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1. Introduction

It has been always suspected that near singularities usual notions of space and time break down
and a consistent quantization of gravity would provide a more abstract structure which replaces
space-time. However we do not know as yet what this abstract structure could be in general. In
some situations, String Theory has provided concrete ideas about the nature of this structure. These
are situations where gravitational physics has a tractable holographic description [1] in terms of a
non-gravitational theory in lower number of space-time dimensions. In view of the spectacular
success of the holographic principle in black hole physics, it is natural to explore whether this can
be used to understand conceptual issues posed by singularities.

In String Theory, holography is a special case of a more general duality between open and
closed strings. This duality implies that the dynamics of open strings contains the dynamics of
closed strings. Since closed strings contain gravity, space-time questions can be posed in an open
string theory which does not contain gravity and therefore conceptually easier. Under special cir-
cumstances, the open string theory can be truncated to its low energy limit - which is a gauge theory
on a fixed background. In these situations, open-closed duality becomes particularly useful. The
best controlled example of this is the the celebrated AdS/CFT correspondence [2] which relates
closed string theory in asymptotically anti-de-Sitter spacetimes to gauge theories living on their
boundaries. The dynamical "bulk" spacetime (on which the closed string theory lives) is an ap-
proximation which holds in a specific regime of the gauge theory. In this regime, the closed string
theory reduces to supergravity. Generically, there is no space-time interpretation, though the gauge
theory may make perfect sense. This fact opens up the possibility that in regions where the bulk
gravity description is singular, one may have a well formulated gauge theory description and one
has an answer to the question : What replaces space-time ?

Treating time dependent backgrounds in string theory, particularly those with singularities, has
been notoriously difficult. However, some progress has been made recently in holographic formu-
lations of mentioned above. The basic idea is to find models where the space-time background on
which the closed string theory is defined is singular, but the holographic gauge theory description
is well formulated. Thus, the gauge theory hopefully provides a controlled description of the re-
gion which would appear singular if the gravity interpretation is extrapolated beyond its regime of
validity.

In its simplest setting, the correspondence implies IIB string theory on asymptotically AdS5×
S5 with a constant 5-form flux is dual to 3+ 1 dimensional N = 4 supersymmetric SU(N) Yang-
Mills theory with appropriate sources which lives on the boundary of AdS5. If RAdS denotes the
radius of the S5 as well as the curvature length scale of AdS5 and gs denotes the string coupling, the
coupling constant gY M and the rank of the gauge group N of the Yang Mills theory are related by

R4
AdS
l4
s

= 4πg2
Y MN gs = g2

Y M (1.1)

This immediately implies that the gauge theory describes classical string theory in the ’t Hooft
limit

N→ ∞ gY M → 0 g2
Y MN = finite (1.2)
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The low energy limit of the closed string theory - supergravity - is a good approximation only
in the strong coupling regime g2

Y MN � 1. For small g2
Y MN, supergravity, and hence conventional

space-time, is not a good description of the gauge theory dynamics. Finite N corrections correspond
to string loop effects.

I will review two approaches. The first approach involves deformations of AdS5× S5 in the
Poincare patch which correspond to time-dependent [3, 4, 5] sources. For a suitable choice of the
sources, the bulk solution develops a null or space-like singularity. In the second approach [6] one
considers global AdS, so that the gauge theory is defined on a S3 whose radius can be taken to be
RAdS. One then turns on a suitable time dependent source which varies slowly in time compared to
R−1

AdS. The bulk solution can be constructed in a systematic expansion in time derivatives, while the
evolution of the state in the gauge theory language can be analyzed systematically in a modified
form of adiabatic approximation involving coherent states.

The basic strategy of [3]-[5] is the following. Consider the N = 4 gauge theory defined on
the Poincare boundary of an asymptotically AdS5× S5 space-time, deformed by a suitable time
dependent source. The ’t Hooft coupling is large. The source is chosen to be weak and slowly
varying at early times and becomes strong at some intermediate time which may be chosen to
be t = 0. The gauge theory is in its vacuum state in the far past. The AdS/CFT correspondence
then ensures that at early times, the bulk space-time would be a non-normalizable deformation
of AdS5× S5 by a supergravity mode dual to the source. Time evolution in the gauge theory is
governed by the time-dependent hamiltonian. So long as the source is weak, the time evolution of
the bulk theory is governed by the classical equations of motion of supergravity. At some later time,
when the source becomes strong, curvature invariants and/or tidal forces in the bulk could become
large and supergravity cannot be trusted any more. If we nevertheless continue to use supergravity
we could encounter a singularity. The question is whether the gauge theory can be still used to ask
whether a further time evolution is meaningful. Note that for this purpose a string scale curvature
is physically equivalent to a mathematical singularity.

In the following we will choose a simple source - a time dependent coupling of the Yang-Mills
theory of the form

g2
Y M(t) = ḡ2

Y M F(t) (1.3)

such that the function F(t) becomes unity at t = ±∞ and dips down to a small value near t = 0.
The quantity ḡ2

Y MN will be taken to be large. The non-dynamical space-time on which the gauge
theory is defined remains flat.

In the rest of this paper we will choose RAdS = 1. Then the string length is directly proportional
to (g2

Y MN)−1/4.

2. Poincare Patch

In this section we consider Poincare patch cosmological solutions and their gauge theory duals

2.1 Supergravity Solution

Consider a general class of five dimensional metrics of the general form

ds2 =
1
z2

[
dz2 + g̃µν(x)dxµdxν

]
(2.1)
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with a dilaton Φ(x) which depends on the 4 dimensional coordinates xµ and the 5 form field is
proportional to the volume form. This solves the supergravity equations of motion if

R̃µν =
1
2

∂µΦ∂νΦ ∇̃
2
Φ = 0 (2.2)

where the tildes above mean that the quantities are evaluated with the 3+1 dimensional metric g̃µν .
g̃µν is in fact the metric on the boundary z = 0 on which a dual field theory can be defined.

This means that we can lift any solution of 3+1 dimensional dilaton gravity to a solution in
asymptotically AdS5 spacetime. The simplest time-dependent solution with a space-like singularity
is in fact the lifted Kasner metric with an acccompanying dilaton

ds2 =
1
z2

[
dz2−dt2 +

3

∑
i=1

t2pi (dxi)2

]
Φ(t) = α log(t) (2.3)

where
3

∑
i=

pi = 1
3

∑
i=1

p2
i = 1− α2

2
(2.4)

A special case of this metric, which will be useful in what follows is the symmetric Kasner solution
with p1 = p2 = p3 =

1
3 which may be written in the following form after a redefinition of the time :

ds2 =
1
z2

[
dz2 + |2t|(−dt2 +(d~x)2)

]
Φ(t) = α log(t) eΦ = |t|

√
3 (2.5)

There is a curvature singularity at t = 0. In (2.5) the boundary metric is conformal to flat space-
time.

