
P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity

Simone Mercuri∗
Institute for Gravitation and the Cosmos,
The Pennsylvania State University,
Physics Department, Whitmore Lab, PMB 67, University Park, PA 16802, USA
E-mail: mercuri@gravity.psu.edu

The questions I have been asked during the 5th International School on Field Theory and Gravita-
tion, have induced me to give an account of the premises that I consider important for a beginner’s
approach to Loop Quantum Gravity. After a description of some general arguments and an in-
troduction to the canonical theory of gravity, I review the background independent approach to
quantum gravity, giving only a brief survey of Loop Quantum Gravity.

5th International School on Field Theory and Gravitation
April 20-24, 2009
Cuiabá city, Brazil

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mercuri@gravity.psu.edu


P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity Simone Mercuri

1. Preface

Loop Quantum Gravity (LQG) is a background independent and mathematically rigorous
canonical quantization of the gravitational field. The Organizers of the 5th International School
on Field Theory and Gravitation have asked me to give an understandable account of the tech-
niques and main results of this theory and I have been pleased to fulfill their requests. Immediately,
I realized that the ideas of LQG were capturing the interest of many students, who asked me a lot of
clarifications about some mathematical tools and physical aspects of background independent the-
ories. I honestly think to have answered their questions and clarified many details, but, at the same
time, I had the impression that many of them were getting confused by the canonical formulation
of gravity and by the Dirac quantization procedure.

My impression has been that, generally speaking, the study of canonical quantization of gauge
theories and especially gravity presupposes the knowledge of some arguments which often are
not treated in details in the basic courses. I had the same experience when I started working on
quantum gravity during my PhD. Usually, the approach to General Relativity (GR) proposed in the
basic courses is based on the Lagrangian mechanics and the canonical formulation of the theory is
usually only marginally described, without deepen into the general pictures of constrained theories.
On the one hand, this is understandable from the perspective of academic and practical purposes,
but, on the other hand, the Hamiltonian, or better, the canonical formulation of gauge theories and
gravity remain obscure arguments among students. This is a common problem, which cannot be
neglected when one attempts to describe the problem of quantum gravity and, more specifically,
LQG.

Therefore, motivated by the questions asked me during coffee breaks and lunches, I have de-
cided to slightly shift the focus of this proceeding, giving to the readers the opportunity to begin
with quantum gravity from what I consider its natural starting point, namely the physical formula-
tion of the problem.

So Section 2 is entirely devoted to describe some simple motivations which induce to for-
mulate a quantum theory of gravity, digressing on the physical implications of such a theory on
the existing concepts of space and time. Section 3 contains some preliminary arguments, which I
consider as fundamental to understand the following discussion. They are quite simple and well
known arguments, nevertheless they have to be necessarily clear before going to face the canonical
theory of gravity and the Ashtekar-Barbero formulation of GR. So, I collected here the material I
consider important, using a simple language and neglecting many complicated details, in order to
give to the readers an easily accessible account of the main definitions and concepts used through-
out the paper. In Section 4 I describe the canonical formulation of GR, starting from the 3+1
splitting of space-time. The mathematical procedure that allows to write the Hamiltonian Einstein
equations is described in details and the Section concludes with a description of the initial value
problem in gravity. Section 5 is dedicated to the connections formulation of canonical GR, better
known as Ashtekar–Barbero (AB) formulation of gravity. This argument is particularly interest-
ing in view of quantization, because by using the so-called AB connections, the constraints of GR
can be rewritten in a more suitable form for quantization. Interestingly enough, the use of AB
connections introduces a quantum ambiguity known as Barbero–Immirzi (BI) parameter, which
affects the eigenvalues of geometrical quantum operators. The physical interpretation of the BI
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parameter and its correlation with the topological sector of the theory is at present an argument of
active discussion. Recently, the idea that this parameter is in fact a field has attracted the interest
of researchers (me included!). I think that this could represent an interesting bridge with particle
physics and could have consequences in Cosmology that deserve to be studied. For these reasons
I invite the readers to refer to the original papers to get more information. Finally, in Section 6 I
face the problem of quantization, starting from a brief description of the Dirac procedure and the
Wheeler-DeWitt (WDW) equation. The last part of the Section is dedicated to the description of the
main ideas of LQG, without entering in the complicated details of the theory. As I have explained
before, in this paper I prefer to focus on introductory arguments to LQG, more than on the theory
itself, beautifully described in many books and reviews, written by the major experts in this field
[1, 2, 3]. For this reason I refer the readers to the standard Literature on LQG, with the hope that
this paper could help them to face the argument more confidently.

At the end, I also added two appendices, one on differential forms, which are commonly used
in Literature, but sometimes little known among students and one about the topological sector of
gauge theories, in order to clarify some concepts which apply in canonical quantum gravity as well.

