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An overview of some recent developments in inhomogeneous models is presented.
As the volume and precision of cosmological data improves, it will become more and more essen-
tial to understand the non-linear behaviour of the Einsteinfield equations. This requires the study
of exact inhomogeneous solutions, including their densitydistributions, their evolution, their ge-
ometry, and their causal structure. Observations are strongly affected by the detailed geometry
and evolution of a model, and therefore interpretation of observations depends on understanding
them.
It is generally assumed the universe is homogeneous if averaged over large enough scales, but to
actually prove this is so, will require the assumption to be relaxed, and a rigorous inhomogeneous
approach to be applied.
Though the Lemaître-Tolman metric has long been used for models of spherical inhomogeneities,
there have been a number of new results, including a variety of methods for creating models with
specific properties, and their application to cosmic structures on several different scales.

Interest in the Szekeres metrics is on the increase, and the quasi-spherical metric was recently used

to model specific cosmic structures for the first time. The quasi-planar and quasi-hyperspherical

metrics have been hardly studied until recent work invesigated their physical and geometric prop-

erties. There is enormous scope for work with these metrics.
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Modelling Inhomogeneity in the Universe

1. Introduction

Why study inhomogeneous models? The real universe is very lumpy. To properly understand
what we see, we should apply all possible methods: perturbation theory,N -body newtonian sim-
ulations, and exact inhomogeneous metrics — each has its domain of validity. Inhomogeneous
metrics have the advantage that they are fully non-linear and relativistic solutions of the Einstein
field equations (EFEs).

The assumption of homogeneity has become so well established, that it has become all-
pervasive. But now, with so much data coming in, it’s time to test homogeneity. Cosmological
data reduction relies heavily on the Robertson-Walker (RW)metric — we need to beware of a cir-
cular argument. It will be a significant challenge to check which of our well-known results actually
depend on the assumption of homogeneity, and to re-derive them all without that assumption.

Here I will present a selection of results in inhomogeneous cosmology, especially work done
with Lu, McClure, Krasínski, Bolejko, Célérier, Alfedeel, Mustapha, Ellis and others, but I won’t
try to be comprehensive. I’ll attempt to provide the basics,and thereby promote the use of inho-
mogeneous metrics for the study of cosmological problems.

Inhomogeneous metrics will become more important as the amount and accuracy of cosmo-
logical data increases, and more precise analysis is needed, so there are plenty of opportunities for
good research.

2. The Lemaître-Tolman Metric

The Lemaître-Tolman (LT) metric was the first inhomogeneousnon-vacuum metric to be dis-
covered, and has probably been the most popular choice for modelling cosmic inhomogeneity ever
since, certainly in recent decades. It is a spherically-symmetric, inhomogeneous dust model, dis-
covered by Lemaître, rediscovered by Tolman, and studied byBondi [84, 115, 23]. The metric
is

ds2 = −dt2 +
(R′)2

1+f
dr2 +R2dΩ2 , (2.1)

wheredΩ2 = dθ2 +sin2 θdφ2,R(t,r) is the areal radius, andR′ = ∂R/∂r. The free functionf(r)

determines the local geometry; it gives the “embedding angle” of constantt,θ surfaces in 3-d flat
space [51]. Also the Ricci scalar of the spatial 3-surfaces,

3R =
−2(Rf ′ +fR′)

R2R′
, (2.2)

is only zero (for allr) if both f andf ′ are zero. The matter is a pressure-free perfect fluid,

T ab = ρuaub , (2.3)

that is comoving

ua = δa
t . (2.4)
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Modelling Inhomogeneity in the Universe

From the EFEs we get

Ṙ2 =
2M

R
+f +

ΛR2

3
, (2.5)

whereṘ= ∂R/∂t, and

κρ=
2M ′

R2R′
, (2.6)

whereM(r) is a second free function that gives the gravitational mass within a comoving shell of
radiusr. Heref(r) also plays the role of twice the local energy per unit mass of the dust particles,
so it’s often writtenf(r) = 2E(r). It follows from (2.5) that

R̈= −M

R2
+

ΛR

3
, (2.7)

ṘṘ′ =
M ′

R
+WW ′+

(
ΛR

3
− M

R2

)
R′ . (2.8)

WhenΛ = 0, the solutions of (2.5), in terms of parameterη, are

Λ = 0, f > 0 : R=
M

f
(coshη−1) , (sinhη−η) =

f3/2(t−a)
M

; (2.9)

Λ = 0, f = 0 : R=M

(
η2

2

)
,

(
η3

6

)
=

(t−a)
M

; (2.10)

Λ = 0, f < 0 : R=
M

(−f)
(1− cosη) , (η− sinη) =

(−f)3/2(t−a)
M

; (2.11)

for hyperbolic, parabolic, and elliptic evolution respectively. (Near the origin, wheref → 0, the
type of evolution is determined by the sign ofRf/M or f/M2/3.) WhenΛ 6= 0 there is a very com-
plicated solution in terms of elliptic integrals. These solutions contain a third free functiona(r),
which is the local time of the big bang, the time whenR = 0 on each worldline. In other words,
the constantr worldlines all emerge from the bang at different times, usually the outer spheres first
and the origin last, as illustrated in the sketches below.

R

t

Inner worldlines emerge later

bang

crunch

Evolving worldlines

r

t

bang

crunch

Comoving worldlines

The above evolutions equation and solutions may also be written

β̇ =
2

α
+x+

Λα2

3
, (2.12)
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Λ = 0, f > 0 : t= a+x−3/2
{√

(1+xα)2 −1 −arcosh(1+xα)
}
, (2.13)

Λ = 0, f = 0 : t= a+

√
2α3

3
, (2.14)

Λ = 0, f < 0, 0 ≤ η ≤ π : t= a+x−3/2
{

arccos(1+xα)−
√

1− (1+xα)2
}
, (2.15)

Λ = 0, f < 0, π ≤ η ≤ 2π : t= a+x−3/2
{

2π−arccos(1+xα)+
√

1− (1+xα)2
}
.

(2.16)

where α=
R

M1/3
, x=

|f |
M2/3

, β =
Ṙ

M1/3
. (2.17)

Naturally, the time reverses of these models, obtained by changing (t− a) to (a− t) anda′ to
−a′, are also solutions. It is quite possible to have adjacent elliptic and hyperbolic regions in
one model — for example, a re-collapsing dust cloud could be surrounded by an ever-expanding
universe. The two regions would have a parabolic shell at theboundary between them, but extended
parabolic regions are also possible. In practice, (2.9), (2.11), (2.13), (2.15), (2.16) are not good for
calculating the evolution of worldlines that are close to parabolic, so a series expansion is used
instead. Similarly, near the bang or crunch, where the evolution is close to parabolic, one obtains
better accuracy by using the same series expansion.

It is sometimes useful to have an expression forR′. WhenΛ = 0 it follows from (2.9)-(2.11),
that for allf values one can write [63]

R′ =

(
M ′

M
− f ′

f

)
R−

[
a′ +

(
M ′

M
− 3f ′

2f

)
(t−a)

]
Ṙ . (2.18)

Alternatively, one can write the parametric expressions

f < 0 :
R′

R
=
M ′

M
(1−φ1)+

f ′

f

(
3

2
φ1−1

)
− (−f)3/2a′

M
φ2 , (2.19)

φ1(η) =
sinη(η− sinη)

(1− cosη)2
, φ2(η) =

sin

(1− cosη)2
; (2.20)

f > 0 :
R′

R
=
M ′

M
(1−φ4)+

f ′

f

(
3

2
φ4−1

)
− f3/2a′

M
φ5 , (2.21)

φ4 =
sinhη(sinhη−η)

(coshη−1)2
, φ5 =

sinhη

(coshη−1)2
. (2.22)

A scale length and time may be defined by

R̃(r) =
M

|f | , T̃ (r) =
M

|f |3/2
, (2.23)

and for elliptic worldlines the maximumR is 2R̃, while the lifetime from bang to crunch is2πT̃ .
By specifyingΛ and the three free functions —M(r), f(r), anda(r) — an LT model is fully

determined. Between them they provide a radial co-ordinatefreedom and two physical relation-
ships, e.g.M =M(r), f = f(M) anda= a(M), though it is normal to give all of them in terms
of r. It is not possible to give any kind of standard form for one ofthese functions that will cover
all possibilities. For example, the choiceM ∝ r3 is common, but does not allow regions of vacuum

4
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whereM ′ = 0; a standard choice forf(r) cannot include both models in whichf changes sign,
and those in which it doesn’t; and similarly no choice ofa(r) can cover cases wherea is constant
in some places and cases where it never is.

See [74] for a survey of work done on inhomogeneous models up to 1997, [101] for an intro-
duction to some inhomogeneous models, and [20] for a summaryof some recent developments. A
dynamical systems analysis is given in [109].

2.1 Singularities

Singularities occur where the density (2.6) or the curvature diverge. The Kretschmann scalar
is

K =RabcdR
abcd =

48M2

R6
+

32MM ′

R5R′
+

12(M ′)2

R4(R′)2
. (2.24)

Big Bang At the big bang or the big crunch, we haveR= 0, which occurs wheret= a or where
t= a+2πT̃ . HereR′ diverges unlessa′ = 0. The bang and crunch surfaces are spacelike [50, 65],
except possibly at the origin.
Shell Crossings Shell crossings are timelike surfaces that occur where an inner spherical
shell of matter collides with an adjacent outer shell, so that R′ = 0. These surfaces are timelike
[50, 64], and have a different redshift structure from the bang [63]. Since ther coordinate is
comoving, it becomes degenerate at such loci. Physically one might argue that non-zero pressure
would develop before a shell crossing occurs, but for a “fluid” of many stars or galaxies that doesn’t
apply. Clearly shell crossings represent a breakdown of theLT assumptions and for many purposes
they are undesireable. Shell crossings can be eliminated from an entire model, in theΛ = 0 case,
by applying the conditions found in [50, 64] to the 3 arbitrary functions. These conditions were
derived by writingR′ in terms of the parameterη and looking at the early and late time behaviours.
They are important if you want your model to be everywhere well behaved.1

R
t

Inner worldlines emerge from bang earlier

Energy not always increasing outwards

R

t

However, bothR= 0 andR′ = 0 can occur at non-singular locations as explained below.
‘Shell Focussing’ There are also “shell focussing” singularities, e.g. [37, 32, 96, 98, 102, 65,
116, 83, 49, 85, 81, 72]. For certain LT models, the first eventof the big crunch to form, where the
central worldline reaches the crunch surface, can emit manylight rays, some of which may even
reach infinity. (So they might be better called “light focussing” singularities.) The nature of the
singularity is difficult to understand, and seems to depend on the path of approach to the singular
point.

1Shell crossings have been extensively investigated, e.g. [99, 121, 97, 21]
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2.2 Regularity Conditions

Regular signature For the metric (2.1) to retain a Lorentzian signature,

f ≥−1 (2.25)

is required, the equality only occuring whereR′ = 0 — see below.
Regular Origins An origin of spherical coordinates is a locusro where

R(t,ro) = 0 ∀ t , (2.26)

so thatṘ(t,ro) = 0, R̈(t,ro) = 0, etc. Obviously one usually wants an origin to be a normal
timelike worldline. The conditions for a regular origin areobtained by requiring that, in the limit as
the origin is approached, the density and the curvature should not diverge, and the time evolution
at the origin should be a smooth continuation of it’s immediate neighbourhood. See for example
[68, 94]. It is found that, away from the bang or crunch, on a constantt slice,

M ∼R3 , f ∼R2 . (2.27)

This may be realised by settingf ∝M2/3, e.g.M ∼ r3, f ∼ r2, at the origin. Variablesα, x & β of
(2.17) have the advantage that they are non-zero at the origin. If in addition one wants the density
to be smooth through the origin, i.e. to have zero gradient there, then there are further conditions
[94], most notably

a′ → 0 . (2.28)

However, there is no singularity if this last one does not hold. Thus, the locusR= 0 includes both
the spacelike bang and crunch surfaces, and the timelike origins.

Regular Spatial Extrema Similarly, R′ = 0 includes regular loci as well as singular shell
crossings. As pointed out in [122], any spherically symmetric model with closed sptial (t= const.)
sections, such as thek = +1 Freidmann-Lemaître-Robertson-Walker (FLRW) model, has an ori-
gin, a maximum radius, and a second origin — a north pole, an equator and a south pole. At a

6
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spatial maximum we obviously haveR′ = 0, but we expect the density and curvature to be regular
at such a locus. This is only possible on a comoving shell, i.e.

R′(t,rm) = 0 ∀ t . (2.29)

The conditions for a regular maximum [64, 26] are that there is no shell crossing and no surface
layer, i.e.

M ′(rm) = 0 = f ′(rm) = a′(rm) , f(rm) = −1 . (2.30)

Therefore the LT model may have a number of interesting spatial topologies [64, 51, 78], such as
a black hole in a cosmological background, or a sequence of maxima and minima — “bellies” and
“necks”. It is also possible to have an elliptic (recollapsing) model that is open.