In the overall setup described above, we want to keep the space-time of the gauge theory to
be flat. This could be achieved by a Weyl transformation of the boundary metric. It is well known
that such Weyl transformations are produced by a special class of coordinate transformations in the
bulk - the Penrose-Brown-Henneaux (PBH) transformations [7]. For the symmetric Kasner metric,
such transformations can be found explicitly,

z =
32ρT

5
2

√
6

1
16T 2−ρ2 , t = T

(
16T 2 +5ρ2

16T 2−ρ2

) 2
3

(2.6)

and the metric becomes

ds2 =
1

ρ2

[
dρ

2− (16T 2−5ρ2)2

256T 4 dT 2 +
(16T 2−ρ2)

4
3 (16T 2 +5ρ2)

2
3

256T 4 d~x2

]
(2.7)

The boundary ρ = 0 is now explicitly flat.
Our setup also requires that eΦ is bounded everywhere and asymptotes to a constant at early

and late times. The Kasner solution is clearly not of this form. It turns out that there are solutions
of this type whose near-singularity behavior is Kasner-like, but for which the dilaton is bounded.
One such background is

ds2 =
dz2

z2 +
1
z2 (1−

1
τ4 )

[
−dτ

2 + τ
2[dr2 + sinh2 r dΩ2

2]
]

(2.8)
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with the dilaton

Φ(τ) =
√

3 ln
[

τ2−1
τ2 +1

]
(2.9)

The curvature singularity is now at τ = 1. The boundary metric of (2.8) is conformal to a Milne
wedge of flat space-time. Therefore there should be a PBH transformation which provides a new
foliation in which the boundary metric is flat. In this case the PBH transformation cannot be found
exactly. However since all we need is the form of the metric near the boundary, these may be
determined as a power series expansion in z.

As promised, near τ ∼ 1 the metric and the dilaton become identical to the symmetric Kasner
solution (after a trivial redefinition of time). In fact, this is a special case of a rather general fact.
Since our solutions are lifts of 3+1 dimensional dilaton cosmologies, we can use the classic results
of Belinski, Lifshitz and Khalatnikov (BKL) [8, 9]. The general analysis of BKL shows that for a
large class of initial metrics, the geometry near a space-like singularity oscillates between suitable
generalizations of Kasner-like metrics with the Kasner exponents pi changing after every bounce
in the oscillations. For dilaton driven cosmology, the number of oscillations are finite with the
end-point corresponding to all the p′is being positive. The symmetric Kasner is a special case of
this.

In the region where supergravity is valid we can compute the energy momentum tensor of the
boundary gauge theory using standard techniques of Holographic Renormalization Group [10, 11,
12, 13].

The results are

< T ν
µ >=

N2

2π2 (τ4−1)4 diag
(
12−3τ

4,4+9τ
4,4+9τ

4,4+9τ
4) , (2.10)

which clearly shows that < T ν
µ >→ 0 as τ →−∞, ensuring that we have indeed started with the

vacuum state. This quantity diverges near the singularity at τ = 1. However this is the region where
this supergravity calculation cannot be trusted.

In what follows, it is useful to record the answer for the energy-momentum tensor for the
symmetric Kasner solution,

< T ν
µ >=

N2

512π2 t4 diag(9, 13, 13, 13), (2.11)

2.2 Properties of the dual gauge theory

We have chosen the gauge theory to have a bounded coupling which goes to zero, or becomes
very small at some intermediate time. In the bulk, this leads to large curvatures and/or large tidal
forces. Our aim is to determine whether this is a genuine sickness of the theory, or a breakdown of
the supergravity approximation which can be cured by the gauge theory.

At first sight, it might appear that near the time of the bulk spacelike singularity, the theory is
weakly coupled and there should be nothing wrong with it - indicating that one should be able to
continue time evolution across this without trouble. However this is not correct. The lagrangian of
the Yang-Mills theory with a general space-time dependent coupling is

L = Tr{− 1
4eΦ

FµνFµν +
1
2
(DµXa)2− 1

4
eΦ([Xa,Xb])2 (2.12)

+Ψ̄Γ
µDµΨ+ ieΦ/2

Ψ̄Γ
a[Xa,Ψ]}. (2.13)
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where we have used the fact that g2
Y M(x) = eΦ(x) where Φ(x) is the bulk dilaton. There are six

scalars, Xa,a = 1, · · ·6, and 4 two-component Weyl fermions of SO(1,3), which have been grouped
together as one Majorana Weyl Fermion of SO(1,9) denoted by Ψ. The Gamma matrices Γµ ,µ =

0,1, · · ·3, and Γa,a = 1, · · ·6, together form the 10 Gamma matrices of SO(1,9). The scalars and
fermions transform as the adjoint of SU(N). The covariant derivative of the scalars is,

DµXa = ∂µ − i[Aµ ,Xa], (2.14)

and similarly for the fermionic fields. The field strength is,

Fµν = ∂µAν −∂νAµ + i[Aµ ,Aν ]. (2.15)

At the singularity eΦ becomes small. As a result the prefactor in the gauge kinetic energy term in
eq.(2.12) becomes large. As is usual in perturbation theory, we might want to absorb an appropriate
power of the coupling into the gauge field by redefining

Aµ → eΦ/2 Aµ (2.16)

Since Φ is not a constant, this would introduce terms which contain ∇Φ in the lagrangian. We
may arrange for ∇eΦ to be finite and smooth everywhere, but ∇Φ would be large, since eΦ is itself
small. It is easy to see that only terms which are quadratic in the fields will contain factors of ∇Φ

without accompanying factors of eΦ. In the nonlinear terms, on the other hand, ∇Φ factors are
always accompanied by positive powers of eΦ and these can be arranged to be small. Therefore,
we need to concentrate on the quadratic terms in the action.

The only such terms we need to consider are those which involve the gauge fields. Under the
above field redefinition, the quadratic part of the gauge field action becomes

−FµνFµν +
1
2

[
(
1
2
(∇Φ)2−∇

2
Φ)AνAν +∂µΦ∂νΦAµAν +2∇µΦAν

∂νAµ

]
(2.17)

When Φ(x+) is a function of a null coordinate alone - as in the null cosmologies discussed
above, we can choose a gauge A− = 0. It is then easy to see that the extra terms in (2.17) vanish.
Thus in this case the kinetic term becomes canonical and the interactions contain positive factors of
eΦ. Classically any initial condition with finite values of the transverse components of Aµ evolve
into finite values near t = 0, so that the interaction terms are indeed small because of the smallness
of eΦ and its derivatives. This implies that nothing is truly pathological at x+ = 0. The time
evolution in the gauge theory continues even though from the supergravity time evolution appears
to stop at a finite light front time.

In contrast, for a time dependent dilaton, Φ(t), the situation is completely different. In this
case a convenient choice of gauge is A0 = 0 together with ∂iAi = 0, i = 1, · · ·3. Then (2.17) gives
rise to a time dependent mass term for the transverse components

m2(t) =−(1
2
(∇Φ)2−∇

2
Φ) (2.18)

This is the essential complication which needs to be dealt with.
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2.2.1 The wavefunctional

The essential physics may be captured by a toy model of a single scalar field with the la-
grangian

L =− 1
eΦ

[
1
2
(∂X)2−Vint(X)]. (2.19)

where Vint(X) denotes some interaction term. The field X may be thought to represent one of the
transverse gauge fields.