Throughout the paper, I will use an extremely simple approach, sometimes neglecting some
interesting but slightly involved details. This obviously will affect the completeness and the rigor
of the discussion, but, I am sure, will be appreciated by the students of the International School
of Field Theory and Gravitation, who can find in this paper a usefully simple description of many
arguments. My hope is to give them the possibility to get a “first order understanding” of the main
concepts of canonical quantum gravity, without being discouraged by the rigorous mathematical
formulation of the problem. I strongly suggest interested readers to delve into the “higher order
descriptions” of the more complete and rigorous books and reviews cited above.

2. What is Quantum Gravity?

The present knowledge in Physics is a result of the new and revolutionary ideas born in the last
century, which later led to the formulation of the two major physical theories describing the four
interactions: Quantum Mechanics (QM) and General Relativity (GR). They have, on the one hand,
opened the way to a great number of scientific discoveries and technical developments, but, on
the other hand, they destroyed the coherence of prerelativistic classical physics [2], because the
basic assumptions of each one of the two theories are contradicted by the other. QM is formulated
using a Newtonian absolute (fixed, non-dynamical) space-time, on the contrary GR describes the
dynamics of space-time itself, which is no more an external set of clocks and rods, but a physical
interacting field, namely the gravitational field. The basic physical lesson of GR is contained in the
following simple sentence: Geometry tells matter how to move; matter tells geometry how to curve,
which expresses in a very suggestive way the fact that the theory describes both the dynamics of
space-time (or gravitational field) and the motion of the bodies subjected to the gravitational field.
But it also contains the seeds of an issue, namely the separation of the physical world in matter and
geometry.

This dichotomy in Physics, together with the fact that on one side we have the present de-
scription of (what is in general intended as matter) electromagnetic, weak and strong interactions,
unified in the language of Quantum Field Theory (QFT) and on the other side gravity (or geometry)
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described by the pure classical theory of General Relativity, create a sort of “scientific discomfort”
[4]. This is not only a philosophical problem, but assumes the distinguishing features of a real
scientific problem as soon as one considers measurements in which both quantum and gravitational
effects cannot be neglected. In fact, QM and GR are hugely successful in their own range of ap-
plicability, but they seem to be subjected to a sort of “reciprocal exclusion principle”. In particular
QM describes microscopic phenomena involving fundamental particles, ignoring completely grav-
ity, while GR describes macroscopic systems, whose quantum properties are in general (safely)
neglected. Of course there is still no experimental evidence on systems in which neither gravity
nor quantum effects can be neglected, but we already know that our current theories are not able to
describe such phenomena. This situation is usual in physics and it is in general the prelude to the
formalization of a well stated scientific problem [4], in particular the goal of obtaining quantita-
tive predictions about the outcomes of certain measurements on extremely energetic gravitational
systems is often referred as the Quantum Gravity Problem.

It is clear from what said above that new elements could be necessary in order to make our
current theories able to face a certain class of physical phenomena. Then, it is natural to wonder
whether these new elements affect low energy processes. In other words, should we expect, even at
low energies, small QG corrections to the predictions of our current theories? It is worth stressing
that even a little deviation from the predictions of standard physics found in the experimental data
of current and future experiments, the presence of which could be traced back to QG effects, would
have an enormous impact on the research. We recall as an example the Lamb shift, which motivated
and stimulated the studies about QED. From this perspective, it could be important to answer
to the following question: How far we are from an experimental evidence of a QG effect. We
cannot give a completely satisfying answer to it, nevertheless we can use a dimensional argument
to state that the new effects should modify the usual predictions with additional terms proportional
to the factor (E/EPl)

n, where E is the typical energy scale of the experiments, EPl is the Planck
energy (EPl ≡ (GN)−1/2 ≈ 1028eV ), while n is a positive integer number. At this point one may
be surprised by the compelling necessity to quantize gravity felt by physicists, since at the LHC,
the most powerful accelerator ever projected, we can reach a very small energy if compared to
the Planck scale. Specifically, the ratio between the Planck and the reachable energy is of the
order of ELHC/EPl ≈ 10−15, that means we are fifteen orders of magnitude below the scale at
which we expect to see the quantum effects of the gravitational field. Even though this fact is
true, it is absolutely false that this is a good reason for abandoning the program of constructing
a consistent theory of QG. The motivations are connected with the fact that there exist in Nature
particles of energies much larger than those we can produce with the accelerators, moreover during
its evolution our Universe experimented regimes in which the energy available was (most likely)
even larger of the Planck scale. Furthermore, even though the factor E/EPl is extremely small at
the present available energies and, consequently, the QG effects cannot be directly experimented,
it exists the concrete possibility that some astrophysical phenomena can behave as magnifying
glasses being able to make them visible in near future [5, 6]. In other words, the fact that QG
effects are expected to be very tiny does not mean they are absolutely untestable, clearly as one
should expect the opportunities to make such tests are rather rare. We also emphasize that it could
be not necessary to reach the Planck energy to see some QG effects. In this respect, we recall that a
class of extremely energetic phenomena called Gamma Ray Bursts (GRB) could represent a really
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important laboratory to test QG predictions, in fact they seem to be the natural candidates to verify
whether the fundamental hypothesis about a discrete structure of space-time will be confirmed by
experiments. The peculiar features which make GRB relevant for QG is the extremely wide range
of the emitted energies and the cosmological distance of the explosive events.