2.3 Special Cases

Dust Robertson-Walker The LT metric contains the dust RW metric as the special case

f ∝M2/3 , a′ = 0 . (2.31)

Putting this in (2.5) and (2.6) makeṡR/M1/3 andρ independent ofr. In standard RW coordinates,
M = (κρ0S

3
0/6)r

3, f = −kr2, a= 0, R= rS(t), so it is evident thatS(t) is the scale factor, and

f2 = −k , M3 =
κρ0S

3
0

6
. (2.32)

Consequently one may write the LT arbitrary functions in a form that looks like RW plus perturba-
tion, but is exact,

M =M3r
3(1+ M̃(r)) (2.33)

f = f2r
2(1+ f̃(r)) (2.34)

a= a0(1+ ã(r)) , (2.35)

whereM̃ , f̃ and ã may be set to zero at the origin, say. In terms of the RW parameters of the
‘unperturbed’ RW model that applies at the origin, we can write

S =
R

r
, H =

Ṡ

S
, Ωm =

2M3

S3H2
, Ωk =

f2

S2H2
, ΩΛ =

Λ

3H2
, (2.36)

so that f2 = −k → M3 =
Ωm0

2H2
0 (−kΩk0)3/2

, a0 = 0 , (2.37)

and of course S0 =
1

H0

√
−kΩk0

, Λ = 3ΩΛH
2
0 . (2.38)

Schwarzschild The spherical vacuum metric is obtained ifM ′ = 0, and the different choices
of f(r) and a(r) cover it with different families of geodesic coordinates. But to get the full
Scwarzschild-Kruskal-Szekeres (SKS) topology requiresf = −1 anda′ = 0 = f ′ so thatR′ = 0 at
the “throat” or “neck”, and thata decreases andf increases on either side — see [51, 54] for the
details and some plots.

7
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r

f(r)

f(r)

f = -1

a(r)R’ = 0
Neck

Datt-Kantowski-Sachs The Datt [35] models are inhomogeneous Kantowski-Sachs type mod-
els, and though often treated as a separate solution withR′ = 0, they are in fact limits of LT models
[54].

Vaidya In the null limit, whenf → ∞ we get the Vaidya metric that represents incoherent
radiation emanating from (or converging on) a spherical body [86, 53].

2.4 Constructing Inhomogeneous Models

The most obvious way to construct an LT model is to choose the three arbitrary functions.
Choosingf(r), for example, works quite well if one is interested in the geometry and topology
of the model. See [64, 51]. But for many situations, it is not always obvious what the density
distribution and evolution will be, givenf ,M anda. In [110], for example, the use of the density
ρi(r), the 3-d Ricci scalar3Ri(r) and the areal radiusRi(r), on an initial surface att = ti was
advocated, and an appendix suggested how ‘lumps’ and ‘voids’ in the density and curvature could
be prescribed on the initial surface.

In place ofa(r), one may instead specifyRi =R(ti,r) at some initial time, setη = 0 at t= ti
and re-write (2.11) in the form

R=
M

(−f)
(1− cosη)+Ri

(
cosη+

√
2M

(−f)Ri
−1 sinη

)
,

t=
M

(−f)3/2
(η− sinη)+

Ri√−f

(
sinη+

√
2M

(−f)Ri
−1 (1− cosη)

)
; (2.39)

etc for the other cases, (2.10) & (2.9).

If you prefer to think in terms ofR, then chooseM(Ri), f(Ri) anda(Ri) on an initial surface
t= ti, and setr =Ri. If ρ= ρi(Ri) is given, then, again choosingr =Ri,

M(Ri)−M0 =

∫ Ri

R0

κρi(R)R2

2
dR . (2.40)

8
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If the expansion rate and radiuṡRi(M) andRi(M) are specified, then by (2.5)

f(M) = Ṙ2
i −

2M

Ri
− ΛR2

i

3
. (2.41)

or if the Ṙi(M) andf(M) are specified, then

R(M) =
Ṙ2−f +X2

√
ΛX

, X =

(√
9M2Λ− (Ṙ2−f)3 −

√
9M2Λ

)1/3

, (2.42)

or R(M) =

√
2M

Ṙ2−f
, when Λ = 0 . (2.43)

Initial and Final Profiles In [76, 77, 61] a number of very useful methods forΛ = 0 LT models
were presented. Since these have been summarised elsewhere[20] we will only outline the basic
idea here. Rather than specifying all the data on a single ‘initial’ 3-surface, one may instead specify
the density profileρ1 on one constant time surfacet = t1 and another density profileρ2 at a later
time t = t2. There is a well-defined algorithm for finding the LT model that evolves from one to
the other.

Suppose, on the surfacest = t1 & t = t2, we specify the density to beρ = ρ1(M) andρ =

ρ2(M), then2 from (2.6),

R3
i (M)−R3

0 =

∫ M

M0

6

κρi(M)
dM , i= 1,2 (2.44)

and normally we would haveR0 = 0 = M0. We set the coordinate freedom viar = M . Since
M is constant along each particle worldline, we now knowR1 andR2 for each particle. We
consider a specificM , and we assumėR(t1,M)> 0 andR2 >R1. By the timet2, the worldline is
either hyperbolic and still expanding (HX), elliptic and still expanding (EX), or elliptic and already
collapsing (EC). In the HX case, we apply (2.13) and (2.17) atthe two times and subtract them:

√
(1+xα2)2−1 −arcosh(1+xα2)

−
√

(1+xα1)2−1 +arcosh(1+xα1)−x−3/2(t2− t1) = ψHX(x) = 0 , (2.45)

with similar expressions for the other cases. This is solvednumerically by the bisection method,
and for this purpose, a pair ofx values that bracket the solution were found. Having obtained
f = xM2/3, a is found by using (2.13) again:

a= t1−x−3/2
{√

(1+xα1)2 −1 −arcosh(1+xα1)
}
. (2.46)

Obviously it is important to know which case applies along each worldline. In [76] it was shown
that

t2− t1 >
(α2

2

)3/2



π−arccos

(
1− 2α1

α2

)
+2

√
α1

α2
−
(
α1

α2

)2


 → EC (2.47)

2In this case, though, (2.44) would not be well defined if therewere vacuumρi(M) anywhere, since the range ofR

over whichM is constant could be anything.

9
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t2− t1 <
√

2

3

(
α

3/2
2 −α3/2

1

)
→ HX (2.48)

otherwise → EX (2.49)

The borderlines between these cases require careful treatment, see appendix B of [61]. IfR2 <R1

then there are 3 more solutions, including the collapsing hyperbolic model — the time reverse of
(2.13).

A similar approach may be used if velocity profilesṘ1(M) andṘ2(M) are given att1 & t2,
of if a density profile is given at one time and a velocity profile at another [77]. There are quite a
few other useful options, such as setting the late time density of velocity behaviour, specifying a
simultaneous time of maximum expansion, specifying only growing or decaying modes, etc [61].

Applications of these methods to model a galaxy cluster, a void, a galaxy with a central black
hole, the Shapley Concentration and the Great Attractor, etc, can be found in [76, 77, 78, 19, 13, 18].

3. Observations in Lemaître-Tolman Models

The assumption that the universe is homogeneous, and thus well-represented by an FLRW
model, has led to a very good understanding of its very large scale features and evolution. But once
the cosmological data are sufficiently accurate and complete over a large enough range of redshifts,
this assumption should be checked.

However, the assumption of homogeneity pervades so much theoretical and observational
work so thoroughly, that there is a real danger of a circular argument. Consequently, any proof
of homogeneity must ensure it does not rely on results obtained using an assumption of homogene-
ity. Clearly this will not be a simple task. More precisely, the aim is not only to verify homogeneity
but also to quantify it: how much fluctuation is there on each scale?

There are a several reasons why spherical symmetry is a good first step towards relaxing the
homogeneity assumption: (a) we are at the centre of our past null cone, so it makes sense to consider
spacetime in terms of spherical co-ordinates about the observer; (b) the universe does seem close
to isotropic on large scales, but radial homogeneity is not easy to verify because of the finite travel
time of light and the miniscule duration over which cosmological observations have been made, so
it is more urgent to determine the radial variation of the metric; (c) there is no deep all-sky redshift
survey at present, and the zone of avoidance is likely to be a gap in any survey for the foreseeable
future; (d) it keeps the theory and numerics tractable whilethe basics are sorted out. Of course, in
the long run, the assumption of spherical symmetry will be dropped.

Here we derive the observational relations that would be expected in an LT model with given
arbitrary functions. This is also known as the ‘forward problem’. Below we focus on a central
observer, though non-central observers have also been considered.

3.1 Observables and Source Evolution

The observables we shall use are those for which the dataset is already substantial and will
in the near future become extensive, the redshiftz, the number density in redshift spacen(z), the
apparent luminosity and angular diameterℓ(z) & δ(z). Connected with each of these is a source
property, the peculiar velocityζ, the mass per sourceµ(z) the absolute luminosityL(z) and the
true diameterD(z).

10
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The redshiftz is

z =
λo

λe
−1 (3.1)

whereλo andλe are the observed and emitted wavelengths. The diameter and luminosity3 distances
are

dD =
D

δ
, dL =

√
L

ℓ
d10 = 10(m−m̃)/5d10 , (3.2)

whereδ andℓ are the angular diameter and apparent luminosity of a source, D(z) andL(z) are
the corresponding true diameter and absolute luminosity,m andm̃ are the apparent and absolute
magnitudes, andd10 is 10 parsecs. The two distances are related by the reciprocity theorem [44,
100, 39],

(1+ z)2dD = dL . (3.3)

The Hubble and deceleration constants are obtained from theslope and concavity of thedL(z) plot
at the origin,

ddL

dz

∣∣∣∣
z=0

=
1

H0
, (3.4)

1− 1

H0

d2dL

dz2

∣∣∣∣
z=0

= q0 , (3.5)

and a common observational definition ofH(z) andq(z), based on the FLRW model, is

1

H
=

1√
1+Ωk(H0dL/(1+ z))2

d

dz

(
dL

(1+ z)

)
, (3.6)

q =
(1+ z)

H

dH

dz
−1 . (3.7)

For general non-homogeneous models, there is no obvious general definition ofH(z) or q(z), and
a number have been proposed. In any case, what matters is the relation between the model and
observations.

If in a redshift survey of the sky,dN sources are observed to lie betweenz andz+dz within
solid angledω = sinθdθdφ, then the redshift-space mass density is

2σ̂

κ
= µn=

µdN

dωdz
(3.8)

wheren is the redshift space number density andµ is the mean mass per source. For a treatment
which considers several different source types and observations at different wavelengths see [56].

A significant feature of these definitions is that each observable,δ, ℓ andn, is associated with a
source property,D,L andµ, which have certainly evolved over cosmological timescales. The latter
are much harder to determine observationally, and studies of their values and evolution invariably
assume a homogeneous RW model in which to do the analysis. However, if we eventually want to
prove that the universe is homogeneous, it is imperative to avoid a circular argument. The only way
to be certain of the conclusion is to do the analysis without making the homogeneity assumption.

3In [80] a “corrected luminosity distance” was defined to be the same as the diameter distance. Some authors
have called this latter the “luminosity distance”, which perhaps has led to a confusion of terminology and sometimes to
incorrect definitions.
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3.2 The Null Cone and the Observational Relations

Light rays arriving at the central observer O followds2 = 0 = dθ2 = dφ2, so from (2.1) the
past null cone (PNC) of the observation event (t= t0,r = 0) satisfies

dt

dr
= −R

′

W
, W =

√
1+2E , (3.9)

and we write the solutiont = t̂(r) or r = r̂(t), defining the local time from the bang to O’s PNC
with

τ = t̂−a . (3.10)

This radial null path is necessarily geodesic. We denote a quantity evaluated on the observer’s past
null cone with a hat on top or as a subscript, for exampleR(t̂(r),r) ≡ R̂ or [R]∧, though this will
often be omitted where it is obvious from the context. For a given LT model, equation (3.9) must
be solved numerically.

