 0 and6,,k’ = 0. When the latter conditions are
not satisfied the graviton is off-shell. Off-shell states apt so generic as one might think, they
must satisfy precise conditions: they must have definite emdom (i.e. the holomorphic and
antiholomorphic momenta must be equal) and they must bé-metched. In the following we
will deal with off-shellclosed string states and we will focus, for the sake of siaitylionly on
zero momentum states.

It is evident from the above that there is a correspondentedas (zero momentum) states in
the Fock space of the closed string theory and open strirdsfi the type (7.5). The question is:
what are the string fields that correspond to off—shell statéhe closed string theory?

To start with we define the level matching condition by medns o

00 00

Ne=3 nBl-B  Ne= 3 nBl B, (7.7)
n=1 n=1

Off-shell states are characterized in particular by thed@@n Ng = N_. = N, where the number
N specifies the level of the state. They are in general conibimaf monomials of3 andﬁ applied
to the vacuum with arbitrary coefficients. Now one can prdweefbllowing statement:

Closed string Fock space states of given level, satisfyiegldvel matching condition, can
always be decomposed into combinations of states of thegTypethat arex-algebra projectors.
Loosely speaking, level-matched states of the closedgskotk space come from star algebra
projectors of the OSFT.

The proof can be found in (Bonora et al., 2006), where it ie algplained how to modify these
states by assigning an appropriate momentum. All this lisrather formal. However one can put
forward a more compelling argument.

One can prove the identity

~ 12
ZB#TBXT’MV = > z #TCKISVT’MV
n k=1
from which it follows that
e >n B#Tﬁrwf]uv |0C> — e*% pm] SIk”.CkI %Vf’hlv |E> ~ ef% z?:la{(”o,daf’*nw |O> (78)

where|0) is the original open string vacuum. The LHS has the form of andary state in closed
string theory, representing a D—brane filling all the spdberg are no transverse directions). Sup-
pose we wish to represent instead a Dk—brane (with R%ransverse directions and+ 1 parallel
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ones, including time). Then the oscillator part of the cep@nding boundary state in closed string
theory is the tensor product of a factor like the LHS of e@)and a transverse factor. This trans-
verse factor breaks translational invariance and, coresatyy it is natural to assume it takes the
form of a lump. The construction is again given in (Bonoralet2006). Here we report the re-
sults. Denoting with a prime the new creation operatars> s, we find the analog of (7.8) for the
transverse directions:

eznﬂ,iﬁﬁrrmj |0) = e—%Zlele”Cqujfﬂij 1Z) ~ ez 13 Cadl i |0) (7.9)

where again0) is the original open string vacuum.

As one can see, while the exponents of the LHS’s of these twat®ms have opposite sign,
the RHS of the two equations takes the same form. This miteddo be traced back to the twist
properties of the ‘sliver basis’ and the ‘lump basis’ anditertainly not accidental.

Now taking the tensor product of (7.8) and (7.9), the resgltate in the LHS is proportional
to the boundary state in closed string theory, while thetrigdind side is the identity state in open
string field theory. The boundary state represents a Dk-ebirathe closed string language. The
identity state represents absence of interaction in the sfing field theory language. We can
interpret the above equality in the following way: closedrgls are reflected by the Dk—brane
(they feel it). Open strings live on the Dk—brane, theretbey perceive the corresponding state as
an identity state (they do not feel it).

Even after this positive check there is still much to be donerder to represent closed strings
in terms of open string degrees of freedom. Perhaps the apipi@utlined in this section is still too
naive. But, at least, it shows that the solution to this pgobmay be within our reach.

8. Appendix: the three strings vertex

The role of the three strings interaction in SFT is so cruthiat, notwithstanding the elegance
and simplicity of the CFT formulation, we are lucky that amat powerful alternative method
exists, which becomes very handy in many circumstances i¥hiased on the oscillator formalism
and utilizes the so—calletthree strings vertexindeed, as was anticipated above we can represent
the star product of two string field8; andW¥, in the following way

(Va|[W1)[W2) = (WixW2) (8.1)

We split theVs vertex into matter and ghost pa¥iz = Vefm) ®V3(gh). Let us start with the matter
part. The matter verte\(efm) is given by