Concluding, as usual in Physics, from the pure empirical point of view, the new framework
possibly introduced by a consistent and complete QG theory could represent a tiny deviation from
what we already know, being only a further small modification of those empirical laws which give
us a pictorial description of how Nature works. But from the theoretical point of view it could
represent not only the completion of that revolution QM and GR introduced in the last century,
but also open the way to the discovery of complete new aspects of Nature, exactly what QFT and
GR have been doing during the last one hundred years. However, in spite of their great empirical
success, QM and GR have left us with a fragmented understanding of the physical world, this
requires a new synthesis, which is a major challenge in today’s fundamental Physics [2].

In this sense, Quantum Gravity can solve the dichotomy present in our current understanding
of physical phenomena and, moreover, it could give us predictions on those regimes in which the
quantum and gravity effects merge.

2.1 Why we need a Quantum Theory of Gravity?

Above we introduced the so called QG problem, which gains the status of a true scientific
problem as soon as one considers physical systems in which both the gravitational and the quantum
mechanical effects play an important role. Moreover, the failure of the existing theories as soon
as we push them near their extreme margins of applicability suggests to quantize gravity. We also
digressed on the empirical content of such a problem, affirming that obtaining an experimental
evidence of a QG effect is extremely complicated, but not impossible; even though we expect a
very tiny modification of the existing laws describing the physical systems. Therefore, as often
occurs, one may object to the above pleaded motivations, saying that they are mainly suggests by
philosophical reasons. Namely, the hope of finding the way to conciliate the basic assumptions of
two very different and complementary theories is not really required by a scientific problem, since
this attempt has very little to share with Physics, simply because the physical effects are so tiny to
be actually undetectable. It could be really so!

For this reason, in this Section three well stated problems, which regards respectively QFT,
GR and the merging point of QFT and GR, are discussed in order to emphasize that QG is a true
physical problem. It, in fact, can provide information about the behavior of fundamental gravitating
quantum system as, for example, a system of gravitating fermions or extremely energetic scattering
processes or the Universe itself in its initial expansion.

The questions we present below are generally connected with the fundamental structures of
the theories and mainly concern the problem of singularities. In fact, it is worth recalling that the
theory describing the gravitational interaction fails in giving a fully satisfactory description of the
observed Universe [7]. GR, indeed, leads inevitably to singularities of space-time as a number of
theorems mainly due to Hawking and Penrose demonstrate. The singularities occur both at the
beginning of the expansion of our Universe and in the collapse of gravitating objects to form Black
Holes [8]. Classical GR breaks completely down at these singularities, or rather it results to be
an incomplete theory, because it neither gives a description of the singularities themselves, nor
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provides the boundary conditions for fields in the singular points. The appearance of singularities
in extremal situations reflects both on QFT and on GR itself, generating a more subtle question
when we trivially try to merge the two theories as we are going to argue.

This failure of current theories of course represents a good reason to pose a scientific problem
and its solution is widely believed to be in the formulation of a consistent and complete theory of
QG.

It remains to treat in a more systematic way the problem regarding the empirical content of a
QG theory. This argument is postponed at the end of the Section, where we will trace the way to get
information about QG from the astrophysical phenomena named Gamma Ray Bursts, motivating
the belief that the necessary experimental evidences which could support the QG research are not
so far.

2.1.1 Planck scale collisions

The question is:1 What would happen if we managed to collide an electron-positron pair of
energy per particle of 1028eV ? We are unable to give an answer to this question, because the energy
in the center of mass is greater than the Planck energy. So, what happens in the center of mass of the
two particles is completely out of our understanding. But, according to our present physical theories
describing the collisions between fundamental particles, there should not be anything peculiar in
the setup of such an experiment. However, the same hugely successful theories are not able to
provide us with a consistent prediction for the outcome of this experiment. The reason of this
failure is strictly bound with the fact that in such a collision we cannot neglect the gravitational
properties of the involved particles at the moment of the collision. But, we do not have any scientific
information on how taking into account such an effect in the framework of QFT. In other words
when the gravitational field is so intense that space-time geometry evolves on a very short time
scale, QFT cannot be consistently applied any longer; or, from another perspective, we can say that
when the gravitational effects are so strong to produce the emergence of space-time singularities,
field theory falls into troubles. Summarizing, we are able to extract numbers (predictions) from
QFT when the curved space-time is static (or slowly varying) and non-singular, but we are not able
to handle situations in which the gravitational field is so intense to give rise to a fast varying and
singular space-time [4].