As is well known for the LT model (e.g. [23, 95, 87]), the redshift of sources on the PNC
observed at O obeys

dz

(1+ z)
=
̂̇R′

W
dr , (3.11)

whereṘ′ is given by (2.8) and (2.5).
The diameter distance is, by (3.2), the quantity that converts measured angular sizes of objects

to their physical sizes at the time of emission. It is evidentfrom the metric (2.1) that this is the
areal radiusR, evaluated on the PNC,

dD = R̂=R(t̂(r),r) . (3.12)

and of coursedL follows from (3.3).
To convert the proper density of an LT model to the observed redshift space density, requires

that we know how the locus of the PNC relatesz to comoving radius, i.e.̂r(z). Then the total mass
contained in a small volume must be the same:

2σ̂

κ
dz dω =

[
ρR′R2

W
drdω

]

∧

→ κρ̂R̂2 = 2σ̂
dz

dr
and σ̂ =

[
M ′

W

dr

dz

]

∧

(3.13)

where (2.6) has been used.
In the numerical solution of these equations, (3.9), (3.11)& (3.13), we need to evaluateR,R′

andṘ′ at each new point along the PNC. Along the constantr worldline at each step we integrate

τ =

∫ R

0

dR

Ṙ
(3.14)

and

dR′

dR
=
ṘṘ′

Ṙ2
, (3.15)
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whereṘ, Ṙ2 andṘṘ′ come from (2.5) and (2.8). Equations (3.14) and (3.15) are solved in one
numerical integration for each step of integrating (3.9), (3.11) & (3.13).4

The variation of the areal radius down the PNC is

dR̂

dr
= R̂′ + ̂̇R dt̂

dr
= R̂′

(
1−

̂̇R
W

)
, (3.16)

and its second derivative is

d2R̂

dr2
=

(
∂

∂r
+

dt̂

dr

∂

∂t

)
dR̂

dr
(3.17)

=

[(
R′′− R′Ṙ′

W

)(
1− Ṙ

W

)
+
R′

W

(
−Ṙ′ +

ṘW ′

W
+
R̈R′

W

)]

∧

(3.18)

=

[(
1− Ṙ

W

){
R′′− R′Ṙ′

W
+
R′2

W 2

(
ΛR

3
− M

R2

)}
+
R′Ṙ′

W

(
1− Ṙ2

W 2

)
−M ′R′Ṙ

W 3R

]

∧

,

(3.19)

whereW ′ andR̈ were eliminated using (2.8) and (2.7). It is important for later to note that̂R(r)

may have a maximum value wheredR̂/dr = 0, and at this locus we have

̂̇R=W ⇔ 2M

R
+f +

ΛR2

3
= 1+f , (3.20)

and consequently, using (3.13),

d2R̂

dr2
= − σ̂R′

RW

dz

dr
. (3.21)

Thus the slope of thedL(z) curve is

ddL

dz
=

d(1+ z)2R̂

dz
= 2(1+ z)R̂+(1+ z)2

dR̂/dr

dz/dr

= (1+ z)

(
2R̂+

R̂′

̂̇R′

(W − ̂̇R)

)
, (3.22)

and at the origin we have

1

H0
=
R̂′

̂̇R′

∣∣∣∣∣
z=0

. (3.23)

The definitions for the radial and tangential Hubble rates

Hr =
Ṙ′

R′
, Ht =

Ṙ

R
, (3.24)

4TheΛ = 0 special case is much easier, because (2.18) allows one to integrate (3.9) without solving (3.14) at every
step.
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represent the metric expansion rates in the radial and tangential directions, but one needs to be
careful which of these, if any, relates to which observation.

Near the origin — the vertex of the PNC — in addtion to (2.26) & (2.27), we have

W → 1 , z→ 0 , ̂̇R′ →H0

[
R̂′

]

0
,

dz

dr
→H0

[
R̂′

]

0
,

dR̂

dr
→
[
R̂′

]

0
. (3.25)

The origin value ofR′ (andR̂′ ) depends on the choice of arbitrary functions, but ifr ∼ R there,

thenR′ is finite and non-zero, whiled2R̂/dr2 →
[
R̂′′

]

0
.

The LT observational relations may be very different from the FLRW ones, especially near the
maximum inR̂ [93].
Inhomogeneous Models of SNIa Dimming In recent years the LT model has seen quite a
bit of use in investigations of whether the observed dimmingof the supernovae can be explained
as an effect of cosmic inhomogeneity, rather than invoking a‘dark energy’ whose magnitude and
physical origin are obscure.

For the case of an observer that is off-centre, [67] calculated expressions for the angular vari-
ation ofdL, H0, q0, the source number count, and∆T/T , and showed the CMB dipole could be
explained this way.

It was first pointed out in Celerier [28] that the observed SNIa dimming can be explained by
inhomogeneity. That paper used a parabolic LT model and showed that a series expansion ofdL(z)

could easily manifest apparent ‘acceleration’. This was generalised to non-parabolic LT models in
[113].

In [5] the authors constructed an LT model that has a low density region (void) at the centre,
and asymptotically approaches homogeneity. Their functionsM & f have the form (2.33) with

M3 =H2
⊥0α0 , M̃ =

∆α

2α0

{
1− tanh

(
r− r0
2∆r

)}
(3.26)

f2 =H2
⊥0β0 , f̃ =

∆β

2β0

{
1− tanh

(
r− r0
2∆r

)}
(3.27)

so thatM goes from∼H2
⊥0(α0 −∆α)r3 at the centre toH2

⊥0α0r
3 at larger, and similarly forf .

Their 3rd function was fixed via the hyperbolic version of (2.39), choosingti to be recombination,
and settingRi = a∗r wherea∗ is the RW scale factor at recombination. They then calculated
the redshift and the apparent magnitude for a central observer, and found they could obtain good
agreement with observations. They also verified that they could retain the observed CMB power
spectrum. In [4] and [3] the authors investigated an off-centre observer in two versions of the void
model. They found a marginal improvement in the fit to the SNIadata is possible. If the observed
COBE dipole is due to this effect, it requires only a15 Mpc displacement from centre, but the
corresponding quadrupole and octopole effects are then toosmall to match observations.

In [118] it was suggested that inhmogeneous models of supernova dimming have a ‘weak
singularity’ at the centre. However, this is merely a conical point in the density profile, and not a
singularity [79]. Also, [120] showed it is easy to smooth thecentral density without affecting the
model much.

Ref [15] considered a selection of LT models, with and without Λ — a central void model
with a = 0, a uniform present-day density and a varyingHt, a varyingHr with a = 0, both ρ
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anda varying. All the models had small density oscillations imposed to represent smaller scale
inhomogeneity. It was argued that all of theΛ = 0 models considered are ‘peculiar’.

In [48] the LT functions were chosen to be2M =Br3, a= 0, f = r2/(1+(cr)2), B was set
from Ωm0 via (2.37), andc was adjusted to get the best fit to the SNIa magnitude-redshift data.
With Ωm = 0.2 the fit was better than that ofΛCDM.

For observers near the centre of an overdensity, the model of[33] agrees withdL observations
for part of thez range.

[43] also compared two classes of LT models with the SNIa data, calculatingχ2. One model
was fixed byHt =H +∆He−r/r0 andΩm(r) = 2M/(H2

t0R
3
0) = Ω0, whereH, ∆H, r0 andΩ0

are constants. The other hada= 0 andΩm varying. They found that varyingHt is very effective at
fitting the data, but varyingΩm is not. The best fit LT model had slightly lowerχ2 than theΛCDM
model, but including both inhomogeneous expansion and non-zeroΛ did not improve the fit.

In [22] two models were considered — a local void model with a simultaneous bang time, and
a ‘hubble bubble’ model in which the expansion rateHt is higher locally than far away but the
present-day density is uniform. Each is a quite specific 2-parameter LT model. They confronted
their models with SNIadL data, the BAO dilation scale,dV = [d2

Dz/Hr]
1/3, and the limit onHr set

by the age of the oldest stars. Fromχ2 calculations, they concluded that their best-fit hubble-bubble
model fits the data almost as well asΛCDM.

In [45], void models with 4 or 5 parameters were considered, and it was shown that they can
provide a good fit observations of the SNIa dimming, the CMB, and the BAO (within 1σ) and aχ2

comparable to theΛCDM model. In [46], it was shown that observations of the kinematic Sunaev-
Zeldovich effect already limit LT voids to< 1.5 Gpc, and future surveys will either put tighter
limits on the size or constrain the density and expansion profiles. In [47], the authors proposed the
normalised cosmic shear as a test of inhomogeneity. They also found that LT models still provide
excellent agreement with updated SNIa and BAO data.

A similar good fit with SNIa observations, i.e. aχ2 comparable to that of theΛCDM model,
was found in [42], which considered LT ‘bubble’ models with decreasingH(r) and constant
Ωm(r). There was no improvement in the fit using a similar model withnon-zeroΛ.

For a summary see [29, 30, 20]. The important issue here is to highlight the difficulty of sepa-
rating the effects on the null cone observations of the cosmic equation of state, of source evolution,
and of cosmic inhomogeneity. Whether or not∼Gpc scale inhomogeneities are discovered, inho-
mogeneous models have to be taken seriously, firstly becauseinhomogeneities on many scales do
exist, and secondly because we should rigorously verify homogeneity (instead of just assuming it),
and such testing requires using an inhomogeneous model, so that the detection of inhomogeneity
is a possible outcome.

Differences between Dimming Models Now the arbitrary functions of any given LT model
determine not only a luminosity or diameter distance relation,dL(z) or dD(z), but also a redshift-
space density relationσ(z). Each chosen model “predicts” aσ(z) profile, and this will be important
in distinguishing models. Though number counts are not verycomplete or reliable today, the
situation is likely to improve rapidly with future redshiftsurveys. In fact, the different types of
model predict very differentσ(z).
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If the LT arbitrary functions are written in the form of a central behaviour plus a variation,

M =M3r
3(1+∆M̃) , f = f2r

2(1+∆f̃) , a= a0 +∆ã , (3.28)

then the leading terms may be related to the central cosmological parameters via

f2 = sign(H2
0 (1−2q0)) , M3 = q0H

2
0

(
f2/(H

2
0 (1−2q0))

)3/2
; (3.29)

f2 > 0 : η0 = arccosh

(
1+

f2H0

√
f2(1−2q0)

q0

)
, τ0 =M3(sinhη0 −η0)/f

3/2
2 ; (3.30)

f2 < 0 : η0 = arccos

(
1+

f2H0

√
f2(1−2q0)

q0

)
, τ0 =M3(η0 − sinη0)/(−f2)

3/2 ;

(3.31)

a0 = t0− τ0 (3.32)

which defines a ‘central RW model’. A model with a pure bang time inhomogeneity, may be
described by the functions

M =M3r
3 , f = f2r

2 , a= a0 + I(e−r/J −1)+K(e−r/J2 −1) , (3.33)

H0 = 0.72 , q0 = 0.22 , I = 0.8/H0 , J = 0.5 , K = −0.7/H0 , J2 = 0.7 , (3.34)

and using this, we get good agreement withdL(z) from supernova data5. It has become custom-
ary to compare the measured magnitudes with those expected in the Milne model, i.e.∆m =

m−mMilne = 5log(L/LMilne). The left plot below shows∆m(z) against the supernova data of
Kowalski et al. [73], with the blue line for the given LT model, and the red line for the RW
model with the same central parameters; the middle plot shows the redshift-space density (number
of sources per steradian per unit redshift interval times mean mass per source), with blue the LT
model, and red the central RW model; the right plot showsρ(t0,r)/ρcrit,0 the density as a multiple
of the central critical density, on a constant time slice at the present day, against coordinate radiusr.
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For a pure mass-geometry-energy inhomogeneity, we can set the LT functions to

M =M3r
3 , f = f2r

2
(
1+E(e−r/F −1)+G(er/F2 −1)

)
, a= a0 , (3.35)

H0 = 0.72 , q0 = 0.09 , E = 8.2 , F = 0.4 , G= −7.6 , F2 = 0.45 , (3.36)

and the following plots show we also get good agreement with the SNIa data6.

5For a smoother density profile at the origin, the approach of [120] may be used.
6Both of these curves have aχ2 that rivals the least squares quadratic fit to the data.
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There is little difference between the∆m(z) curves of these two and many other LT models,
but theσ(z) curves are quite distinct. At present there are many uncertainties connected with
estimatingσ; the number count data is not sufficiently complete or accurate, the relation to total
matter density is not well established, and the evolution ofgalaxy numbers and masses is an active
area of research. Still, one may hope this will improve dramatically with the next generation of
redshift surveys. Other ways of testing models, should be pursued.

Now, observers are very likely to live on planets, which are highly likely to circle stars in
galaxies, which have a good chance of being inside clusters within superclusters. In other words,
many observers are likely to be inside regions of higher density. If the far universe is homogeneous
(on average), then a model of an observer inside a density peak must have an intervening region of
lower density to compensate the central overdensity. The varying bang time models that reproduce
the supernova dimming, also seem to generate a central overdensity quite well. Of course, varia-
tions in both the bang time and the mass-geometry-energy functions will surely be needed to get
the best fit to all the data.

3.3 Determining the Metric of the Cosmos

The Metric of the Cosmos project aims to determine the geometry of our universe from ob-
servational data. This is an ‘inverse problem’: given observations such as those described above,
determine as much as possible about the spacetime metric. Inpractice, one needs to make assump-
tions about the cosmic equation of state, etc, but the goal isto reduce them to a minimum.

An important aim of this project is to determine the degree ofhomogeneity in the universe.
The large amounts of cosmological data now flowing in will soon make this a real possibility. In
order to do this, it is essential to remove the assumption of homogeneity, but since the use of a
RW model is widespread in cosmological data analysis, many calculations will have to be carefully
re-worked. Now angular homogeneity — that is isotropy — is easy to check, and does not require
us to know anything about the PNC. Whatever the variation of observables withz is, it must be the
same in all directions. But radial homogeneity is not at all easy to verify, since thez-dependence
of observables depends on several things: the time evolution of the expansion (i.e. the equation of
state), the source evolution, and whatever radial inhomogeneity is present. So although a general
treatment requires us to go beyond spherical symmetry, justpinning down the degree of radial
variation would be a big step forward.