We will now analyze this model in detail for a dilaton profile given by

eΦ(t) = |t|p p > 0 (2.20)

as we approach t→ 0−. This is motivated by the observation in the previous subsection that a large
class of cosmological models become Kasner-like near the singularity. After a redefiniton of the
field

Y (t,x) = e−Φ/2X(t,x) (2.21)

the lagrangian becomes, upto a total derivative

L =−1
2
(∂Y )2−m2(t)Y 2− e−ΦVint(eΦ/2Y ). (2.22)

For our choice of the dilaton profile,

m2(t) =− p(p+2)
4t2 (2.23)

This is a tachyonic mass term which diverges as t → 0−. The effect of this is quite significant.
Ignoring the interaction term, a general solution of the classical equations of motion is

Y (t,~x) =
∫

d3k ei~k·~x(−ωt)1/2 [ak H(1)
ν (−ωt)+a?kH(2)

ν (−ωt)] (2.24)

where
ν =

p+1
2

ω
2 =~k2 (2.25)

and H(1),H(2) denote the standard Hankel functions. For large arguments, the Hankel functions
behave as

H(1)
ν (z)∼ 1

z1/2 eiz (2.26)

so that the mode functions become standard plane waves as t → −∞. For small arguments, the
Hankel functions behave as

H(1)
ν (z)∼ 1

zν
(2.27)

Using (2.25) it is now clear from (2.24) that for generic values of a and a?

Y (t,x)→ (−t)−p/2 t→ 0− (2.28)

and blows up. It is only for very special fine tuned initial conditions, a = a? that Y remains finite.
This means that in the interaction, a term which is Y n for some positive integer n > 3 behaves

as
e

n−2
2 Φ(−t)−np/2 ∼ (−t)−p (2.29)

7
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and blows up as well. Clearly the interactions cannot be ignored even though the coupling is weak,
simply because the fields are always generically driven to large values.

On the other hand, the original variables X(t,x) have a finite limit as t→ 0−, since

X(t,~x) = eΦ/2Y (t,~x)∼ (−t)p/2 (−t)−p/2 (2.30)

This suggests that one should really think in terms of the original variables.
We will now examine the behavior of the wavefunctional of the theory. Let us first ignore the

interactions. The fourier components of X(t,x), which are denoted by Xk(t),

X(t,~x) =
∫ d3k

(2π)3 Xk(t) e−i~k·~x (2.31)

and the mode expansion for the operator Xk(t) is

Xk(t) =
1√
2ω

eΦ/2(−ωt)1/2 [âk f (t)+ â?k f ?(t)] (2.32)

where

f (t) =

√
π

2
(−ωt)1/2 H(1)

ν (−ωt) (2.33)

â, â† are now creation and annihilation operators. Consider first the state

âk|0 >= 0 (2.34)

The wavefunction of this state may be easily calculated

Ψ0(Xk, t) = ∏
k

A√
f ?(t)eΦ/2

exp
[

i
2
[
∂t f ?

f ?
+

1
2

∂tΦ] e−Φ XkX−k

]
(2.35)

where A is a normalization constant. For t→ 0, f (t)→ e−iωt and ∂tΦ∼ p
t , leading to the standard

gaussian form of a harmonic oscillator wave function. For t → 0− we have to use the small t
behavior of the Hankel functions. The contribution to ∂t f ?

f ? from the leading term of the expansion,
following from (2.27) cancel the term which comes from 1

2 ∂tΦ and the first subleading correction
leads to the following phase factor in the wavefunctional

Ψ0 ∼ exp
[
i CXkX−k (−t)1−p] (2.36)

where C is a numerical constant. The probability density, however goes to a smooth gaussian

|Ψ0|2 ∼∏
k

|A|2

| f |eΦ/2 exp
[
−ωXkX−k

| f |2eΦ

]
(2.37)

The behavior of the phase factor in (2.36) in the limit t→ 0− depends on the value of p. For p < 1
this has a smooth behavior, while for p > 1 the phase factor oscillates infinitely rapidly. These wild
oscillations result in a diverging expectation value for the square of the conjugate momentum for
X .

Significantly, the wavefunction for any coherent state exhibits precisely the same behavior. In
fact, the same is true for a generic state of the system.

8
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We have so far analyzed the behavior of the wavefunction in the free theory. However we have
argued that interactions cannot be ignored near t = 0. With interactions, it is of course not possible
to derive the exact wavefunctional. However it turns out that it is possible to deduce the behavior
of the phase of the wavefunctional for an arbitrary interaction. The Schrodinger equation is∫

d3k
[
−eΦ

2
∂ 2

∂Xk∂X−k
+ e−Φ V (Xk)

]
Ψ = i∂tΨ (2.38)

where the potential V (Xk) includes terms which come from the space derivatives of the original
field theory as well as interaction terms written in momentum space,

V (Xk) =
1
2

ω
2XkX−k +Vint(Xk) (2.39)

is the potential term written in terms of the fourier modes Xk. Since eΦ ∼ (−t)p, the potential term
dominates as t→ 0−. To a first approximation we can then ignore the kinetic energy term and solve
the Schrodinger equation easily

Ψ
(0)(Xk, t) = ∏

k
exp[−iG(t)V (Xk)] ξ (Xk) (2.40)

where

G(t) =
∫

dte−Φ =−(−t)1−p

1− p
(2.41)

and ξ (Xk) is a function of Xk only. The time dependence is seen to be exactly the same as in the
quadratic approximation, and agrees precisely with (2.36)when only the quadratic term is retained
in V (Xk). We therefore see that the behavior of the phase factor is valid quite generally, independent
of the quadratic approximation.

To check the self-consistency of the above procedure, we need to insert (2.40) into (2.38). A
short calculation shows that the kinetic energy term is always subdominant, independent of the
value of p. For p > 1 the kinetic energy term in fact diverges as t → 0− - however slower than
the potential energy term by a factor of t2, while for p < 1 the kinetic energy term vanishes in this
limit.

The form of the wavefunction (2.40) is quite general and does not depend on initial conditions.
This is important since we have looked at the system with a eΦ which behaves as some power of
t. On the other hand the cosmological solutions we have discussed display such a behavior only
near the singularity. If we start with an initial vacuum state for a system which has a dilaton profile
which asymptotes to a constant value in the far past, this state will evolve into some nontrivial state
when the time is close to t = 0 and where we can apply the considerations of this subsection. Since
our conclusion in this subsection is valid for any general state, it directly applies to the cosmological
solutions in question.

2.2.2 Energy Production

We have seen that because of wild oscillations the wave functional for p > 1 has no well
defined limit as t → 0− and therefore cannot be meaningfully continued beyond this time. On the
other hand for p < 1 there is a finite limit, and a continuation is possible. This fact is independent
of perturbation theory, which is not valid in any case in this region.

9
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We will now show that regardless of the value of p, the energy produced in the t ∼ 0− region
is infinite for generic states. This follows from the observation that the energy is dominated by the
potential term. Therefore,

< H >∼ e−Φ <V >= (−t)−p <V > (2.42)

which is infinite for ny state for which <V >6= 0. This conclusion can be avoided for very special
states for which <V >= 0.