The incompatibility between QM and GR in treating the proposed scattering problem can be
further analyzed. In this respect, we have to remember that GR governs consistently the space-
time and particles dynamics, in particular, given the Lagrangian for the matter, once the Einstein
equations have been solved, we can predict the trajectories of the particles. But in the framework
of QFT particles are asymptotic states of quantum operators and during the collision they do not
follow any classical trajectory. The whole dynamics of the collision is contained in the S-matrix,
which gives the evolution from the initial (|in〉) to the final (|out〉) state. During the interaction,
the intermediate state is a pure quantum superposition of all the possible states compatible with the
quantum numbers of the initial state; namely, we can associate to particles a semi-classical (fuzzy)
trajectory only asymptotically, in other words much before or much later the collision. One could
try to apply the formalism of GR to the formally classical trajectories contained in the path-integral,

1Some of the ideas presented below are extracted from [4] and [2].
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but the problem remains ill-defined and, generally speaking, it will be affected by divergences if
the energy of the particle are sufficiently high to generate a significant geometrodynamics. This
fact can be pictorially described. The path-integral formulation of QM consists in summing on all
the possible trajectories connecting the initial and final quantum state, with a weight proportional
to the exponential of the classical action. The major role in the sum is played by those trajectories
nearby the classical one, because the contribution of the far away ones is suppressed by the weight
factor. If the gravitational field is weak, we can safely approximate the space-time nearby the
classical trajectory with the Minkowski flat space-time and assuming that the curvature does not
affect the trajectories which enter in the sum. But, if the gravitational field is intense, then also
trajectories close enough to the classical one are affected by the curvature of the space-time and
this effect should be taken into account in the path-integral sum. The case of fast varying or singular
gravitational field is even worst, because in that case the trajectories could fall into a singularity
or oscillate very fast, breaking down completely the formalism, by introducing remarkable and
uncontrollable effects into the sum.

2.1.2 Singularities

The study of singularities in GR is an absolutely fascinating argument. Here we give an ex-
tremely brief account of this huge argument, which represents one of the crucial point suggesting
that a quantum theory of gravity is, in fact, necessary. Near singularities classical GR becomes in-
consistent and incomplete, as we already stressed before and, differently from Newtonian gravity,
they represent an inevitable feature of the theory. Indeed, in Newtonian gravity the r = 0 singu-
larity, appearing in the complete collapse (namely, when all the matter reach simultaneously the
origin) of a spherical non-rotating shell of dust, can be easily avoided slightly perturbing the spher-
ical symmetry of the collapsing shell, for example giving it a little rotation. On the contrary, in
GR the singular behavior of space-time cannot be avoided. All the solutions we have of Einstein
equations show a singular behavior. But, since all of them are characterized by symmetries, one
may think that, as it happens in Newtonian gravity, the relaxation of symmetries could allow to
avoid singular points. But the Hawking, Penrose et al. theorems demonstrate that this is not the
case. Wald says [9]:

Although the singularity theorems do not prove that the singularities of classical
General Relativity must involve unbounded large curvature, they strong suggest the
occurrence in Cosmology and gravitational collapse of conditions in which quantum
or other effects which invalidate classical General Relativity will play a dominant role.

So the singularity theorems do not use the natural and, in a certain sense, more physical notion
of unbounded density to characterize the singularities of space-time, but the characterization of
singularities is based on the notion of incompleteness of geodesics, which, however, contains some
unwanted features.

The necessity to derive from such a notion the presence of a singularity of space-time is due
to the necessity of a diffeomorphisms invariant criterion. In this respect, it is worth noting that
the singular points in r = 0 of Schwarzschild or Robertson-Walker metrics, rigorously speaking,
are not point of those space-times, otherwise the metrics would not be well defined everywhere
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on the manifold M. Moreover, the criterion based on the bad behavior of higher order scalars con-
structed with the curvature tensor does not work in some cases, so it is clear that a more satisfactory
definition has to be introduced.

So far, the criterion of geodesics incompleteness seems to be the most appropriate. Its physical
meaning is suggested directly by its definition, indeed a geodesic is said to be incomplete when it
is inextendible in at least one direction; namely, it has a finite range for the affine parameter. As a
consequence, a particle falling along a time-like or null inextendible geodesic will end its existence
within a finite proper time (or it began its existence a finite proper time ago). So, even though
a completely satisfying notion of singularity lacks [9], we will call physically singular all those
space-time having at least one incomplete geodesic.

At this point, the following famous theorem by Hawking and Penrose can be enunciated:2

Theorem 2.1. Singularity theorem of Hawking and Penrose (1970). Let us suppose that the space-
time (M,gµν) satisfies the following four hypothesis:

1. Rµνuµuν ≥ 0 for all time-like or null uµ ;

2. it exists at least one point for every time-like or null geodesics at which Rµνuµuν 6= 0;

3. no closed time-like curve exist;

4. at lest one of the following three conditions holds:
i) (M,gµν) possesses a compact achronal set without edge, i.e. (M,gµν) is a closed Universe,
ii) (M,gµν) possesses a trapped surface,
iii) there exists a point p ∈ M such that the expansion of the future (or past) directed null
geodesics emanating from p becomes negative along each geodesic in this congruence.