It was shown in [95] that any reasonable ‘observational’ functionsdD(z) or dL(z) and σ̂(z)

can be reproduced by an LT model, and an algorithm for extracting the LT arbitrary functions
was given. This algorithm was implemented as a numerical procedure and clarified and extended
significantly in [87, 58, 90].
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For this project, we now need to invert the equations of the last section; we treat̂R(z) and
σ̂(z) as given, and we want to determinef(r), M(r) anda(r). We can use the radial coordinate
freedom to choose

dt̂

dr
= −β(r) , i.e. R̂′ = βW , (3.37)

on the observer’s past null cone, so that the solution to (3.9) is

t̂= t0−
∫ r

0
βdr . (3.38)

In practice,β = 1 andt̂= t0−r is the obvious choice, providing there are no shell crossings. Note
that (3.37) and (3.38) and much of the following only hold forthe single null cone with apex(t0,0).

Putting this in (3.16) gives

dR̂

dr
= β(W − ̂̇R) , (3.39)

and using (3.16), (3.37) and (2.5), we find

W =
1

2β

(
dR̂

dr

)
+
β
(
1− 2M

R̂
− ΛR̂2

3

)

2
(

dR̂
dr

) , (3.40)

while (3.13) and (3.37) give

M ′ = σ̂W
dz

dr
. (3.41)

Combining (3.40) with its derivative results in

W ′ = β

(
M

R̂2
− ΛR

3

)
− βM ′

R̂
(

dR̂
dr

) −
(

d2R̂
dr2

dR̂
dr

− β′

β

)(
W − 1

β

dR̂

dr

)
. (3.42)

Putting (3.37) and (3.42) in (3.11) leads to

dz

(1+ z)
=
dr

̂̇R

(
1

β

dR̂

dr
−W

)

 βM ′

R̂
(

dR̂
dr

)
W

+
d2R̂
dr2

dR̂
dr

− β′

β



 , (3.43)

which simplifies, on substituting forM ′ and ̂̇R from (3.41) and (3.39), to

dz

dr
= −

(1+ z)
(

σ̂β

R̂
dz
dr + d2R̂

dr2 + β′

β

)

dR̂
dr

. (3.44)

Since the coordinater is not an observable, we convert allr derivatives toz derivatives using

dR̂

dr
=

dR̂

dz

1

ϕ
,

d2R̂

dr2
=

d2R̂

dz2

1

ϕ2
− dR̂

dz

1

ϕ3

dϕ

dz
, (3.45)
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where

ϕ=
dr

dz
(3.46)

definesϕ. Then (3.41) and (3.40) become

dM

dz
= σ̂W , (3.47)

W =
1

2βϕ

(
dR̂

dz

)
+

(
1− 2M

R̂
− ΛR̂2

3

)
βϕ

2
(

dR̂
dz

) , (3.48)

while putting (3.45) in (3.44) and solving fordϕ/dz, gives

dϕ

dz
= ϕ



 1

(1+ z)
+

σ̂βϕ

R̂
+ d2R̂

dz2

dR̂
dz

− βz

β



 . (3.49)

whereβz = β′ϕ. As stated, the obvious gauge choice isβ = 1, βz = 0. Equations (3.46), (3.49) and
(3.47) with (3.48) constitute the differential equations to be solved forϕ(z), r(z),M(z) andW (z).
Thenτ(z) anda(z) follow from (2.9)-(2.11), (3.10) and (3.38). Knowingr(z), M(z), W (z), and
a(z) fully determines the LT metric that reproduces the givenR̂(z) and σ̂(z) data. We note that
(3.49) is an independent DE, while (3.47) and (3.46) requireϕ(z). Also (3.47) with (3.48) is a first
order linear inhomogeneous ODE, for which the formal solution in known. However it is easiest to
solve all the DEs in parallel as one numerical procedure.

The initial conditions for these DEs are set at the origin at the time of observationt0. The LT
origin conditions applicable to these null cone equations were given in [87, 90], and are reproduced
and generalised in the appendix.

3.4 Apparent Horizon

In an expanding decelerating model, there is a point on each PNC where the areal radius (i.e.
dD) is maximum,dR̂/dz = 0.7 We denote this point bŷR=Rm, z = zm, and the locus of all such
points is the apparent horizon (AH) — see [78, 51].

But points wheredR̂/dz = 0 make the DEs (3.49) and (3.47) with (3.48) singular. However,
in any given LT modelW is a fixed arbitrary function, so we don’t expect any divergence on the
right of (3.48). Further, it was shown in (3.20) that

dR̂

dz
= 0 ⇒ W − ̂̇R= 0 , (3.50)

which open up the possibility that (3.48) is not actually singular on the AH. Similarly, we don’t
expectdz/dr ord2r/dz2 to be divergent here in a general LT model with co-ordinate choice (3.37),
and in fact (3.21) and (3.45) (withdR̂/dz = 0) show that

d2R̂

dz2

∣∣∣∣∣
m

=

[
ϕ2 d2R̂

dr2

]

m

=

[
− σ̂βϕ

R

]

m

. (3.51)

7This is evident in [91, 92], but first stated explicitly in [66].
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Indeed, (3.50) and (3.51) are exactly what happens atR̂m in the FLRW case. So although there
are no divergencies at̂Rm, the numerics break down. In [87] this was overcome by doing aseries
solution of the DEs (3.46)-(3.49) in∆z = z− zm, and joining the numerical and series results at
somez valuezj < zm — see sections 2.6, 3.3, and appendix B of that paper, and alsoappendix
D below. As pointed out in [58], this phenomenon is not merelya cosmological curiosity. At
this locus, and no other, there is a simple relation between the diameter distancedD = R̂ and the
gravitational massMm that is independent of any inhomogeneity between the observer and sources
at this distance:

2Mm = R̂m− ΛR̂3
m

3
, (3.52)

or R = 2M if Λ = 0. However, the redshiftzm at which this occurs is not model independent.
Thus the maximum in̂R provides a new characterisation of our Cosmos — the cosmic mass. More
practically, (3.52) and (3.51) provide a cross-check on thenumerical integration: theM andϕ
values obtained from the numerical integration must agree with those deduced from the measured
R̂m andσ̂m using (3.52) and (3.51). This requirement enables systematic errors in the observational
data to be spotted and at least partially corrected, as was done using (3.52) in [90]. In fact, the AH
relation (3.52) generalises to the Lemaître model, which has non-zero pressure [2].

Now (3.49) may alternatively be written as

d

dz

[
dR̂

dz

(1+ z)

ϕβ

]
= − σ̂

R̂
(1+ z) (3.53)

[
dR̂

dz

(1+ z)

ϕβ

]z

0

=
1

β

(
dR̂

dz

(1+ z)

ϕ
−1

)
= −

∫ z

0

σ̂

R̂
(1+ z)dz , (3.54)

by (3.25), consequently giving

r(z) =

∫ z

0
ϕdz =

∫ z

0

dR̂

dz
(1+ z)

[
1−β

∫ z

0

σ̂

R̂
(1+ z)dz

]−1

dz . (3.55)

Although this appears to have no singularity atdR̂/dz = 0, in fact the term in square brackets in
(3.55) goes to zero, as is evident from (3.54).

Some other attempts at solving a version of the cosmologicalinverse problem [11, 69, 118]
got stuck at this locus. See also the discussion of the apparent horizon and the ‘critical points’ in
[79].

3.5 Numerical Implementation

Now in reality, the observations do not provide smooth functionsR̂(z) andσ̂(z), they provide a
set of discrete measurements of individual sources. In order to proceed, the data must be collected
into many redshift bins of widthδz, and bin averages calculated. Furthermore, the derivatives,
dR̂/dz andd2R̂/dz2 must also be calculated. So, for each ofR̂(z) and σ̂(z) it is necessary to
fit a smooth function — a polynomial say — to a range of redshiftbins, otherwise mild statistical
variations inR̂(z) would create wild fluctuations indR̂/dz and especiallyd2R̂/dz2. The degree of
smoothing is necessarily a compromise between eliminatingstatistical fluctuations and extracting
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inhomogeneity. For example, in [90] a quartic polynomial was fitted to 50 bins of widthδz = 0.001

on either side of the bin in question.
A second difficulty is that there is no data at the origin itself — where initial conditions for

the numerical integration are set. The first bin extends fromz = 0 to z = δz, so it provides average
values at aroundz = δz/2. This is resolved by fitting a near-origin series solution ofthe DEs to the
first few data bins (see appendix C), and starting the numerical integration further out.

As explained above, the maximum in̂R requires a series solution (see appendix D). In ad-
dition, it has one undetermined coefficient,M1. The numerical and maximum-series results are
joined at some redshiftzj < zm and this fixesM1. The numerical integration is resumed at
2zm − zj , using the series values there for “initial” numerical values.

Thus the numerical integration has 4 regions — the origin series, the pre-maximum numerical
integration, the near maximum series, and the post-maximumnumerical integration — which must
all be properly joined together.

In [87] the above programme was implemented as a numerical procedure, and tested using
fake data generated from an LT model. The fake observationaldata was exact, and contained no
scatter or errors other than very small numerical errors. Importantly, the numerics successfully
reproduced the LT arbitrary functions of the various homogeneous and inhomogeneous models
used to generate the data. This validated the numerical procedure as viable in principle.

In [90], the effects of statistical and systematic errors inthe data were considered. The nu-
merical program was revised to output uncertainty estimates for eachf(z), M(z), anda(z). It
was shown how to use the data at the maximum ofR̂(z), via (3.52), to detect and correct for sys-
tematic errors in the observational data. Several exampleswith fake data were given. Lastly, the
stability of the DEs (3.46)-(3.49) was analysed, and it was shown they are generally stable, except
for thedM/dz DE which becomes unstable at redshifts larger thanzm. This issue requires further
attention.

Application of this method to redshift survey data is under consideration. However, at present,
available data has a lot of scatter inℓ(z), δ(z) andn(z), and considerable uncertainty in the source
propertiesL(z),D(z) andµ(z) at largerz values. It is particularly likely that studies of the source
properties at largez have assumed homogeneity, if not a particular FLRW model. A method of
testing source evolution theories, independently of possible inhomogeneity, was presented in [56],
which considered multiple source types and observations atseveral wavelengths.
Combining Data with an Invariant Distance For many purposes, data at the samez are
grouped together and averaged, and it is assumed the errors cancel out. However, as is well known
the peculiar velocities of sources create a scatter inz values, especially in clusters, and the ob-
server’s motion creates a dipole, so although redshift can be measured to high accuracy, it is not an
ideal monotonic measure of distance. According to Walker’sand Etherington’s argument [119, 44]
the source area distancedS = (1+ z)dD is independent of the observer’s motion. Since this dis-
tance is determined by the geometry of light rays emanating from the emission event, it is also
independent of the source motion. Therefore, if the data were good enough it would be more
correct to combine data with the samedS = dL/(1+ z).

3.6 Checking Homogeneity

The LT model requires two physical functions ofr to be fully specified, so only models that
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satisfyboth conditions (2.31) are homogeneous. As seen above, it is perfectly possible to repro-
duce one observational function, such asdL(z), with a variety of inhomogeneous models, so a
one-function test is not sufficient. Thus a two-function test is imperative for an unambiguous re-
sult; for example the redshift-space densityσ(z) can distinguish between models that fit thedL(z)

data. Clearly, then, the MoC procedure will provide an important test of homogeneity, when there
is sufficient observational data of high precision and completeness. If the procedure outputs LT
functions that are close to the RW form (2.31) (say within 1 sigma), then this is a strong indica-
tion of homogeneity. Checking for homogeneity is so important that we should use all available
tests. Any deepz test of homogeneity will depend on using the correct source evolution functions.
According to [56], source evolution theories may possibly be tested with detailed multi-colour data.

3.7 Other Approaches

Although the above papers are the only ones that are seriously directed at eventually using
real observational data, [11] did develop a numerical code based on the characteristic initial value
problem, and [104, 70] also discussed the problem in broad terms. There have been a number
papers looking at restricted versions of the ‘inverse problem’ [69, 34, 120] that only tried to fit the
dL(z), and typically assumed this is identically theΛCDM-FLRW curve. Since this only fixed one
of the LT physical freedoms, the other was fixed by the authors’ choice. As already noted, [11, 69]
did not solve the apparent horizon (AH) problem. In [118] it was mistakenly suggested that it could
not be solved using inhomogeneous models — see [79] for corrections.

In [69] they chosedL(z) to be that of theΛCDM-FLRW model withΩm = 0.3, ΩΛ = 0.7, and
setM =M0r

3. They considered models with bothf = fRW , in whicha is not uniform, anda= 0,
for which f is not uniform. They were able to find a variety of models that solved their inverse
problem, and some of the varying bang-time models had quite reasonable redshift-space density.
They did however encounter difficulties at the AH.