2.2.3 The fate of the system

We have seen that for a gauge theory coupling which strictly vanishes as a power law at
t = 0, an infinite amount of energy is pumped into the system. This suggests that such a theory is
genuinely sick.

From a physical point of view, however, we are interested in the situation where eΦ remains
finite and becomes small enough at t = 0 so that the dual supergravity has a string scale curvature.
This is for all practical purposes a singularity in supergravity. We need to examine whether the
gauge theory admits a time evolution beyond this time in this case.

The above discussion shows that this is indeed possible. For example if we have

eΦ = (t2 + ε
2)p/2 (2.43)

the wave functional can always be continued, and the energy pumped into the system till t = 0 is
finite, albeit large. As we proceed to positive values of t, energy will be pumped out of the system
- leaving behind a finite amount of energy, unless the initial state is so finely tuned that as much
energy would be extracted as put in initially.

Typically the remaining energy will thermalize, given enough time. Since we are considering
the theory on R(3,1) the AdS/CFT correspondence implies that a thermal state will correspond to a
black brane in the bulk.

It is important to check that thermalization does not occur at early enough times when su-
pergravity is still valid. This is indeed true. This is the region where the bulk solution is still
Kasner-like, but the curvatures are small. The energy density produced can be read off from (2.11)

ρ ∼ N2

t4 (2.44)

so that the equivalent temperature T is given by

N2 T 4 ∼ ρ ∼ N2

t4 (2.45)

so that the thermalization time scale is
τ ∼ 1

T
∼ t (2.46)

Thus the dimensionless quantity which determines the rate of change of temperature is

∂tT
T 2 ∼ 1 (2.47)

On the other hand thermalization requires that this quantity should be much smaller than one.

10
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Thermalization will, however, occur once one crosses the region t = 0. Since the coupling
approaches a constant in the far future, for any net finite energy produced there will be sufficient
time to thermalize. Therefore there will be a black brane in the bulk in the future. Our tools
are not sufficient to derive detailed properties of this black hole. However, for any finite energy,
the temperature of the black hole is finite and any such black hole in AdS space-time will have a
curvature of the order of the AdS scale at the horizon. Therefore there will be a region outside the
horizon which may be described by normal space-time geometry.

A black brane formation can be avoided only if the intial state is so finely tuned that exactly
the same amount of energy is extracted from the system for t > 0 as pumped in during t < 0. For
generic states this is not possible.

3. Global AdS : Slowly Varying Dilaton

I will now summarize our results for N = 4 gauge theory defined on S3 with a time-dependent
coupling so that the dual geometry is a cosmology in global AdS driven by a time-dependent dila-
ton. We will consider the case where the coupling is slowly varying in units of RAdS and construct a
systematic derivative expansion both in the gauge theory as well as in the dual gravity. Starting with
a ’t Hooft coupling which is large at early times, such a slowly varying dilaton can lead to a small
value of the ’t Hooft coupling at some intermediate time. When this happens, the bulk curvatures
become large. This is not a singularity in the technical sense, but is like a space-like singularity for
all physical purposes, since the spergravity equations break down. We will investigate if the gauge
theory can be used to continue the time evolution beyond this point, and if so what is the outcome.

This section is entirely based on [6] which should be consulted for more details.

3.1 Supergravity solutions in a derivative expansion.

IIB supergravity in the presence of the RR five form flux is well known to have an AdS5×S5

solution. In global coordinates this takes the form,

ds2 =−(1+ r2

R2
AdS

)dt2 +
dr2

1+ r2

R2
AdS

+ r2dΩ
2
3 +R2

AdSdΩ
2
5. (3.1)

Here RAdS is given by,
RAdS = (4πgsN)1/4ls ∼ N1/4lpl (3.2)

where ls is the string scale and lpl ∼ g1/4
s ls is the ten dimensional Planck scale. gs is the value of

the dilaton, which is constant and does not vary with time or spatial position,

eΦ = gs. (3.3)

In the time dependent situations we consider below N will be held fixed. Let us discuss some
of our conventions before proceeding. We will find it convenient to work in the 10-dim. Einstein
frame. Usually one fixes lPl to be of order unity in this frame. Instead for our purposes it will be
convenient to set

RAdS = 1. (3.4)
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From eq.(3.2) this means setting lPl ∼ 1/N1/4. The AdS5×S5 solution then becomes,

ds2 =−(1+ r2)dt2 +
1

(1+ r2)
dr2 + r2dΩ

2
3 +dΩ

2
5, (3.5)

for any constant value of the dilaton, eq.(3.3). Let us also mention that when we turn to the bound-
ary gauge theory we will set the radius R of the S3 on which it lives to also be unity.

The essential idea in finding the solutions we describe is the following. Consider a situation
where Φ varies with time slowly compared to RAdS. Since the solution above exists for any value
of gs and the dilaton varies slowly one expects that the resulting metric at any time t is well approx-
imated by the AdS5× S5 metric given in eq.(3.5). This zeroth order metric will be corrected due
to the varying dilaton which provides an additional source of stress energy in the Einstein equa-
tions. However these changes should be small for a slowly varying dilaton and should therefore be
calculable order by order in perturbation theory.

Let us make this more precise. Consider as the starting point of this perturbation theory the
AdS5 metric given in eq.(3.5) and a dilaton profile,

Φ = Φ0(t) (3.6)

which is a function of time alone. We take Φ0(t) to be of the form,

Φ0 = f (
εt

RAdS
) (3.7)

where f ( εt
RAdS

) is dimensionless function of time and ε is a small parameter,

ε � 1. (3.8)

The function f satisfies the property that

f ′(
εt

RAdS
)∼ O(1) (3.9)

where prime indicates derivative with respect to the argument of f .
When ε = 0, the dilaton is a constant and the solution reduces to AdS5×S5. When ε is small,

dΦ0

dt
=

ε

RAdS
f ′(

εt
RAdS

)∼ ε

RAdS
(3.10)

so that the dilaton is varying slowly on the scale RAdS, and the contribution that the dilaton makes to
the stress tensor is parametrically suppressed. In such a situation the back reaction can be calculated
order by order in ε . The time dependent solutions we consider will be of this type and ε will play
the role of the small parameter in which we carry out the perturbation theory. A simple rule to
count powers of ε is that every time derivative of Φ0 comes with a factor of ε .

The profile for the dilaton we have considered in eq.(3.6) is S5 symmetric. It is consistent to
assume that the back reacted metric will also be S5 symmetric with the radius of the S5 being equal
to RAdS. The interesting time dependence will then unfold in the remaining five directions of AdS
space and we will focus on them in the following analysis.

12
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The zeroth order metric in these directions is given by,

ds2 =−(1+ r2)dt2 +
1

(1+ r2)
dr2 + r2dΩ

3
3. (3.11)

And the zeroth order dilaton is given by eq.(3.6),

Φ0 = f (εt). (3.12)

We can now calculate the corrections to this solution order by order in ε .
Let us make two more points at this stage. First, we will consider a dilaton profile Φ0 which

approaches a constant as t→−∞. This means that in the far past the corrections to the metric and
the dilaton which arise as a response to the time variation of the dilaton must also vanish. Second,
the perturbation theory we have described above is a derivative expansion. The solutions we find
can only describe slowly varying situations. This still allows for a big change in the amplitude
of the dilaton and the metric though, as long as such changes accrue gradually. It is this fact that
makes the solutions non-trivial.