Then (M,gµν) must contain at least one incomplete time-like or null geodesic.

The first three conditions of the above theorem are believed to be satisfied in our Universe. The first
one in particular can be simply showed to be shared by all those space-times satisfying the Einstein
equations and the strong energy condition,3 which seems to be plausible for ordinary matter.

Finally, we can conclude that there are strong evidences on the fact that our Universe is singu-
lar; of course we cannot know by which kind of singularity it is characterized, because the above
theorem do not give us any insight on this question.4 Nevertheless, it suggests that an extension
toward QG is necessary. It, in fact, demonstrates that the universally accepted theory of gravity
cannot definitely give us a complete and consistent description of the evolution of our Universe.

2.1.3 Merging General Relativity and Quantum Field Theory

After having described the problem of singularities in GR, we want to address a number of dif-
ficulties coming out when one attempts to quantize gravity using the usual formalism of QFT. The

2See § 3.1 for definitions.
3Namely for every time-like uµ we have Tµν uµ uν ≥ −T/2, where Tµν is the energy-momentum tensor of the

matter.
4The particular kind of singularity we obtain from the Einstein equations depends in general on the particular

symmetries of the model.
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main source of problems in extending the formalism of QFT to gravity is represented by the double
role played by the metric tensor. It, in fact, represents both the dynamical field describing gravity
and the tensor describing the causal structure of the background. The nature of these difficulties
is not only conceptual, as for example the consideration that a quantum theory of gravity would
imply a quantum, namely discrete, structure of space-time itself. But, more practically, they are
correlated to the profound difference existing between GR and other classical field theories: while
in the latter the background is always considered as an external and fixed structure, the former is
the theory describing the dynamics of the background itself. Therefore we cannot assume a given
structure of space-time ab initio, but we have to invent a formalism which allows to quantize a
classical theory in a background independent way. This fact makes GR so peculiar that so far all
the attempts to quantize gravity have encountered fundamental difficulties; only in the last years
many of these obstacles have been overcome, leading to a consistent QG [1, 2, 3].

As is well known the construction of a QFT on Minkowski space-time of a free or perturba-
tively interacting field is the only procedure we can control. In particular, given a small number of
axioms, the Wightman axioms, we can construct a consistent QFT. Let us begin the description of
the issues one would find in applying the usual formalism of QFT to gravity by describing a very
simple and well known example, which best illustrates the dichotomy existing in the metric tensor.

One of the Wightman axioms contains the notion of micro-causality. In order to introduce this
concept let me consider a scalar field represented by the smeared operator-valued distribution

Φ( f ) =
∫

Rn+1
dn+1x Φ(x) f (x) , (2.1)

where f is a test function of rapid decrease. Suppose now that the supports of the test functions f
and f ′ are space-like separated, then the micro-causality assumption is equivalent to require that:[

Φ( f ) ,Φ
(

f ′
)]

= 0 . (2.2)

Physically, the above condition assures that a measurement of the field Φ in the region of space-
time contained in the support of the function f cannot be influenced by the measure of the same
field in the region contained in the support of the function f ′.

Now, the gravitational interaction is described by a self-interacting spin-2 field, it is natural to
expect in analogy with the previous example that the following commutation relation holds[

g( f ) ,g
(

f ′
)]

= 0 , (2.3)

where f and f ′ are two tensorial test functions with compact supports separated by a space-like
distance. But, strictly speaking, the above relation makes no sense. The reason being that we
cannot give a consistent meaning to the request that the supports of the test functions be space-like
separated, unless we know the state of the gravitational field, namely the metric tensor. But, the
commutation relation in line (2.3) must hold independently of the state of the gravitational field.

It is clear that the micro-causality condition is the quantum translation of the pure classical
concept of causality. Even though it contains information about measurements on quantum field,
its basic structure is, however, founded upon the existence of a Minkowski space-time, with its
fixed light cone. In a quantum theory of gravity the causality condition and, as a consequence the
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micro-causality axiom, is inextricably bound with the quantum dynamics of the gravitational field,
so it has to be, at least, modified or completely replaced by a new requirement. In general, the
other Wightman axioms are violated in gravity as well. The reason being that the fundamental
objects one has to postulate in order to write down the axioms, namely i) a differentiable manifold
Rn+1, on which is defined a non-dynamical Minkowski metric η , with its fixed future and past
causal light cone J+ ∪ J−, ii) a symmetry group, which, in the Minkowski space-time, is the ten
parameters Poincaré group P , with its associated infinite dimensional representation acting on the
quantum states U (P) and iii) an invariant vacuum state |Ω〉, cannot be properly postulated. For
a general space-time, in fact, we do not have a symmetry group and a unique invariant vacuum
state. Consequently, it neither exist any obvious generalization of the Wightman axioms nor we
can rigorously define any Fock-Hilbert space for the quantum states of the theory. Therefore, the
whole formalism falls into troubles.