V3™ = / 629p1, 025D, 02D 5, 625(Piay + P2y + Pray) €XP(—E) (0. P)1zs, 8.2)
where
E— 3 (} NuyaldHyaa®vt L s p Vabar(]b)v’r_’_}n ofL aboy )
_a > zngZl pv mn ngl v Fg)Yon 2 uv Pg) Voo Py ) -
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Summation over the Lorentz indicgsv = 0, ...,25 is understood. The operataa*,al@H"
denote the non—zero modes matter oscillators ofttth string (they are related to the previously
introduceda oscillators byma, = a,), which satisfy

[@@H alPVT] = nHY &2, mn>1, (8.3)

P(a) is the momentum of tha-th string and0, p)123 = [p(1)) @ |P(2)) ® |P(3)) is the tensor product
of the Fock vacuum states relative to the three stringg,)) is annihilated by the annihilation
operatorsaﬁﬁ)“ and it is eigenstate of the momentum operaiég with eigenvaluepé‘a). The nor-
malization is

(Pl Plp)) = %and°%(p+ ).
In order to get(Vs| one has to use thepzconjugation properties of the oscillators

bpz(aﬁ]a)u) — (_1)n+1a(ar)]u‘

(V3] is thebpzconjugate of\Vz) (the bpzconjugation does not alter the order of the oscillators).
In eq.(8.1) the LHS represent the contraction of two brathwwo ket's. The result is a bra from
which bybpzconjugation one obtaing; x Wy).

The coefficientd/22 contain all the information about the star product and orezla¢o know
their explicit expression. To this end we compute the NeunwrefficientsN22 which are related
to them in a simple way. For any three string fields we requied t

(f1oW1(0) f20W2(0) f30W3(0) = (V123|W1)1|W2)2|W3)3

A simple way to exploit this is to consider the string prop@agat two generic points of the disk
(see above). The Neumann coefficieN@,I are nothing but the Fourier modes of the propagator
with respect to the original coordinates

Here, for simplicity, we only deal with the Neumann coeffitdienot involving the zero mode

@ The Neumann coefficients?? with n,m > 0 are given by, (Leclair et al. 1989),

Pu

N2 = (Vizgla D a®)]0) 125
1 dz fdw1l 1 1
N Yty bl ) ) W S 1 8.4
omf 27 27 2w 2P o) = o)z P (84)
where the contour integrals are understood around thenorigis easy to check that
Nr?\bn = Nr?rarg?
Nin = (—=1)" NI, (8.5)

ab __ pjat+lb+1
Nmn - Nmn .

In the last equation the upper indices are defined mod 3.
We will not do it here, but it is easy to make the identification

Van = (-1)™My/nmNh, (8.6)
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and to establish the fundamental commutativity relatiorit{@n in matrix notation)
[cve® cva?| = o, (8.7)

for anya,b,a,b/, whereC is the twist matrixCym = (—1)"dnm. Similar commutativity relations
can be obtained also for the coefficient matrices involvimg zero mode,,.

Next, let us consider the ghost vertex. To start with we defimée ghost sector, the vacuum
states0) and|0) as follows

A~ .

0) =coca[0),  |0) =cu[0), (8.8)
where|0) is the usuaBL(2, R) invariant vacuum. Usingpzconjugation
Ch — (_1)n+lcfn7 bn — (_1)n_2bfn7 |0) — (0], (8.9)

one can define conjugate states. It is important that, whehealpto products of oscillators, the
bpzconjugation does not change the order of the factors.

The three strings interaction vertex is defined again as aesmpd operator acting on three
copies of thebc Fock space

3 <)
g 3 bt . (8.10)
ab=1nm

(Vs = 1(0] 20|50, E

The Neumann coefficient422 are given by the contraction of the oscillators on the unit
disk. They represent Fourier components of €2, R) invariantbc propagator (i.e. the propaga-
tor in which the zero modes have been inserted at fixed pgints= 1,2, 3):

2w
z-§

Taking into account the conformal properties of the fields and inserting the zero modes at zero
¢ =0, we get

(b(ziew)) = (8.11)

V2 = (V129 0®c5010)123 (8.12)
o fdz ydw 1 1, ., -1 f3w-1,,
= om ) zmwrwe 2O g ) e 1 o)

It is straightforward to check that

Vin = Vgt (8.13)
and
VEb = (—1)mrmyba, (8.14)
Moreover, it is possible to prove that, see for instance (Baret al. 2003),
(X2, X¥) = 0. (8.15)

where, once agaiX@ = Cva®,
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