To the lowest order in ε the solution of the dilaton equations of motion turn out to be

Φ2(r, t) =
1
4

Φ̈0(t)
[

1
r2 log(1+ r2)− 1

2
(log(1+ r2))2−dilog(1+ r2)− π2

6

]
. (3.13)

The solution is regular everywhere. Since Limt→−∞Φ̇0(t),Φ̈0(t) = 0, the correction vanishes in
the far past, as required. The time varying dilaton provides an additional source of stress energy.
The lowest order contribution due to this stress energy is O(ε)2 as we will see below. It then
follows, after a suitable coordinate transformation if necessary, that the O(ε) corrections to the
metric vanish and the first non-vanishing corrections to it arise at order ε2. The essential point here
is that any O(ε) correction to the metric must be r dependent and thus would lead to a contribution
to the Einstein tensor of order ε , which is not allowed. This is illustrated by the dilaton calculation
above, where a similar argument lead to the O(ε) contribution, Φ1, vanishing. In this subsection
we calculate the leading O(ε2) corrections to the metric.

Before we proceed it is worth discussing the boundary conditions which must be imposed on
the metric. As was discussed in the previous subsection we consider a dilaton source, Φ0, which
approaches a constant value in the far past, t →−∞. The corrections to the metric that arise from
such a source should also vanish in the far past. Thus we see that as t →−∞ the metric should
approach that of AdS5 space-time. Also the solutions we are interested in correspond to the gauge
theory living on a time independent S3×R space-time in the presence of a time dependent Yang
Mills coupling (dilaton). This means the leading behaviour of the metric for large r should be that
of AdS5 space. Changing this behaviour corresponds to turning on a non-normalisable component
of the metric and is dual to changing the metric of the space-time on which the gauge theory lives.

We expect that these boundary conditions, which specify both the behaviour as t →−∞ and
as r→∞ should lead to a unique solution to the super gravity equations. The former determine the
normalisable modes and the latter the non-normalisable modes. This is dual to the fact that in the
gauge theory the response should be uniquely determined once the time dependent Lagrangian is
known (this corresponds to the fixing the non-normalisable modes) and the state of the system is
known in the far past(this corresponds to fixing the normalisable modes).
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Since Φ0 is S3 symmetric, we can consistently assume that the corrections to the metric will
also preserve the S3 symmetry. It turns that to O(ε2) we can choose the metric to beof the form

ds2 =−e2A(t,r)dt2 + e2B(t,r)dr2 + r2dΩ
2. (3.14)

Then the solution to the supergravity equations with the boundary conditions detailed above is

e2A = 1+ r2− 1
4

Φ̇
2
0 +

1
12

Φ̇
2
0

ln(1+ r2)

r2 . (3.15)

and
A =−B+

1
12

Φ̇
2
0[−

1
1+ r2 ], (3.16)

The solution above is regular and has no horizon. It has these properties due to the slowly
varying nature of the boundary dilaton. The dual field theory in this case is in a non-dissipative
phase. Once the dilaton begins to change sufficiently rapidly with time we expect that a black hole
is formed, corresponding to the formation of a strongly dissipative phase in the dual field theory.
In [18] the effect of a small amplitude time dependent dilaton with arbitrary time dependence
was studied. Indeed it was found that when the time variation is fast enough there are no regular
horizon-free solutions and a black hole is formed.

Finally, the analysis of this section holds when eΦ is large enough to ensure applicability of
supergravity. The fact that a black hole is not formed in this regime does not preclude formation
of black holes from stringy effects when eΦ becomes small enough. In fact we will argue in later
sections that the latter is a distinct possibility.

An important feature of the lowest order calculation of this section is that the perturbations of
the dilaton and the metric are essentially linear and do not couple to each other. To this order, the
dilaton perturbation is simply a solution of the linear d’Alembertian equation in AdS5. Similarly the
metric perturbations also satisfy the linearized equations of motion in AdS, albeit in the presence
of a source provided by the energy momentum tensor of the dilaton. This is a feature present only
in the leading order calculation. As explained above, this arises because of the smallness of the
parameter ε . We will use this feature to compare leading order supergravity results with gauge
theory calculations in a later section.

Using usual hoplographic RG techniques the stress tensor for this solution turns out to be

< T µ

ν >= r4
0T µ

ν (3.17)

Carrying out the calculation gives a finite answer,

< T t
t > =

N2

4π2 [−
3
8
−

Φ̇2
0

16
]

< T θ
θ >=< T ψ

ψ >=< T φ

φ
> =

N2

4π2 [
1
8
−

Φ̇2
0

16
] (3.18)

We remind the reader that in our conventions the radius of the S3 on which the boundary gauge
theory lives has been set equal to unity. The first term on the right hand side of (3.18) arises due
to the Casimir effect. The second term is the additional contribution due to the varying Yang Mills
coupling.
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From eq.(3.18) the total energy in the boundary theory can be calculated. We get,

E =−< T t
t >VS3 =

3N2

16
+

N2Φ̇2
0

32
. (3.19)

where VS3 = 2π2 is the volume of a unit three-sphere. Note that the varying dilaton gives rise to
a positive contribution to the mass, as one would expect. Moreover this additional contribution
vanishes when the Φ̇ vanishes. In particular for a dilaton profile which in the far future, as t→ ∞,
again approaches a constant value (which could be different from the starting value it had at t →
−∞) the net energy produced due to the varying dilaton vanishes.

Finally the expectation value of the operator dual to the dilaton is

< Ôl=0 >=−N2

16
Φ̈0 (3.20)

3.2 Quantum Adiabatic Expansion

It may appear natural to think that the gauge theory analog of the derivative expansion in
supergarvity is the usual adiabatic approximation in supergravity.

More precisely, consider a time dependent Hamiltonian H(ζ (t)), where ζ (t) is the time vary-
ing parameter. Now consider the one parameter family of time independent Hamiltonians given
by H(ζ ). To make our notation clear, a different value of ζ corresponds to a different Hamilto-
nian in this family, but each Hamiltonian is time independent. Let |φm(ζ ) > be a complete set of
eigenstates of the Hamiltonian H(ζ ) satisfying,

H(ζ )|φm(ζ )>= Em(ζ )|φm(ζ )>, (3.21)

in particular let the ground state of H(ζ ) be given by |φ0(ζ ) >. We take |φm(ζ ) > to have unit
norm. Then the adiabatic theorem states that if ζ → ζ0 in the far past, and we start with the state
|φ0 > which is the ground state of H(ζ0) in the far past, the state at any time t is well approximated
by,

|ψ0(t)>' |φ0(ζ )> e−i
∫ t
−∞

E0(ζ )dt . (3.22)

Here |φ0(ζ )> is the ground state of the time independent Hamiltonian corresponding to the value
ζ = ζ (t). Similarly in the phase factor E0(ζ ) is the value of the ground state energy for ζ = ζ (t).