A possible solution to these issues is the splitting of the metric tensor as suggested by a per-
turbative theory:

gµν = ηµν + γµν . (2.4)

The basic assumption here is that γµν represents the dynamical variable describing a self-interacting
spin-2 field, while ηµν describes the background metric, which, in general, could be any solution
of the classical Einstein equations. This method is of course mathematically correct, provides
interesting insights on the quantization of a spin-2 field on a fixed (in general curved) space-time
and could be useful to describe the interaction between gravitons and matter or the gravitational
waves. Nonetheless, it cannot be considered as a good starting point for a complete quantum theory
of gravity, because the metric separation in line (2.4) destroys the full general covariance of the
classical theory, namely its main constructing principle. More practically, the infinite perturbative
series becomes meaningless if the fluctuations become large, in other words, GR is, in general, a
non-renormalizable theory. One can hope that the perturbation theory could be actually finite via
a possible (magic) cancellation of the divergences, but this hope is unjustified [11]. This means
that the resulting theory cannot predict any physical result. We still can advance the hypothesis
that the super-symmetric extension of this theory has a chance to be a finite theory, because, as is
well known, the super-symmetric extension of a classical field theory features, in general, an higher
degree of ultraviolet convergence due to fermionic cancellations [12]. But again the resulting theory
is non-renormalizable, even worst neither the eleven dimensional super-gravity theory shows any
hoped cancellation property [13]. Then, although we do not have a complete proof of the failure of
the QFT formalism in the case of gravity, it is widely believed that the perturbative approach does
not provide a completely consistent answer to the problem of QG .

All these issues have been sometimes pushed to the extreme consequences by some authors,
who argued that classical GR is correct at the fundamental level. This position is, however, un-
tenable for at least two reasons, the first one is connected with the inevitability of singularities in
classical GR; the second one regards the interaction of gravity with quantum matter systems, which
is a source of troubles as we are going to show.

The question we want to answer is: what is the curvature of space-time associated to a given
quantum state of the matter? Let us suppose that the classical Einstein equation holds at the funda-
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mental level, then the most natural candidate to get an answer to this question is:

Rµν −
1
2

gµνR =
〈
T̂µν

〉
. (2.5)

Where in the right hand side we have put the expectation value of the energy-momentum tensor of
the matter in a given quantum state. Now suppose that the quantum state of the matter is such that
we have probability 1/2 for the localization of all the matter in a region of space-time denoted as
U1 and the same probability for the localization in another region U2, disjoint from the region U1.
In other words, we are in the following situation:

|matter〉= 1√
2
|all matter in U1〉+

eiθ
√

2
|all matter in U2〉 , (2.6)

where U1 and U2 are disjoint regions of space-time.
In this physical situation, the gravitational field, according to equation (2.5), would behave

like half of the matter were in U1 and the other half in U2. Now, if we resolve the quantum state by
measuring the position of matter, we will find all the matter either in U1 or in U2. Then, the grav-
itational field should modify in a discontinuous acausal manner, leading to serious difficulties [9].
It is widely accepted the idea that this problem can find its consistent description in the framework
of a quantum theory of gravity, which should be able to give an answer to the following question:
how does a quantum particle modify space-time? Which is equivalent to the previous question and
indirectly contains the subtle problem about the interaction of the quanta of the gravitational field
with matter.

So, QG seems to be necessary as soon as we consider the interaction of quantum matter with
the gravitational field, but, in trying to quantize gravity as a usual QFT, we have to face a large
number of conceptual and technical issues. This is a long standing problem, nevertheless, it does
not contain any indication about a fundamental incompatibility between QM and GR principles.
In fact, as stressed by Rovelli [2], it is important to distinguish between QM, which is a general
mechanical theory and QFT which can be considered as a particular application of the laws of QM
to a system with an infinite number of degrees of freedom. As we said above GR is incompatible
with the formalism of QFT for the non-existence of a fixed background structure, but this does not
means that it is incompatible with QM [14]. So the right question one should pose is the following
one: is it possible to construct a quantum theory of a system with an infinite number of degrees of
freedom without assuming a fixed background causal structure? The answer is: yes! It is possible
as the modern background independent theories of quantum General Relativity demonstrate, but
more insights are necessary in order to better understand many issues, in particular those connected
with measurements and the consistent introduction of measuring devices in the framework of such
theories.

2.2 Space-time, background independence and relationalism in Physics

The question we want to discuss here represents another important “open issue” of the research
in QG and regards the fate of classical space-time.

A very interesting feature of GR and QFT is that both are compatible with a classical descrip-
tion of space-time, although they do not share the same construction of such a classical space-time.
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According to QFT the strategy to sharply localize a point in space-time requires a limiting proce-
dure on the mass of the devices localizing points; in GR, instead, the localization of a point is a
background independent procedure based on the crossing of two geodesics. We will describe in
more details these contrasting features in what follows.