In [34] they assumeddL(z) has theΛCDM form (i.e. that of an RW model withΩm = 0.3,
ΩΛ = 0.7, Ωk = 0), a = constant, andf = H0r

2e−2H0r, and they succeed in extractingM(r)

only up toz = 0.4. Their comments below their eq (32) about the inversion method not probing
the geometry or being unstable, actually originate from thenot handling near-parabolic models
appropriately, and from not identifying ther coordinate freedom. They also seemed unaware of
earlier work on shell crossings in LT models.

In [120] they also assumed thedL of a ΛCDM universe, as well asa = 0, and they used
the Dyer-Roeder equation to fix the coordinate freedom. Theydid overcome the AH problem,
though the details are unclear. Their solution procedure involved integrating outwards from the
centre and inwards from the AH, so joining the two parts up involved a ‘search’ through multiple
integrations to get a matching. They tested different degrees of smoothness at the centre, but
showed that the results in the outer regions were unaffected. They also investigated the effect of
a Dyer-Roeder clumpiness parameter that depends onz, and showed that this could reduce the
amount of inhomogeneity needed to fit observations.

Evolution of the Redshift Detecting how the redshift of sources evolves with time, may
become an important method of distinguishing models of SNIadimming [41, 82, 117, 120].
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3.8 General case

The idea of deducing the metric of the universe from observations was first analysed in the
classic paper [80] by Kristian & Sachs, and followed up in an important review by Ellis et al [40].
Important early ideas appear in [44, 114]. There has actaully been quite a lot of work on this
problem [105, 106, 107, 108, 88, 89, 8, 6, 7, 103, 1, 59, 9], especially for the spherically symmetric
case and its perturbations, though the general case is quitedifficult and has not been developed
very much. See a summary in [57]. There is much to be done here,especially turning the general
case into a workable numerical procedure.

4. The Szekeres Metric

The Szekeres (S) metric [111, 112] is a very interesting and largely neglected inhomogeneous
model. Like LT, it is synchronous, comoving, and irrotational, with a dust equation of state. The
metric is:

ds2 = −dt2 +

(
R′− RE′

E

)2

ǫ+f
dr2 +

R2

E2
(dp2 +dq2) , (4.1)

whereǫ = −1,0,+1, f = f(r) is an arbitrary function ofr, E = E(r,p,q), R = R(t,r) and ′ ≡
∂/∂r, and an orthonormal basis for this metric is

ett = 1 , err =
(R′−RE′/E)√

ǫ+f
, epp =

R

E
= eqq . (4.2)

Applying the EFEs, the density and the Ricci and Kretschmannscalars are

κρ=
2(M ′−3ME′/E)

R2(R′−RE′/E)
, (4.3)

R = 4Λ+κρ , (4.4)

K = κ2

[
4

3
ρ2− 8

3
ρρ+3ρ2

]
+

4Λ

3
[2Λ+κρ] , (4.5)

where

8πρ=
6M

R3
. (4.6)

The functionR(t,r) has exactly the same dynamics (2.5) and solution (e.g. (2.9)-(2.16) forΛ = 0)
as for LT. The functionE is given by

E(r,p,q) =
S

2

[(
p−P
S

)2

+

(
q−Q
S

)2

+ ǫ

]
(4.7)

where functionsS = S(r), P = P (r) & Q = Q(r) are arbitrary.8 Thep-q 2-surfaces andE will
be interpreted below; in brief the constant time 3-spaces are foliated by 2-surfaces of constant

8The functionE is often given in the form

E(r,p,q) = A(p2 + q
2)+2B1p+2B2q +C, (4.8)

23



P
o
S
(
I
S
F
T
G
)
0
0
5

Modelling Inhomogeneity in the Universe

coordinater, which have 2-metrics of spheres, planes or pseudo-spheres, depending on the value
of ǫ.

Theǫ= 0,−1 cases have been ignored until recently [62, 75]. Although quantities liker,M(r)

etc do not have the same meaning as in spherically symmetric models, curves of constantp & q

will be called ‘radial’, ‘p-radial’ or ‘h-radial’, and prefixes ‘p-’ and ‘h-’ will indicate quasi-planar
and quasi-pseudospherical quantities.

See [74] for a review of its known properties, or [101] for an introduction. See also [60, 62]
for an analysis of theǫ= +1 andǫ= 0,−1 cases.
Free Functions The S metric has 6 arbitrary functionsf , M , a, S, P andQ, which allow
a rescaling ofr plus 5 functions to control the physical inhomogeneity. Forthe ǫ = 0 case, the
mapping(S,f,M) → (S/F,fF 2,MF 3) for anyF (r) does not change the metric, the density or
the evolution equations. ThusS(r) might as well be set to1 with F = S.
Special Cases The S model contains the LT model whenǫ= +1 andS, P ,Q are all constant.
It therefore contains the same special cases, and has geometric possibilites at least as interesting as
LT. With E′ = 0 it reduces to the Ellis metric [38]. It also has a Kantowski-Sachs-type limit, and
its null limit is a generalisation of the Kinnersley rocket metric [55].
No Killing Vectors This metric has no Killing vectors [27], but that does not mean it is even
close to a general inhomogeneous dust solution. It is ther dependence ofE that destroys any
spherical, planar or pseudo-spherical symmetry. Despite the inhomogeneity of the model, and the
lack of Killing vectors, any surface of constant timet is conformally flat [10].
Matching to Vacuum Also, any surface of constant coordinate ‘radius’r can be joined to a
symmetric vacuum metric with spherical, planar or pseudo-spherical symmetry [24, 25, 62]. This
latter means that the S metric generates a symmetric gravitational field “outside” each and every
constantr shell.
Singularities The S model has the same singularities — bang, crunch, shell crossings, shell
focussings — as discussed for the LT model in §2.1. The bang and crunch, whereR= 0, still occur
at t = a and t = a+ 2πT̃ . Shell crossings however are more complicated, as they occur where
R′−RE′/E = 0, providedM ′−3ME′/E andǫ−f are not zero.

4.1 Riemann Projection

To understand the metric component(dp2 + dq2)/E2, we note that thep-q 2-surfaces can be
transformed to 2-spheres, planes or pseudo-2-spheres by the Riemann projection:

ǫ= −1 , E > 0 :
(p−P )

S
= coth

(
θ

2

)
cos(φ) ,

(q−Q)

S
= coth

(
θ

2

)
sin(φ) , (4.10)

ǫ= −1 , E < 0 :
(p−P )

S
= tanh

(
θ

2

)
cos(φ) ,

whereA(r), B1(r), B2(r), andC(r) must obey

4(AC−B
2

1 −B
2

2) = ǫ . (4.9)

This last is automatically satisfied by (4.7), so calculations are easier. AlsoS, P , Q have a natural interpretation in the
Riemann projection given next.
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(q−Q)

S
= tanh

(
θ

2

)
sin(φ) , (4.11)

ǫ= 0 :
(p−P )

S
=

(
2

θ

)
cos(φ) ,

(q−Q)

S
=

(
2

θ

)
sin(φ) , (4.12)

ǫ= +1 : either
(p−P )

S
= cot

(
θ

2

)
cos(φ) ,

(q−Q)

S
= cot

(
θ

2

)
sin(φ) , (4.13)

or
(p−P )

S
= tan

(
θ

2

)
cos(φ) ,

(q−Q)

S
= tan

(
θ

2

)
sin(φ) . (4.14)

Notice that, withθ & φ ranging over the whole sphere,each of the spherical transformations (4.13)
& (4.14) covers the entirep-q plane.

In contrast,both of the pseudospherical transformations (4.10) & (4.11), with 0 ≤ θ ≤∞, are
required to cover the entirep-q plane once; each transformation maps one of the hyperboloidsheets
to thep-q plane. To distinguish the sheets, we chooseθ to be negative on one and positive on the
other. Each constantr “shell” seems to be a hyperboloid with two “sheets”, but we shall determine
whether both these sheets are needed, or even allowed. In theplanar case, the Riemann projection
may be viewed as an inversion of the plane in a circle, or as a mapping of a semi-infinite cylinder
to a plane. These projections are illustrated below.

(p − P) = S coth(θ/2)

(p − P) = S tanh(θ/2)

z

x p

α S

(p − P) = S (2/θ)(p − P) = S (2/θ)

x

z pp

2

S
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(p − P) = S tan(θ/2)

(p − P) = S cot(θ/2)

z

xp

αS

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5 sph

pln

hyp

hyp

pln

sph

θ

(p
 −

 P
)/

S
However, the transformations from(p,q) to (θ,φ) introduce cross terms in the metric, such as
drdθ. Of course, ifE′ = 0 everywhere, this transformation recovers the LT model.

4.2 Properties of E

The functionE determines how the coordinates(p,q) map onto the 2-d unit pseudosphere,
plane or sphere at each value ofr. Each 2-surface is multiplied by factorR = R(t,r) that is
different for eachr, and evolves with time. Thus ther-p-q 3-surfaces are constructed out of a
sequence of 2-dimensional spheres, pseudospheres, or planes that are not arranged symmetrically.
Obviously, forǫ= 0,−1 the area of the constantt & r 2-surfaces could be infinite, but in theǫ= +1

case it is4πR2.
In thep-q plane,E has circular symmetry about the pointp= P , q =Q, which is different for

eachr. TheE = 0 circle

(p−P )2 +(q−Q)2 = −ǫS2 , (4.15)

hasE > 0 on the outside, but becomes a point ifǫ= 0, and does not exist ifǫ= +1. The divergence
of the metric componentsgpp andgqq asE→ 0 has a geometric significance that will be discussed
below. TheE′ = 0 locus is also a circle in thep-q plane, which can be written

(
p−P
S

+
P ′

S′

)2

+

(
q−Q
S

+
Q′

S′

)2

=
(P ′)2 +(Q′)2

(S′)2
+ ǫ . (4.16)

For ǫ= 0,+1, this locus always exists, and whenǫ= −1 it only exists if

(S′)2 < (P ′)2 +(Q′)2 , (4.17)

with the radius of this circle shrinking to zero as the equality is approached. It can be shown these
two circles always intersect, if they both exist.

To see howE′/E affects the metric and the density, we writex= E′/E. Then in the metric
(4.1),grr is a decreasing function ofx providedx > R′/R, while for the density (4.6) we have

8πρ=
6M

R3

(M ′/(3M)−x)
(R′/R−x) , (4.18)
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so that

8π
∂ρ

∂x
= −6M

R3

(R′/R−M ′/(3M))

(R′/R−x)2 , (4.19)

and ifx→±∞

8πρ→ 6M

R3
. (4.20)

Therefore at givenr andt values, the density varies monotonically withx = E′/E. (The sign of
the numerator may possibly change asR evolves.) Ifx can diverge,ρ approaches a finite, positive
limit.

4.3 Spatial 3- & 2-Geometries

It is apparent from the above thatǫ determines the shape of the constant(t,r) 2-surfaces that
foliate the spatial sections:

ǫ= +1 → sequence of Riemann spheres

ǫ= −1 → sequence of Riemann hyperboloids (4.21)

ǫ= 0 → sequence of Riemann planes.

This is confirmed by the curvature of thep-q 2-spaces; the orthonormal basis components of the
Riemann & Ricci tensors and the Kretschmann and Ricci scalars are

2R(p)(q)(p)(q) =
ǫ

R2
, 2R(p)(p) = 2R(q)(q) =

ǫ

R2
, 2K =

4ǫ2

R4
, 2R =

2ǫ

R2
, (4.22)

which also showR is a scale length for the curvature. In fact, it is quite possible to have the
three types of foliation in one S model. The original notation [111, 112] has a continuous function
instead ofǫ. These 2-surfaces have area

A=R2

∫ ∫
dpdq

E2
, (4.23)

which is4πR2 whenǫ= +1, but otherwise is infinite.
Note thatgrr ≥ 0 requiresǫ+f ≥ 0, to keep the metric Lorentzian, and so

f > 0 → ǫ= +1,0,−1

f = 0 → ǫ= +1,0 (4.24)

−1< f < 0 → ǫ= +1 .

Clearly, the 3-d geometry determined byf may restrict the possible foliations. For example, you
can’t foliate a positively curved space with hyperboloids,but you can foliate a negatively curved
space with spheres.

Calculating the orthonormal basis components of the Riemann and Ricci tensors and scalars
of ther-p-q 3-spaces, we find

3R(r)(p)(r)(p) = 3R(r)(q)(r)(q) =
−1

R

(f ′/2−fE′/E)

(R′−RE′/E)
, 3R(p)(q)(p)(q) =

−f
R2

, (4.25)
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3R(p)(p) = 3R(q)(q) =
−1

R

(
(f ′/2−fE′/E)

(R′−RE′/E)
+
f

R

)
′ (4.26)

3K =
4

R2

(
2(f ′/2−fE′/E)2

(R′−RE′/E)2
+
f2

R2

)
, (4.27)

3R =
−2

R

(
2(f ′/2−fE′/E)

(R′−RE′/E)
+
f

R

)
. (4.28)

The flatness condition3R(a)(b)(c)(d) = 0 requires just9

f = 0 = f ′ . (4.29)

This is not possible forǫ=−1. Whenǫ= 0, (4.29) would makegrr diverge unlessR′−RE′/E =

0, which in turn would makeρ diverge unlessM ′− 3ME′/E = 0. It will be shown this is only
possible as an asymptotic limit.