Corrections can be calculated by expanding the state at time t in a basis of energy eigenstates
at the instantaneous value of the parameter ζ . The first corrections take the form,

|ψ1(t)>= ∑
n6=0

an(t)|φn(ζ )> e−i
∫ t
−∞

Endt (3.23)

where the coefficient an(t) is,

an(t) =−
∫ t

−∞

dt ′
< φn(ζ )| ∂H

∂ζ
|φ0(ζ )>

E0−En
ζ̇ e−i

∫ t′
−∞

(E0−En)dt ′ (3.24)

In the formula above on the rhs |φn(ζ ) >, ∂H
∂ζ

,En(ζ ), are all functions of time, through the time
dependence of ζ .
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For the adiabatic approximation to be good the first corrections must be small. To ensure this
we impose the condition,

|< φn|
∂H
∂ζ
|φ0 > ζ̇ | � (E1−E0)

2 (3.25)

where (E1−E0) is the energy gap between the ground state and the first excited state and |φn > is
any excited state. (This would then imply that the lhs in eq.(3.25) is smaller than (En−E0)

2 for all
n.) This condition is imposed for all time for the adiabatic approximation to be valid 1 .

In our case the role of the parameter ζ is played by the dilaton Φ0(with the gauge coupling
g2

Y M = eΦ0). Thus eq.(3.25) takes the form,

|< φn|
∂H
∂Φ0
|φ0 > Φ̇0| � (E1−E0)

2. (3.26)

Now, ∂H
∂Φ0

is, up to a sign, exactly the operator Ôl=0 which is dual to the modes of the dilaton which
are spherically symmetric on the S3. Therefore eq.(3.26) becomes

|< φn|Ôl=0|φ0 > Φ̇0| � (E1−E0)
2. (3.27)

We have argued above that the rhs is of order unity in our conventions due to the existence
of a robust gap. On the lhs, Φ̇0 ∼ O(ε), and as we will argue below the matrix element, | <
φn|Ôl=0|φ0 >∼ O(N). Thus eq.(3.27) becomes,

Nε � 1. (3.28)

Eq.(3.28) is the required condition then for the applicability of quantum adiabatic approxima-
tion. When this condition is met, we can continue to trust the quatum adiabatic approximation in
the gauge theory even when the ’tHooft coupling becomes of order unity or smaller at intermediate
times. All the conditions which are required for the validity of this approximation continue to be
hold in this case. First, as was discussed above the gap of order unity continues to exist. Second,
the matrix elements which enter are in fact independent of λ since they correspond to the two-point
function of dilaton which is a chiral operator. Thus the system continues to be well described in the
quantum adiabatic approximation so long as eq.(3.28) is met. It follows then that in the far future
the state of the system to good approximation is the ground state of the N = 4 theory. This implies
that the dual description in the far future is a smooth AdS5 geometry.

3.3 Large N Adiabatic Approximation

The supergravity solution in the previous section describes classical solutions rather than states
which contain a small number of bulk particles. The AdS/CFT correspondence implies that bulk
classical solutions corresponds to coherent states in the boundary gauge theory with a large number
of particles in which operators like Ô have nontrivial expectation values. On the other hand, states
obtained by the action of a few factors of Ô on the vaccum are few-particle states in the bulk.

1The actual condition is that the corrections to |ψ0 > must be small. This means that at first order < ψ1|ψ1 >

should be small. When eq.(3.25) is met |an| is small, but in some cases that might not be enough and the requirement
that the sum ∑ |an|2 is small imposes extra restrictions. There could also be additional conditions which arise at second
order etc.
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The standard quantum adiabatic approximation described above attempts to determine the wave
function in a basis formed out of such single particle states and does not apply to the supergravity
solution.

We, therefore, need to formulate an adiabatic approximation in terms of coherent states of
gauge invariant operators in the boundary theory to try and understand the supergravity solutions
in a dual description. As is well known, these coherent states become classical in a smooth fashion
in the N → ∞ limit. (See e.g. [17]). Consider a complete (usually overcomplete) set of gauge
invariant operators in the Schrodinger picture, Ô I . A general coherent state is of the form

|Ψ(t)>= exp

[
iχ(t)+∑

I
λ

I(t)Ô I
(+)

]
|0 >A . (3.29)

Here Ô I
(+) denotes the creation part of the operator and |0 >A denotes the adiabatic vacuum corre-

sponding to some instantaneous value of the dilation Φ0,

H[Φ0]|0 >A= EΦ0 |0 >A (3.30)

with the ground state energy EΦ0 .
The algebra of operators Ô I , together with the Schrodinger equation then leads to a differential

equation which determines the time evolution of the coherent state parameters λ I(t) in terms of the
time dependent source Φ0(t). The idea is then to solve this equation in an expansion in time
derivatives of Φ0(t). This is the coherent state adiabatic approximation we are seeking.

In general it is almost impossible to implement this program practically, since the operators Ô I

have a non-trivial operator algebra which mixes all of them. The coherent state (3.29) is in the co-
adjoint orbit of this algebra [17]. The resulting theory of fields conjugate to these operators would
be in fact the full interacting string field theory in the bulk. In our case, however, the situation
drastically simplifies for large ’t Hooft coupling at the lowest order of an expansion in Φ̇0. This
is because these various operators decouple and their algebra essentially reduces to free oscillator
algebras.

We have already found this decoupling in our supergravity calculation. The departure of the
solution from AdS5× S5 is due to the time-dependence of the boundary value of the dilaton, and
are small when the time variations are small, controlled by the parameter ε . To lowest order in ε

(which is O(ε2)) the deformation of the bulk dilaton in fact satisfied a linear equation in the AdS5

background in the presence of a source provided by the boundary value Φ0(t). This equation does
not involve the deformation of the metric. Similarly, the equation for metric deformation does not
involve the dilaton deformation to lowest order.

This allows us to treat each supergravity field and its dual operator separately. With this
understanding we will now consider the coherent state (3.29) with only the operator dual to the
dilaton, Ô . Since our source is spherically symmetric and higher point functions of the operators
are not important in this lowest order calculation, we can restrict this operator to its spherically
symmetric part.

The linearised approximation in the gravity theory means that only the two point function
is non-trivial and all connected higher point functions vanish. The non-linear terms correspond
to nontrivial higher order correlations. In this approximation the gauge theory simplifies a great
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deal. Each gauge invariant operator- which is dual to a bulk mode- gives rise to a tower of har-
monic oscillators. The response of the gauge theory can be understood from the response of these
oscillators.