The concept of classical space-time is appropriate in Physics as long as the proposed theories
allows to localize space-time points sharply. A fundamental requirement for a consistent physical
theory is the agreement between the limits on possible measurements as established by the for-
malism and the in-principle limits imposed by the physical measurements procedure. A possible
example which best illustrates this important point can be easily constructed by considering the
measurement of the angular momentum vector. In classical physics, the angular momentum of
the particle could be sharply measured; in other words, we can, in principle, measure each of the
components of the angular momentum vector of a particle simultaneously and with an infinite pre-
cision. But, modern physics has radically changed our perspective by imposing some limitations
to the measurements allowed by the experimental procedures, namely, we cannot measure all the
components of the angular momentum simultaneously. As a consequence, in the description of
such a system, the angular momentum has to be described by a non-classical formalism, which
incorporates the experimental limitations found.

This aspect deserves to be further discussed and clarified, because it is correlated with the
fate of the classical concept of space-time as described below. Fortunately, a good example exists
in the history of physics, which involved authoritative physicists as Einstein, Bohr, Landau and
Rosenfeld. A lively and fruitful debate, in fact, animated the scientific community during the period
immediately after the birth of quantum electrodynamics. The matter of the discussion regarded
the measurement of the electromagnetic field in the framework of quantum electrodynamics and
led to the formulation of the so-called Bohr-Rosenfeld criteria for a consistent theory. Before
discussing this matter, we want to focus the attention of the reader on the importance of these kind
of arguments for theoretical physics. A simple example can clarify this point: In this respect, we
want to stress that it was the study of the synchronization of distant clocks assuming an absolute
maximum velocity for signals that led Einstein to special relativity.

2.2.1 Bronstein objection and the fate of space-time in QG

Here, we want to briefly describe the main points of the debate come out in 30s, when a
group of really distinguished physicists argued that there was a conceptual disagreement between
the uncertainty limits predicted by quantum electrodynamics on a certain class of observations and
the mathematical formalism that the same theory adopts for describing these measurement results.
Specifically, the key point of the debate was a physical consideration due to Landau and Peierls.
They argued that, according to quantum electrodynamics, the electric field in a generic point P
can be measured sharply, namely with zero uncertainty, consequently a measurement procedure
allowing to measure it sharply must exist. Obviously, if the situation were different then the the-
ory would be inconsistent. Eventually, the conclusion of Landau and Peierls was that quantum
electrodynamics must be rejected as physical theory, because such a zero uncertainty measurement
procedure is not possible in Nature, so quantum electrodynamics is inconsistent.

The conclusion of Landau and Peierls was motivated by the following consideration: The
measurement procedure of the electric field in a generic point can be ideally performed by using an
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electrically charged probe, which undergoes the effect of the electric field and accelerates, the out-
come consists in the experimental measurement of this acceleration. In principle one can measure
the mean value of the electric field in a small region of space, approaching the point asymptotically.
Classically, this procedure is perfectly consistent, but, quantum mechanically, it is affected by the
Heisenberg principle. In fact, the simultaneous measurements of the localization of the probe, say
∆X and of the variation of its momentum due to the effect of the electric field, say ∆P must to satisfy
the following uncertainty relation ∆X∆P ≥ h̄. Moreover, the acceleration of the probe introduces
another problem, related to the fact that an accelerated charge emits energy. So, the measurement
affects itself by modifying the momentum of the probe, namely the outcome of the experiment.

Such an analysis leads to the conclusion that a sharp measurement of the electric field is
possible only in a very special situation, namely when the charge and the mass of the probe can be
adjusted in such a way that, by a limiting procedure, it is possible to reduce the ratio between the
electric charge density and the mass density of the probe to zero.

But, as noted by Landau and Peierls, the above requirement cannot be fulfilled, because, even
though it exists in Nature a great variety of particles with different charge/mass ratios, no one
can constitute the ideal probe with a charge/mass ratio equal to zero. As a consequence quantum
electrodynamics must be rejected and a consistent alternative should be sought.

Bohr and Rosenfeld opposed to this viewpoint, claiming the consistency of quantum electro-
dynamics. The point is that the generations of particles existing in Nature are not a prediction
of the theory, rather they are an outside input; in other words, given the particle content, the the-
ory predicts their mutual interactions. In this sense, the failure pointed out by Landau and Peierls
cannot be considered as an inconsistency of the theory, because it can be attributed to an external
fact. Therefore, it does not affect the logical structure of the physical theory. If we found particles
with a vanishing charge/mass ratio, then we would be able to measure sharply the electric field and
quantum electrodynamics would not absolutely be in contrast with such a discovery.