For ther-p 2-spaces we find

2R(r)(p)(r)(p) = 2R(r)(r) = 2R(p)(p) =

√
2K
2

=
2R
2

=
1

R

(
Eq(E

′
q −E′Eq/E)− (f ′/2−fE′/E)

(R′−RE′/E)

)
, (4.30)

where Ep =
∂E

∂p
, Eq =

∂E

∂q
. (4.31)

For these surfaces to be flat requiresEq(E
′
q −E′Eq/E)− (f ′/2−fE′/E) = 0, and the only solu-

tion that can hold over an entire 2-surface isf ′ = 0 =E′. This is becauseE & E′ depend onp, but
Eq & E′

q don’t. Note thatE′ = 0 implies all ofS′ = 0 = P ′ =Q′. Obviously, these surfaces may
be curved, even when ther-p-q 3-space they foliate is flat.

RW in Szekeres Coordinates Since the RW metrics can be written in the Szekeres form, it
is useful to look at the transformations between Szekeres and standard RW coordinates — see [62]
for a discussion. Thek = −1 case allows all three types of foliation, which are comparedbelow in
a constantt, φ= 0,π slice. Blue curves are for theǫ= +1 case, red forǫ= 0 and green forǫ=−1.
Note that there’s distortion, as a negatively curved 2-surface cannot be properly represented on a
plane — notably orthogonal lines do not look orthogonal.

9If instead the coordinate dependent condition3Rabcd = 0 is used, one gets a more complicated result [62].
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z

4.4 Quasi Spherical Case

Dipole The functionE describes a dipole distribution [112, 36, 60] round the 2-sphere at eachr
value, having(E′/E)max = −(E′/E)min located at antipodal points, andE′ = 0 on a great circle
mid way inbetween. From (4.7) and (4.13)-(4.14) we find

E =
S

1− cosθ
, (4.32)

E′ = −S
′ cosθ+sinθ(P ′ cosφ+Q′ sinφ)

1− cosθ
, (4.33)

so the locusE′ = 0,
S′ cosθ+P ′ sinθ cosφ+Q′ sinθ sinφ= 0 , (4.34)

is a great circle of theθ-φ sphere. The locations of the extrema ofE′/E are found by setting

∂(E′/E)

∂φ
= 0 ,

∂(E′/E)

∂θ
= 0 , (4.35)

which give

tanφe =
Q′

P ′
⇒ cosφe = ǫ1

P ′

√
(P ′)2 +(Q′)2

, ǫ1 = ±1 , (4.36)
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tanθe =
P ′ cosφe +Q′ sinφe

S′
= ǫ1

√
(P ′)2 +(Q′)2

S′
⇒ (4.37)

cosθe = ǫ2
S′

√
(S′)2 +(P ′)2 +(Q′)2

, ǫ2 = ±1 , (4.38)

whereǫ1 andǫ2 are independent ofǫ, and the extreme value is

(
E′

E

)

extreme

= −ǫ2
√

(S′)2 +(P ′)2 +(Q′)2

S
. (4.39)

These two points are symmetrically located relative to theE′ = 0 circle, forming an equator and
two poles — a dipole. Naturally, the dipole orientation varies withr. By (4.1) and (4.6)E also
creates a dipole variation in the

√
grr dr metric interval and the density around each constantt-r

2-sphere. The distance between constantr shells varies with(p,q); RE′/E is the correction to
the radial separationR′ of neighbouring shells,RS′/S is the forward(θ = 0) displacement, and
RP ′/S & RQ′/S are the two sideways displacements(θ = π/2, φ= 0) & (θ = π/2, φ= π/2).

E′/E grr ρ

max → min min
min → max max

The interpretation is that the Szekeres 3-spaces are constructed from a sequence of non-concentric
2-spheres, each having a density distribution that is exactly what’s needed to generate a spherical
field around a new centre. Here we show a section through a set of spheres, the dipole on one
2-sphere, and a selection of possibler-p surfaces at some moment in time, as well as the dipole on
a single spherical shell, and some possibler-φ surfaces (of constantt andθ = π/2.

local dipole axis
circle centres

longer

shorter

shorter

longer

Regularity The conditions for regular origins, for regular spatial extrema, and for the avoidance
of shell crossings are similar to those for LT models — see section 2.2 — except with further
conditions on the new arbitrary functionsS, P andQ. These are laid out in [60], and the case of
non-zeroΛ is considered in [31]. Near an origin,R→ 0, regularity requires

M ∼R3 , f ∼R2 , S ∼Rn , P ∼Rn , Q∼Rn , 0 ≤ n≤ 1 . (4.40)
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The non-concentric nature of the constantr shells means that shell crossings are more complex
than in LT models. Adjacentr-shells will first intersect at the point wheregrr is minimum, and as
time goes by the two will intersect on a circle parallel to theE′ = 0 great circle — i.e. aligned with
the dipole. See [60], and appendix E for the conditions to avoid them.

For a regular extremum we require

f = −1 , and M ′ = f ′ = a′ = S′ = P ′ =Q′ = 0 (4.41)

and the conditions for no shell crossings have to be modified —see [60].
Apparent Horizons According to the standard definition, surfaceΣ is trapped if, forany null
vector fieldkc, kbkb = 0, we have

ka
;a|Σ < 0 , (4.42)

and the apparent horizon (AH) is the boundary of the trapped region

ka
;a|AH = 0. (4.43)

Now null vectors that are momentarily ‘radial’,kd = K(t,r,p,q)
(
(R′−RE′/E), jW,0,0

)
, j =

±1, are also geodesic,kb∇bk
a = 0, if

K ′ = −K(R′−RE′/E)′

(R′−RE′/E)
− j

W

(
K̇

(
R′− RE′

E

)
+2K

(
Ṙ′− ṘE′

E

))
. (4.44)

This together with (2.8) gives

ka
;a =

2K

R

(
R′− RE′

E

)(
Ṙ+ jW

)
=

2K

R

(
R′− RE′

E

)(
ℓ

√
2M

R
+f +

ΛR2

3
+ j
√

1+f

)
,

(4.45)

so the expansion of these geodesics is zero when (3.52) holdsandℓ = −j; that is, for incoming
rays in an expanding region, or outgoing rays in a collapsingregion. Thus [112] foundR= 2M is
the apparent horizon whenΛ = 0.

The approach in [60] was a bit different, as it was not required thatkb be geodesic, and it was
rather determined whether or not null paths were moving to shells of larger areal radiusR. It was
established that, at any given point, the constantr shells are traversed most rapidly by null vectors
pointing ‘radially’. (Null paths that stay radial are not geodesic in general.) It was then found that
the locus wheredR/dr = 0 along a radial null direction (geodesic or not) is not coincident with a
constantr shell, and isp-q dependent. This was called the ‘absolute apparent horizon’in [20]. Not
surprisingly, on any constantr shell, thedR/dr = 0 locus is (the history of) a circle aligned with
the local dipole direction.
Wormholes We know light can’t quite get through the Schwarzschild-Kruskal-Szekeres (SKS)
‘wormhole’, and we know that dense LT ‘wormholes’ are even less traversibile [51]. But, if a dense
Szekeres wormhole can be bent round round as shown above, so one side is shorter than the other,
does that make it easier for light to get through on the shorter side? In [60] it was found light still
can’t get through, and ray paths were calculated and plottedfor several models. Shown here are
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some light paths (R) and apparent horizons (A) in a Szekeres ‘wormhole’, showing fast (f) and
slow (s) directions.
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bang

Now since Szekeres spaces can bend round, this prompts the question of whether we make
a handle topology by joining up the two sides across a boundary. The Darmois matching condi-
tions specify how to splice metrics together. (Actually, wedon’t need the embedding to work, or
the amount of bending to be sufficient, as long as the Darmois junction conditions are satisfied.)
However it was found in [60] that the matching doesn’t work, without creating surface layer. This
result includes the case of spherical vacuum — so the idea of wormhole shortcuts — commonly
suggested in context of the SKS geometry — is in fact impossible within Szekeres metrics.

4.5 Quasi-Pseudo-Spherical Case

Whenǫ = −1, the constantr surfaces are not closed, and the physical and geometric mean-
ing of R andM have to be re-thought. We lay out some basic properties here,and attempt an
interpretation later.
h-Dipole Recall that each shell of constantt & r is a two-sheeted hyperboloid of revolution.
Using (4.10) & (4.11), we can write

E =
ν S

coshθ−ν , (4.46)

E′ = −S
′ coshθ+sinhθ(P ′ cosφ+Q′ sinφ)

coshθ−ν , (4.47)

ν = sign(E) . (4.48)

TheE = 0 circle corresponds toθ→±∞, and its neighbourhood represents the asymptotic regions
of the two sheets of the hyperboloid of (4.10) and (4.11).

The locusE′ = 0 is

S′ coshθ+P ′ sinhθ cosφ+Q′ sinhθ sinφ= 0 , (4.49)
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which only has a solution if (4.17) holds. It is a geodesic of thep-q 2-space, and can be pictured as
the intersection of a plane with a right hyperboloid.

Writing

E′

E
= −ν S

′ coshθ+sinhθ(P ′ cosφ+Q′ sinφ)

S
, (4.50)

the extrema ofE′/E are

(
E′

E

)

extreme

= −ǫ2 ν
√

(S′)2 − (P ′)2− (Q′)2

S
, (4.51)

whereǫ2 = sign(S′). These extrema only exist at finiteθ if

(S′)2 > (P ′)2 +(Q′)2 , (4.52)

which is the opposite of (4.17); so on a given constantr shell, eitherE′ = 0 exists, or the extrema
of E′/E exist, butnot both.

It follows from (4.50) that this extremum is a maximum whereE′/E is negative, and a min-
imum whereE′/E is positive. Thus, for each constantr hyperboloid, on the sheet withES′ < 0

(i.e. νǫ2 = −1), E′/E has a positive minimum and goes to+∞ as|θ| → ∞, while on the sheet
with ES′ > 0, E′/E has a negative maximum and goes to−∞. We now specify thatθ < 0 on the
E < 0 sheet. From the foregoing considerations, if (4.52) holds,thenE′/E is the pseudospherical
equivalent of a dipole, having a negative maximum on one sheet and a positive minimum on the
other, but diverging in the asymptotic regions of each sheetnearE = 0.

We see in the metric (4.1) thatRE′/E is the correction to the separationR′, along ther curves,
of neighbouring constantr shells, meaning that the hyperboloids are centered differently and are
“non concentric”, as sketched below. In particularRS′/S is the forward displacement, andRP ′/S

& RQ′/S are the two sideways displacements. The shortest h-radial distance is whereE′/E is
maximum.

hyperbola centres

Regularity Canǫ = −1 regions haveR(t,ro) = 0 for somero? The derivation of the ‘origin’
conditions (4.40) does not depend onǫ, but whenǫ = −1, f → 0 is not allowed, sincef ≥ 1, so
‘origins’ are not possible.
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The analysis of [62] shows that, to be free of shell crossings, (4.52) must hold. Even then only
one sheet of the two-sheeted hyperboloid at eachr — the one with0 ≥ (E′/E)max ≥ (E′/E) >

−∞ — can be free of shell crossings. However on that sheet, the conditions are weaker than in LT
— see appendix E. As with the LT case, these are obtained by studying the evolution ofR′/R. An
important conclusion is that onlyone sheet of the Riemann hyperboloid should be used to construct
regular models, which means not all of thep-q plane is used.

Regular extrema,R′(t,rm) = 0), are indeed possible. The calculations in [62] lead to

f = 1 , and M ′ = f ′ = a′ = S′ = P ′ =Q′ = 0 , (4.53)

but note that the conditions for no shell crossings are more subtle at such a locus. This is not
an obscure possibility — thek = −1 RW metric in pseudo-spherical coordinates has a spatial
minimum inR.

4.6 Quasi-Planar Case

No dipole For theǫ= 0 case, we find

E =
2S

θ2
, (4.54)

E′ = −2(S′ + θ(P ′ cosφ+Q′ sinφ))

θ2
, (4.55)

E′

E
= −S

′ + θ(P ′ cosφ+Q′ sinφ)

S
, (4.56)

and though theE = 0 locus has shrunk to the pointp = P , q = Q, it still corresponds to the
asymptotic regions of the plane,θ = ∞. The locusE′ = 0,

S′ +P ′θ cosφ+Q′θ sinφ= 0 , (4.57)

is obviously a geodesic of thep-q 2-space, and it exists provided

S′ 6= 0 and (P ′ 6= 0 or Q′ 6= 0) . (4.58)

There are no extrema ofE′/E, and it its value extends to both±∞. We interpret the above as
showing that adjacentr-shells are planes tilted relative to each other, withtanφ0 = Q′/P ′ being
the direction of maximum tilt, but ifE′ = 0 they are parallel.