In fact in the quadratic approximation the only oscillators which are excited are those which
couple directly to the dilaton and so we only have to discuss their dynamics. The dilaton excitations
we consider are S3 symmetric and correspondingly the only modes of Ô which are excited are S3

symmetric. Here we denote these by Ôl=0.
In the Heisenberg picture Ôl=0 can be expanded in terms of time dependent modes, this is dual

to the fact that the S3 symmetric dilaton can be expanded in terms of modes with different radial
and related time dependence in the bulk. One finds that only even integer frequencies appear in the
time dependence giving,

Ôl=0 = N
∞

∑
n=1

F(2n)[A2ne−i2nt +A†
2nei2nt ]. (3.31)

Here A2n,A
†
2n are canonically normalised creation and destruction operators satisfying the relations,

[Am,An] = [A†
m,A

†
n] = 0 [Am,A†

n] = δm,n. (3.32)

Their commutators with the gauge theory hamiltonian are

[H,A†
2n] = (2n)A†

2n [H,A2n] =−(2n)A2n (3.33)

The normalization factor F(2n) may be computed by comparing with the standard the 2-point
function. The result is

|F(2n)|2 = Aπ4

3
n2(n2−1) (3.34)

for n≥ 2. F(0) and F(2) vanish, so this means that the sum in eq.(3.31) receives its first contribu-
tion at n = 2. It also means that the lowest energy state which can be created by acting with Ôl=0

on the vacuum has energy equal to 4. This is what we expect on general grounds, since the energies
of states created by an operator with conformal dimension ∆ are given by

ω(n, l) = ∆+2n+ l(l +2) n = 0,1,2 · · · (3.35)

The constant A in eq.(3.34) is the normalization of the 2-point function which may be de-
termined e.g. from a bulk calculation. Before proceeding let us also note that F(2n) grows like
F(2n) ∼ n2, eq.(3.34), for large mode number n. This enhances the coupling of the higher fre-
quency modes to the dilaton and will be important in our discussion of renormalisation below.

From now onwards we will find it convenient to work in the Schrodinger representation, in
which operators are time independent. The operator Ôl=0 in this representation is given by,

Ôl=0 = N ∑
n

F(2n)[A2n +A†
2n]. (3.36)

From eq.(3.33) it follows that the Hamiltonian for A2n,A
†
2n modes can be written as,

H = ∑
n

2nA†
2nA2n. (3.37)
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Note this Hamiltonian measures the energy above that of the ground state.
The operators, A†

2n,A2n create and destroy a single quantum of excitation when acting on the
vaccum of the N = 4 theory with the instantaneous value of g2

Y M = eΦ0 .
The time dependence of the Hamiltonian due to the varying dilaton can be expressed as fol-

lows,
∂H
∂ t

=
∂H
∂Φ

Φ̇0 =−Ôl=0Φ̇0 (3.38)

leading to,
∂H
∂ t

=−Ôl=0Φ̇0 =−N ∑
n

F(2n)[A2n +A†
2n]Φ̇0, (3.39)

where we have used eq.(3.36). It is useful to write this as

∂H
∂ t

=−N ∑F(2n)
√

4nΦ̇0[
A2n +A†

2n√
4n

], (3.40)

So we see that the gauge theory, in the quadratic approximation maps to a tower of oscillators, with
frequencies, ωn = 2n.

Consider therefore the coherent state

|ψ >= N̂(t)e(∑n λn(t)A
†
2n)|φ0 > . (3.41)

Here |φ0 > is the adiabatic vacuum, which in is the ground state of the N = 4 theory with coupling
g2

Y M = eΦ0 . N̂(t) is a normalisation constant. Using the Schrodinger equation for this state and using
the properties of the oscillators one can now solve for the coherent state parameter λn(t) with the
condition that it vanishes in the far past. The result is

λn(t) = −N
F(2n) e−2int

2n

∫ t

−∞

Φ̇0(t ′) e2int ′ dt ′

= N
F(2n)

2n

[
Φ̇0

(2in)
− e−2int

(2in)

∫ t

−∞

Φ̈0(t ′)e2int ′
]

= N
F(2n)

2n

[
Φ̇0

(2in)
+

Φ̈0

4n2 + · · ·
]

(3.42)

The second and the third lines in (3.42) are obtained by performing successive integration by parts.
This is an expansion in time derivatives - the adiabatic expansion which is the analog of the deriva-
tive expansion of the solution of Einstein’s equations in the bulk.

The condition that the source is varying slowly is

| Φ̈0

nΦ̇0
| � 1 ∀n. (3.43)

It is clearly sufficient to satisfy this condition for n = 1,

|Φ̈0

Φ̇0
| ∼ ε � 1. (3.44)
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This condition is met for the dilaton profile we have under consideration. When this condition
is true λn can be evaluated by keeping the first term in eq.(3.42). The condition that the state is
classical, is that λn� 1, this gives

|NF(2n)
√

4nΦ̇0| � (2n)5/2. (3.45)

Noting from eq.(3.34) that F(2n) ∼ n2 for large n we see that the factors of n cancell out on both
sides, leading to the conclusion that when,

|NΦ̇0| ∼ Nε � 1 (3.46)

all the oscillators are in a classical state.
The summary is that when the two conditions,

ε � 1,Nε � 1 (3.47)

are both valid, the gauge theory is described to leading order in ε as a system of harmonic oscilla-
tors. The oscillators which couple to the dilaton are excited by it and are in a classical state. This
description can be used to calculate the resulting expectation value of operators. To leading order
in ε we get ,

<
A2n +A†

2n√
4n

>=−N
F(2n)

√
4n

(2n)4 Φ̈0. (3.48)

Substituting in eq.(3.36) next gives,

< Ôl=0 >=−CN2
Φ̈0 (3.49)

where C is

C = ∑
F(2n)2

4n3 . (3.50)

The functional dependence on Φ0 and N in eq.(3.48) agrees with what we found in the supergravity
calculation, eq.(3.20). The constant of proportionality C is in fact quadratically divergent. This
follows from noting that for large n, F(2n)∼ n2.

A little thought tells us that the divergence should in fact have been expected. The supergravity
calculation also had a divergence and the finite answer in eq.(3.20) was obtained only after regulat-
ing this divergence and renormalising. Therefore it is only to be expected that a similar divergence
will also appear in the description in terms of the oscillators. In the subsection which follows we
will discuss the issue of renormalisation in more detail. The bottom line is that counter terms can
be chosen so that the coefficient in eq.(3.20) agrees with that in the supergravity calculation.

It is also important to discuss how the energy behaves. The energy above the ground state is
easily seen to be

< E >−Egnd =
1
2

CN2
Φ̇

2
0 (3.51)

We note that the functional dependence on Φ̇0,N match with those obtained in the supergravity
calculations, eq.(3.19). The constant of proportionality which is obtained by summing over the
oscillator modes in the case of the energy is the same as C defined above, eq.(3.50). It is also
therefore quadratically divergent.
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The fact that the two constants of proportionality in eq.(3.51) and eq.(3.49) are the same fol-
lows on general grounds. Noether’s argument in the presence of the time dependence means

<
dE
dt

>=−Φ̇0 < Ôl=0 > (3.52)

leading to the equality of the two constants. Earlier we had also seen that the supergravity calcula-
tion satisfies this relation. It follows from these observations that if after renormalisation the answer
for < Ôl=0 > agrees between the supergravity theory and the oscillator description developed here,
then the expectation value for E will also agree in the two cases.