The behaviour found here cannot really be termed a dipole.
Regularity The question of whether anǫ = 0 model may have an ‘origin’,R→ 0, is a little
tricky. The origin conditions (4.40) requiref → 0. But if the metric and the 3-curvature is to be
regular, we expect

lim
r→ro

grr = lim
r→ro

{
R′

[
1− RE′

R′E

]}2

f
(4.59)

to be finite and non-zero. SinceRE′/(R′E) is not divergent, this implies

R′ ∼
√
f ∼R ⇒ R∼ ebr , b constant, (4.60)
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while the p-radial distance is

s=

∫ √
grr dr ∼ r . (4.61)

In other words,R, M andf may only approach zero asymptotically, and the scale of the planar
foliations becomes ever smaller. This is what happens in theplanar foliation of thek = −1 RW
metric.

Since the 3-spaces of a completely quasi-planar model consist of planes tilted relative to each
other, they inevitably intersect somwhere, unless

S′ = P ′ =Q′ = E′ = 0 , (4.62)

and the no-shell crossing conditions forf ≥ 0 LT models also hold. This reduces the model to
planar symmetry — an Ellis model [38].

As with the other foliations, regular extrema require no shell crossings andf →−ǫ, as given
in appendix E. But, by (4.25)-(4.28) and (4.6),f → 0 also requiresR′−RE′/E → 0 andM ′−
3ME′/E → 0, which is the Kantowski-Sachs type limit for this case. Alternatively, f → 0 also
occurs in the origin requirementR→ 0 above, which can only be approached asymptotically.
Quasi-Planar Limit A S model may have both quasi-spherical and quasi-pseudo-spherical
regions, and the boundary surface between them is a quasi-planar timelike 3-surface. It was verified
in [62] that theǫ= 0 case and projection are suitable limits of both theǫ= ±1 cases.

4.7 Physical Discussion of the ǫ= −1,0 Cases

Role of R
In the metric (4.1) and in the area integral,A = R2

∫
1/E2 dpdq, the factorR2 multiplies

the unit sphere or pseudosphere, and therefore determines the magnitude of the curvature of the
constant(t,r) surfaces (4.22). By (4.25)-(4.28), it is also a major factorin the curvature of the
constantt 3-spaces. Therefore we view it as an “areal factor” or a “curvature scale”. However,
whenǫ≤ 0, it is not at all like a spherical radius. We note that whenǫ=−1, there can be no origin,
butR can have maxima and minima asr varies, while in theǫ = 0 case,R cannot have extrema,
and it can only approach zero asymptotically.
Role of M In (2.5), M looks like a mass in the gravitational potential energy termof the
evolution equation, while in (2.7)M determines the deceleration ofR. For ǫ = +1, where the
surfaces of constantr are spheres enclosing a finite amount of matter, the functionM(r) does play
the role of the gravitational mass contained within a comoving “radius” r. For ǫ ≤ 0 however,R
is not the spherical radius that is an important part of theseideas in their original form, andM is
not a total gravitational mass, since the constantt & r surfaces are not closed. Consequently these
ideas need revising.

In fact, the impossibility of an “origin” or locus whereM andR go to zero whenǫ = −1

means thatM must have a global minimum, and indeed regular extrema inR andM are possible.
Therefore the localM value is not independent of its value elsewhere, and integrals of the density
over a region always have a boundary term, suggesting the value ofM (rather than its change
between two shells) is more than can be associated with any finite part of the mass distribution.
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In ǫ = 0 models, an asymptotic “origin” is possible, but not required, regular maxima are not
possible, and regular “minima” are actually asymptotic origins. So, with an asymptotic origin (as
occurs in the planar foliation ofk = −1 RW), the boundary term could be set to zero.

Nevertheless, the central roles ofR andM are confirmed by the fact that the 3 types of Szek-
eres model can be joined smoothly to vacuum across a constantr surface at which the values ofR
andM must match. The vacuum metric “generated” by the Szekeres dust distribution must have
spherical, planar, or pseudospherical symmetry, and in each, M is the sole parameter, whileR is
an areal factor.

We note that, even in the Poisson equation, the gravitational potential does not need to be
associated with a particular body of matter, and indeed it isnot uniquely defined for a given density
distribution.

Therefore we find thatM is a mass-like factor in the gravitational potential energy.

Role of f As shown in §4.3, and as is apparent from the metric (4.1), thefunctionf determines
sign of the curvature of the 3-spacet = const, as well as being a factor in its magnitude. In the
case,ǫ = +1, this 3-space becomes flat (represented in unusual coordinates) whenf = 0. In the
quasi-pseudospherical case, withf = 0 it becomes ‘flat’ if the signature is made pseudoeuclidean,
(−++). In the quasi-planar case,f = 0 is possible as a Kantowski-Sachs type limit.

As with LT, f appears in the gravitational energy equation (2.5) as twicethe total energy per
unit mass of the matter particles, and we do not need to revisethis interpretation. Therefore, this
variable has the same role as in quasi-spherical and spherically symmetric models.

Role of E As we have seen, forǫ= +1, E′/E is the factor that determines the dipole nature of
the constantr shells, and forǫ=−1, it is the pseudospherical equivalent of a dipole, except that the
two sheets of the hyperboloid each contain half the dipole, and only one of them can be free of shell
crossings. The shell separation (along ther lines) decreases monotonically asE′/E increases. If
E′ = 0, it is uniform, otherwise it is minimum at some location and diverges outwards. Forǫ= 0,
the effect ofE′/E is merely to tilt adjacent shells relative to each other, butonly the zero tilt case
(E′ = 0) is free of shell crossings.

Density Distribution For ǫ = +1 models, the density has a dipole variation around each
constantr sphere, though the strength an orientation of the dipole varies withr. Forǫ=−1 models,
which must havef ≥ 1, it was found that, iff ′/(2f) ≥M ′/(3M) and there are no shell crossings,
the density is at all times monotonically decreasing withE′/E, but asymptotically approaches a
finite value asE′/E diverges. Therefore the density distribution on each shellis that of a void,
but the void centres on successive shells can be at different(p,q) or (θ,φ) positions, in other
words, the void has a snake-like or wiggly cylinder shape. The minimum density is only zero if
M ′/(3M) =−(E′/E)max. Far from the void, at largeθ, the density is asymptotically uniform with
p & q (i.e. with φ), but can vary withr. However, wheref ′/(2f) < M ′/(3M) everywhere, an
initial void in a constantr shell can evolve into an overdensity.

The no shell crossings conditions imply limits on how far thelocation of the minimum density
can be displaced between shells with differentr.

4.8 Applications of the Szekeres Metric

The Szekeres metric was not used to model cosmological structures until very recently.
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In [12], models of voids next to superclusters were constructed, and it was found that the
growth of the supercluster is strongly enhanced, relative to the linear perturbation approach.

In [14], it was found small voids surrounded by large overdensities evolve more slowly than
isolated voids, while large voids enhance the evolution of adjacent superclusters.

A swiss-cheese model based on Szekeres inhomogeneities wasused in [16] to investigate the
effect of non-linear inhomogeneities on the CMB. While compensated inhomogeneities have a tiny
Rees-Sciama effect, the effect of uncompensated inhomogeneities is around∼ 10−3 and so could
be responsible for the low multipoles in the CMB.

The effect of volume averaging was considered in [17] and it was found the results are the
same as in the LT case, c.f. [52].

A generalisation of the LT void models for SNIa dimming of §3.2 was given in [71]. They
used a quasi-spherical S model with quite restricted arbitrary functions and few parameters. This
allowed some angular variation indL(z). It was shown that the model fits the data almost as well
as theΛCDM model, even though the potential of the S model has hardlybeen explored.

Shell crossings in certain specific examples of higher dimensional quasi-spherical models
were considered in [31]. These authors have also investigated generalised quasi-spherical mod-
els, including collapse and the occurrence of “shell focussing” naked singularities, often in higher
dimensions and involving non-zero pressure or heat flux.

5. Conclusion

The universe is of course very inhomogeneous on many scales.To fully understand how these
structures evolve, and properly analyse our observations will require the non-linearity of exact
inhomogeneous metrics.

Up to now, homogeneity has been assumed, and was key to makingprogess. In the age of
precision cosmology, we should thoroughly test this assumption and quantify how good an approx-
imation it is on each scale. Nearly all data analysis assumesthe RW metric. To be sure we avoid
circular arguments, there is an urgent need to re-do all calculations in a general non-homogeneous
metric. The methods of inhomogeneous cosmology will be an essential component of this endeav-
our.

Lemaître-Tolman models have produced a wide variety of interesting results, and the investi-
gations are far from exhausted.

The Szekeres models have a lot of flexibility, and can be used to model quite complex struc-
tures — but they have been very little investigated.

There are plenty of opportunities for good research.

A. Near Bang and Near Parabolic Series

Near the bang, whereR= 0, (2.5) is dominated by2M/R, and the exact solutions (2.9)-(2.16)
for Λ = 0 involve the cancellation of nearly identical terms, thus generating large numerical errors.
Taking our cue from thef = 0, Λ = 0 solution, (2.10), i.e.R= (9M(t−a)2/2)1/3, we writeR as
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a series,

R=
∞∑

i=1

Ris
i , s= τ1/3 = (t−a)1/3 , (A.1)

and put it into (2.5) in the form

3RṘ2 = 6M +3fR+ΛR3 . (A.2)

Solving for each power ofs in turn we find

R=R2s
2

(
1+V − 3V 2

7
+

23V 3

63
− U

4
− 1894V 4

4851
+
V U

11
+

3293V 5

7007
+

45V 2U

2002
· · ·
)
, (A.3)

where R2 =

(
9M

2

)1/3

, V =
9fs2

20R2
2

=
fs2

10

(
9

2M2

)1/3

, U =
Λs6

3
. (A.4)

In the caseΛ = 0, this is also the near-parabolic series for smallf (ands not small). WhenΛ 6= 0,
and (2.5) is integrated numerically, smallf is not problematic.

It is a good idea to have more terms in the series than the bare minimum, so that there is a
range where both the series and numerical solutions are accurate, and each calculation provides a
check on the coding of the other.

B. Near Origin Series for Observational Relations

When calculatinĝt, R̂, z andσ̂ for an LT model with givenf(r), M(r) anda(r), the origin,
where all but̂t anda go to zero, requires special numerical treatment. Therefore it is useful to have
a series expansion for the null cone quantities in the neighbourhood of the origin. Writing

R=

∞∑

i=1

∞∑

j=0

Rij r
i δtj , δt= t− t0 , (B.1)

we can solve the evolution equation (2.5) for the coefficientsRij , whenj 6= 0,

R11 =

√
2M3

R10
+f2 +

ΛR2
10

3
, R12 = − M3

2R2
10

+
R10Λ

6
,

R21 =

(
M4

R10
+
f3

2
−M3R20

R2
10

+
R10R20Λ

3

)
1

R11
, R22 = − M4

2R2
10

+
M3R20

R3
10

+
R20λ

6
, (B.2)

but theRi0, or equivalently the origin values ofR′, R′′, R′′′, etc, must be found by numerical
integration, e.g. using (2.8) & (3.15). Then using

M =

∞∑

i=3

Mir
i , f =

∞∑

i=2

fir
i , a=

∞∑

i=0

air
i ,

t̂= t0 +
∞∑

i=1

tir
i , z =

∞∑

i=1

zir
i , R̂=

∞∑

i=1

R̂ir
i , σ̂ =

∞∑

i=2

Kir
i , (B.3)
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and solving (3.9), (3.11), (3.16) and (3.13) power by power,leads to

t1 = −R10 , t2 = −R20 +
R10R11

2
, (B.4)

z1 =R11 , z2 =
3M3

2R10
+
f2

2
+

(
M4

R10
+
f3

2
−M3R20

R2
10

+
R10R20Λ

3

)
1

R11
, (B.5)

R̂1 =R10 , R̂2 =R20−R10R11 , (B.6)

K2 =
3M3

R11
, K3 = −3M3

R2
11

(
3M3

R10
+f2

)

+

(
−3M3f3 +4M4f2 +

2M3M4

R10
+

6M2
3R20

R2
10

−2M3R10R20Λ+
4R2

10M4Λ

3

)
1

R3
11

.

(B.7)

C. Near Origin Series for the Metric of the Cosmos

Not only dof(z), M(z), σ̂(z) andR̂(z) all go to zero at the origin,̂r = 0, z = 0, but more
importantly we don’t actually have any observational data at the origin. Therefore, we fit a series
solution to the data from the first few data bins. We write the LT arbitrary functions as Taylor series
in powers ofz,

R̂= zŜ =

∞∑

i=1

Riz
i , σ̂ =

∞∑

i=2

Kiz
i , (C.1)

r̂ =
∞∑

i=1

riz
i , M =

∞∑

i=3

Miz
i , f =

∞∑

i=2

fiz
i . (C.2)

The coefficients in thêR and σ̂ series are determined by fitting polynomials to the observational
data near the origin. The null cone DEs, (3.46), (3.49), (3.47), and (3.48), withβ = 1, are then
solved power by power, from which we find the coefficients of the r̂, M , andf series. The results
of a Maple calculation are

r̂ =R1z+

(
R2 +

R1

2

)
z2 +

(
R3 +

2R2

3
+
K2

6

)
z3 +

(
R4 +

3R3

4
+

5K2

24
+
K3

12
+
K2R2

6R1

)
z4

+

(
R5 +

4R4

5
+
K4

20
+

7K3

60
+
K2

15
+

{
K3 +

13K2

5

}
R2

12R1
+
K2R3

4R1
+

K2
2

20R1
− K2R2

2

12R1
2

)
z5 · · · ,

(C.3)

M
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K2
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K3

4
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5
+
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1

3
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2

15R1
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z2

+

(
K5

6
+

{
1− ΛR2

1

3

}
K3

12
−
{

1

2
+

ΛR2
1

6
+

ΛR1R2

3
+

7K3

12R1

}
K2

6
+

{
1

2
+
R2

R1

}
K2

2

18R1

)
z3 · · · ,

(C.4)

f

z2
=

(
1− ΛR2

1

3
− 2K2

3R1

)
−
(

1+
ΛR2

1

3
+

2ΛR1R2

3
− K2

3R1
+
K3

2R1
− 2K2R2

3R2
1

)
z

+

(
5

4
− ΛR2

1

6
− ΛR2

2

3
−
[
2R2 +2R3−

K2

30

]
ΛR1

3
+

Λ2R4
1
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+
K3

6R1
− 11K2

30R1
− 2K4

5R1
+

2K2R3

3R2
1

+
K3R2

2R2
1

− 2K2R
2
2

3R3
1

+
29K2

2

180R2
1

)
z2

+

(
− 3

2
−
{
R2 +2R3 +2R4 +

3K2

10
−K3

12

}
ΛR1

3
−
{
R2 +2R3 +

K2

5

}
ΛR2

3

+

{
R1

2
+R2

}
Λ2R3

1

9
+

19K2

20R1
− K3

4R1
+

K4

10R1
− K5

3R1

+

{
11K2

6
+2K4

}
R2

5R2
1

+

{
K2

3
+K3

}
R3

2R2
1

+
2K2R4

3R2
1

− K2
2

180R2
1

+
2K2K3

9R2
1

−
{
K2

3
+K3

}
R2

2

2R3
1

−
{

11K2
2

15
+4K2R3

}
R2

3R3
1

+
2K2R

3
2

3R4
1

)
z3 · · · . (C.5)

Thena is found from a numerical integration of (2.5), using (3.10), in the form

a= t0− r̂− τ , τ =

∫
Ŝ

0

dS
Ṡ

, where Ṡ2 =
2(M/z3)

S +(f/z2)+
ΛS2

3
, S =

R

z
. (C.6)

The accuracy of the series is estimated from the ratio of the last and first terms. Ifι is the
maximum acceptable error (comparable with expected numerical error), then thez value where the
program changes from series to numerical integration is given by

M6z
6

M3z3
< ι → z <

(
M3ι

M6

)1/3

. (C.7)

D. The Near-Maximum Series on the PNC

Nearz = zm, where the maximumRm = R̂(zm) occurs, we can solve the DEs of the PNC by
writing the LT arbitrary functions as Taylor series in powers of∆z = z− zm:

R̂=Rm +

∞∑

i=2

Ri∆z
i , σ̂ =Km +

∞∑

i=1

Ki∆z
i , r̂ = rm +

∞∑

i=1

ri∆z
i , (D.1)

M =Mm +

∞∑

i=1

Mi∆z
i ,

√
1+f =W =Wm +

∞∑

i=1

Wi∆z
i . (D.2)

The coefficients of the series for̂r, M , andW are obtained by substituting these series into the
DEs (3.46), (3.49), (3.47), and (3.48), again withβ = 1, and the coefficients in thêR andσ̂ series
are found from polynomial fits to the observational data nearthe maximum inR̂. Using a Maple
program, we find

ϕ0 = r1 =
−2RmR2

Km
, (D.3)

ϕ1 = r2 =

({
K1

Km
− 1

1+ zm

}
R2−3R3

)
Rm

Km
, (D.4)

ϕ2 = r3 =

({
2K2

3Km
− K2

1

2K2
m

+
2K1

3Km(1+ zm)
+

1

2(1+ zm)2

}
R2
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+

{
K1

Km
− 1

(1+ zm)

}
3R3

2
−4R4−

2R2
2

3Rm

)
Rm

Km
, (D.5)

ϕ3 = r4 =

({
K3

2Km
− 2K1K2

3K2
m

+
K3

1

4K3
m

+
K2

2Km(1+ zm)

− 5K2
1

12K2
m(1+ zm)

− K1

4Km(1+ zm)2
− 1

4(1+ zm)3

}
R2

+

{
K2

Km
− 3K2

1

4K2
m

+
K1

Km(1+ zm)
+

3

4(1+ zm)2

}
R3

+

{
K1

Km
− 1

1+ zm

}
(2R4)−5R5

+

{
K1

6Km
− 1

2(1+ zm)

}
R2

2

Rm
− 3R2R3

2Rm

)
Rm

Km
, (D.6)

ϕ4 = r5 =

({
2K4

5Km
− K1K3

2K2
m

− 2K2
2

9K2
m

+
K2K

2
1

2K3
m

− K4
1

8K4
m

+
2K3

5Km(1+ zm)

− 11K1K2
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m(1+ zm)

+
K3

1

4K3
m(1+ zm)

+
K2

1

9K2
m(1+ zm)2

− K2

6Km(1+ zm)2
+

K1

12Km(1+ zm)3
+

1

8(1+ zm)4

}
R2

+

{
3K3

4Km
−K1K2

K2
m

+
3K3

1

8K3
m

+
3K2

4Km(1+ zm)

− 5K2
1

8K2
m(1+ zm)

− 3K1

8Km(1+ zm)2
− 3

8(1+ zm)3

}
R3

+

{
4K2

3Km
− K2

1

K2
m

+
4K1

3Km(1+ zm)
+

1

(1+ zm)2

}
R4

+

{
K1

Km
− 1

(1+ zm)

}
5R5

2
−6R6

+

{
2K2

45Km
+

19K1

90Km(1+ zm)
+

1

6(1+ zm)2

}
R2

2

Rm

+

{
7K1

20Km
− 23

20(1+ zm)

}
R2R3

Rm

− 3R2
3

4Rm
− 26R2R4

15Rm
+

8R3
2

45R2
m

)
Rm

Km
, (D.7)

Mm =

{
1− ΛR2

m

3

}
Rm

2
, (D.8)

M1 =M1 , i.e. undetermined (D.9)
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M2 =

{
K1

Km
+

1

1+ zm

}
M1

2
− λmR2

2
− K2

m

2Rm
, (D.10)

M3 =

{
K2

Km
+

K1

Km(1+ zm)
− R2

Rm

}
M1

3

−
{
K1

Km
+

1

1+ zm

}
λmR2

4
− λmR3

4
−KmK1

2Rm
, (D.11)

M4 =

{
K3

Km
+

K2

Km(1+ zm)
− K1R2

KmRm
− R3

Rm
− R2

Rm(1+ zm)

}
M1

4

−
{

5λmK1

36Km(1+ zm)
+

2λmK2

9Km
− λmK

2
1

24K2
m

− K2
m

6R2
m

− λm

24(1+ zm)2

}
R2 +

{
1− ΛR2

m

4

}
2R2

2

9Rm

−
{

K1

8Km
+

1

8(1+ zm)

}
λmR3−

λmR4

6
− K2

1

8Rm
−K2Km

3Rm
− K2

m

24Rm(1+ zm)2
; (D.12)

where

λm = 1−ΛR2
m , (D.13)

and

Wm =
M1

Km
, (D.14)

W1 =
M1

Km(1+ zm)
− λmR2

Km
−Km

Rm
, (D.15)

W2 = − R2M1

RmKm
+

{
K1

4Km
− 3

4(1+ zm)

}
λmR2

Km

− 3λmR3

4Km
− K1

2Rm
, (D.16)

W3 = −
{
R3 +

R2

(1+ zm)

}
M1

RmKm

+

{
λmK2

9Km
− λmK

2
1

12K2
m

+
2K2

m

3R2
m

+
7λmK1

36Km(1+ zm)

+
λm

6(1+ zm)2

}
R2

Km
+

8λmR
2
2

9RmKm

+

{
K1

4Km
− 1

2(1+ zm)

}
λmR3

Km
− 2λmR4

3Km

− K2

3Rm
− Km

6Rm(1+ zm)2
. (D.17)

These are generalisations toΛ 6= 0 of the results in [90], including a small correction in the expres-
sion forM4. Note that the coefficients of thêr(z) andϕ(z) series are fully determined from the
data, but in theM(z) andW (z) series, the coefficientM1 remains undetermined. In other words,
its value is fixed by data elsewhere, not by data atRm.
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E. Conditions for No Shell Crossings or Surface Layers

The following table presents the conditions that will ensure a model has no shell crossings
or surface layers at any time in its evolution. Forǫ = +1, the first group of conditions are those
that apply to the LT model, and the second group are the extra conditions needed in the S model.
The Ellis models [38] are theǫ= 0,−1, equivalent of LT models. Although the no-shell-crossing
conditions have not been explicitly studied for them, they can be deduced by settingS, P & Q

constant.

ǫ R′ f M ′, f ′, a′ S′, P ′, Q′

+1 > 0 all M ′ ≥ 0

√
(S′)2+(P ′)2+(Q′)2

S ≤ M ′

3M

≥ 0

f ′ ≥ 0

a′ ≤ 0

but not all 3 equalities at once

√
(S′)2+(P ′)2+(Q′)2

S ≤ f ′

2f

(no condition wheref = 0)

< 0

T̃ ′ +a′ ≥ 0

a′ ≤ 0

but not all 3 equalities at once

= 0

R′′ > 0

neck

−1

M ′ = 0, f ′ = 0, a′ = 0

f = −1 for no surface layer
T̃ ′′ +a′′ ≥ 0

a′′ ≤ 0

S′ = 0, P ′ = 0,Q′ = 0√
(S′′)2+(P ′′)2+(Q′′)2

S ≤ M ′′

3M

= 0

R′′ < 0

belly

M ′ = 0, f ′ = 0, a′ = 0

f = −1 for no surface layer
T̃ ′′ +a′′ ≤ 0

a′′ ≥ 0

S′ = 0, P ′ = 0,Q′ = 0

−
√

(S′′)2+(P ′′)2+(Q′′)2

S ≥ M ′′

3M

< 0 all M ′ ≤ 0 −
√

(S′)2+(P ′)2+(Q′)2

S ≥ M ′

3M

≥ 0

f ′ ≤ 0

a′ ≥ 0

but not all 3 equalities at once

−
√

(S′)2+(P ′)2+(Q′)2

S ≥ f ′

2f

(no condition wheref = 0)

< 0

T̃ ′ +a′ ≤ 0

a′ ≥ 0

but not all 3 equalities at once
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ǫ R′ f S′ M ′ , f ′ , a′ , P ′ , Q′

= −1 > 0 ≥ 1 ES′ > 0

(S′)2 > (P ′)2 +(Q′)2

M ′

3M ≥−
√

(S′)2−(P ′)2−(Q′)2

S

f ′

2f ≥−
√

(S′)2−(P ′)2−(Q′)2

S

a′ ≤ 0

= 0 = 1 S′ = 0 M ′ = 0 , f ′ = 0 , a′ = 0 ,
P ′ = 0 , Q′ = 0

< 0 ≥ 1 ES′ < 0

(S′)2 > (P ′)2 +(Q′)2

M ′

3M ≤ +

√
(S′)2−(P ′)2−(Q′)2

S

f ′

2f ≤ +

√
(S′)2−(P ′)2−(Q′)2

S

a′ ≥ 0

= 0 > 0 ≥ 0 = 0 M ′ ≥ 0 , f ′ ≥ 0 , a′ ≤ 0 ,

P ′ = 0 , Q′ = 0

= 0 = 0 = 0 M ′ = 0 , f ′ = 0 , a′ = 0 ,
P ′ = 0 , Q′ = 0

< 0 ≥ 0 = 0 M ′ ≤ 0 , f ′ ≤ 0 , a′ ≥ 0 ,

P ′ = 0 , Q′ = 0
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[60] C. Hellaby & A. Krasínski, “You Can’t Get Through Szekeres Wormholes: Regularity, Topology and
Causality in Quasi-Spherical Szekeres Models”,Phys. Rev. D 66, 084011, 1-27 (2002).
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[74] A. Krasiński, Inhomogeneous Cosmological Models, Cambridge U P (1997), ISBN 0 521 48180
5.
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