Here we have analysed the gauge theory to leading order in ε . Going to higher orders intro-
duces anharmonic couplings between the different oscillators. These couplings arise because of
connected three-point and higher point correlations in the gauge theory. The three point function
for example is suppressed by 1/N, the four point function by 1/N2 and so on. For computations in
the ground state these would therefore be suppressed in the large N limit. However as we have seen
here the time dependence results in a coherent state which contains O(Nε)2 quanta being produced.
The 3- pt function in such a state is suppressed by O(ε) and not by O(1/N). Since ε � 1, this is
still enough though to justify our neglect of the cubic terms to leading order in ε . Similarly the
effect of 4-pt correlators in the coherent state are suppressed by O(ε)2 etc. This is in agreement
with the supergravity calculation, where the cubic terms in the equations of motion are suppressed
by O(ε) etc.

To go to higher orders in ε using the oscillator description the effect of the anharmonic cou-
plings induced by the higher order correlations would have to be introduced. In addition one would
have to keep the contributions from the quadratic approximation to the required order in ε . As long
as the ’tHooft coupling stays big for all times and the supergravity approximation is valid, there is
no reason to believe that these effects will be significant and the behaviour of the system should
be well described by the leading harmonic oscillator description, in agreement with what we saw
in supergravity. When the ’tHooft coupling begins to get small though the anharmonic couplings
could potentially significantly change the behaviour of the system.

3.4 The regime of large curvatures

So far we have considered what happens in the parametric regime, eq.(3.47), when the ’tHooft
coupling stays big all times. In this case the supergravity description is always valid. We saw above
that the gauge theory can be described in this regime in terms of approximately decoupled classical
harmonic oscillators and this reproduces the supergravity results.

Now let us consider what happens when the dilaton takes a larger excursion so that the ’tHooft
coupling at intermediate times becomes of order unity or even smaller. Some of the resulting
discussion is already contained in the introduction above.

A natural expectation is that description in terms of classical adiabatic system of weakly cou-
pled oscillators should continue to apply even when the ’tHooft coupling becomes small. There
are several reasons to believe this. First, anharmonic terms continue to be of order ε and thus are
small. The leading anharmonic terms arise from three -point correlations, < Ô1Ô2Ô3 >. In the
vaccum these go like 1/N. In the coherent state produced by the time dependence these go like ε .
The enhancement by Nε arises because the coherent state contains O((Nε)2) quanta, so that the
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probability goes as (Nε)2/N2 ∼ ε2. Four-point functions give rise to terms going like O(ε2) and
so on, these are even smaller. In the absence of anharmonic terms the theory should reduce to a
system of oscillators. Second, the existence of a gap of order 1/R means that for each oscillator
the time dependence is slow compared to its frequency. Therefore the system continues to be very
far from resonance and should evolve adiabatically. Finally, in the parametric regime, eq.(3.47) the
analysis of the previous subsections should then apply leading to the conclusion that an O(Nε)� 1
quanta are produced making the coherent state a good classical state.

If this expectation is borne out the system should settle back into the ground state of the final
N = 4 theory in the far future and should have a good description in terms of smooth AdS space
then.

However, as discussed in the introduction, there are reasons to worry that this expectation is
not borne out. New features could enter the dynamics when the ’tHooft coupling becomes small
at intermediate times, and these could change the qualitative behaviour of the system. These new
features have to do with the fact that string modes can start getting excited in the bulk when the
curvature becomes of order the string scale. These modes correspond to non-chiral operators in the
gauge theory and the corresponding oscillators have a time dependent frequency. When the ’tHooft
coupling is big these frequencies are much bigger than those of the supergravity modes and as a
result the string mode oscillators are not excited. But when the ’tHooft coupling becomes of order
unity some of the frequencies of these string modes become of order the supergravity modes and
hence these oscillators can begin to get excited 2. In fact the string modes are many more in number
than the supergravity modes, since there are an order unity worth of chiral operators in the gauge
theory and an O(N2) worth of non-chiral ones.

The worry then is that if a significant fraction of these string oscillators get excited the correct
picture which could describe the ensuing dynamics is one of thermalisation rather than classical
adiabatic evolution. In this case the energy pumped into the system initially would get equiparti-
tioned among all the different degrees of freedom. Subsequent evolution would then be dissipative,
and the energy would increases in a monotonic manner, as it does for a large black hole.

Due to the dissipative behaviour the energy which is initially pumped in would not be recov-
ered in the future. Rather one would expect that when the ’thooft coupling becomes large again,
the energy, which is of order N2ε2 remains in the system. The gravity description of the resulting
thermalized state depends on the value of ε relative to λ ≡ g2

Y MN and N. In this late time regime
of large ’t Hooft coupling, the various possibilities can be figured out from entropic considera-
tions in supergravity ( see e.g. section 3.4 of [16]). The result in our case is the following. For
ε � (g2

Y MN)5/4/N a gas of supergravity modes is favored. For (g2
Y MN)5/4/N < ε � (g2

Y MN)−7/8

one would have a gas of massive string modes. For (g2
Y MN)−7/8 < ε � 1 one gets a small black

hole, i.e. a black hole whose size is much smaller than RAdS. A big black hole requires O(N2)

energy which is parametrically much larger. Thus, the strongest departure from AdS space-time in
the far future would be presence of small black holes. Such black holes would eventually evaporate
by emitting Hawking radiation. However this takes an O(N2RAdS) amount of time which is much
longer than the time scale O(RAdS/ε) on which the ’tHooft coupling evolves. As a result for a long

2The primary reason for them getting excited are the anharmonic terms which couple them to the modes dual to the
dilaton.
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time after the ’tHooft coupling has become big again the gravity description would be that of a
small black hole in AdS space.

An important complication in deciding between these two possibilities is that the rate of time
variation is ε which is also the strength of the anharmonic couplings between the supergravity os-
cillators and string oscillators. If the rate of time variation could have been made much smaller,
thermodynamics would become a good guide for how the system evolves. In the microcanoni-
cal ensemble, which is the correct one to use for our purpose, with energy N2ε2 the entropically
dominant configurations are as discussed in the previous paragraph, and this would suggest that
dissipation would indeed set in. However, as emphasised above this conclusion is far from obvious
here since the time variation is parametrically identical to the strength of the anharmonic couplings.

In fact we know that the guidance from thermodynamics is misleading in the supergravity
regime, where the ’tHooft coupling stays large for all times. In this case we have explicitly found
the solution in §2. It does not contain a black hole. Moreover, it does not suffer from any tachyonic
instability - since it is a small correction from AdS space which does not have any tachyonic
instability 3. The only way a black hole could form is due to a tunneling process but this would be
highly suppressed in the supergravity regime.

One reason for this suppression is that the energy in the supergravity solution discussed in §2
is carried by supergravity quanta which have a size of order RAdS. This energy would have to be
concentrated in much smaller region of order the small black hole’s horizon to form the black hole
and this is difficult to do. In contrast, away from the supergravity regime this could happen more
easily. When the ’tHooft coupling becomes small at intermediate times, strings become large and
floppy, of order RAdS, at intermediate times. If a significant fraction of the energy gets transferred
to these strings at intermediate times it could find itself concentrated within a small black hole
horizon once the ’tHooft coupling becomes large again.

In summary we do not have a clean conclusion for the future fate of the system in the paramet-
ric regime, eq.(3.47). Note however that in both possibilities discussed above most of space-time
in the far future is smooth AdS space, with the possible presence of a small black hole. Hopefully,
the framework developed here will be useful to think about this issue further.
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