The same argument applied to the gravitational field has a remarkable consequence, related
to the fate of the common accepted notion of space-time. In fact, as Bronstein pointed out, the
requirement that the charge/mass ratio vanishes for the probe used to measure the field cannot be
applied to the gravitational field. The reason being that the gravitational counterpart of the electric
charge is the gravitational mass, therefore the equivalence principle obliges the ratio between the
“gravitational charge” and the inertial mass of the probe to be equal to one for any particle existing
in Nature. Therefore, the equivalence principle seems to put a serious restriction on the possibility
to sharply measure the gravitational field.

This fact suggests that an unavoidable fundamental limit on the measurements accuracy of
the gravitational field exists, affecting, as a consequence, the fundamental structure of space-time.
Furthermore, this could have important implications in the construction of QG, because, as is well
known, QM imposes limitations on the simultaneous measurement of conjugate pairs of fields,
but, following Bohr and Rosenfeld, no limitation on the accuracy of a measurement of one single
field occurs. The Bronstein’s argument suggests to consider the possibility that ordinary quantum
mechanics could be inadequate to describe the quantum theory of a geometric field, in this sense
either a modification of the uncertainty relation comes out naturally from the theory encoding this
intrinsic limitation on the measurements of the gravitational field, or, more speculatively, a different
quantum mechanics, which reduces to the ordinary one in the appropriate limit, should be sought
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to face the problem of QG.

2.2.2 Space-time in classical and quantum mechanics

In accordance to what said above, it is worth stressing once more that QG could radically
change the present concepts of space and time. It could be possible, in fact, that new and unpre-
dictable non-trivial outcomes of the theory oblige us to abandon any intuitive representation of
space and time. In this respect, it is important to understand how the notion of space and time
changes according to the postulates of different physical theories. This is the motivation of the
following discussion, where the different notions of space and time are briefly described.

In classical mechanics space-time is an external fixed and flat structure. In particular, space is
an Euclidean three-dimensional stage for the physical phenomena, R3, while time is represented
by the oriented one dimensional real axes, R. Space and time can be measured with an infinite
precision in classical mechanics. The common idea of space-time acquires a proper operative
meaning as soon as we imagine the existence of a dense array of ideal synchronized clocks beating
the flow of time, while perfect rods sharply measure the distances among clocks, giving in this way
an empiric meaning to the points of space-time.

Quantum mechanics is characterized by a novelty with respect to its classical counterpart; we
are referring to the uncertainty principle. This principle establishes the impossibility to simulta-
neously measure with an infinite precision a pairs of conjugate variables. Spatial coordinates are
the conjugate variables to the momenta along the same axis and can be measured with an infinite
precision at the price to lose any information on the velocities. Therefore, a subtle question about
the evolution of the reference system arises. Indeed, as soon as we have realized that the role of
time in quantum mechanics is identical to the one it plays in classical mechanics,5 we can imagine
to construct the same array of dense ideal clocks to give an operative meaning to the space and time
of QM. But, if the clocks had a finite mass, one should worry about their evolution, in fact, once we
measure their position we lose information on their evolution. This fact suggests the possibility that
the space and time of quantum mechanics acquires an operative meaning only in the limit of infinite
mass clocks. This does not create any embarrassment, because quantum mechanics, as stressed at
the very beginning of this section, completely ignores gravity, then its logical consistency can rely
on the idealization of a physical reference frame constituted by infinitely heavy particles.

The study of the space-time of quantum field theory introduces some features which deserve
to be deepened. As clarified above the background of quantum mechanics is a classical space-
time, in other words we can, with a limiting procedure, measure sharply the position of a particle
in a space-time pictorially represented by a dense array of infinite mass clocks. In particular, in
order to localize a finite mass particle, we consider an interaction between a probe and the particle.
The accuracy of the measure is proportional to the inverse of the energy carried by the probe,
namely, if the probe carries an energy, say, 1/∆X we can localize a particle interacting with the
probe with an accuracy of ∆X . The reason being that the probe results to be confined to a region
of space-time of size ∆X . This means that the sharp localization implies the injection into the

5With the difference that in some extrapolations of the theory an uncertainty relation between time and energy
comes out. However, since time is not an observable in quantum mechanics but only an evolution parameter, the time-
energy uncertainty relation must be interpreted differently with respect the coordinates-momenta one, which, in stead, is
a consequence of the fact that coordinates and momenta are conjugate observables in QM.
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physical system of a greater and greater (in principle infinite) energy. Even though this procedure
does not create any problem in classical quantum mechanics, as soon as we consider a “relativistic
quantum mechanics” a subtle issue crops up. In fact, even though the 4-dimensional picture does
not modify the fundamental structure of space-time, still pictorially described by a dense array of
extremely massive clocks, it introduces the equivalence between mass and energy, which creates
a shortcoming in the above described measuring procedure. Indeed, as soon as the energy carried
by the probe becomes higher than the rest mass of the particle being measured, many copies of the
original particle are produced as a direct effect of the position measurement (injection of energy
into the system).6

In order to avoid any misunderstanding, we want to stress that the sharp localization of an
infinite mass particle is still possible, because in order to produce copies of the same measured
particle an infinite energy is necessary, so, as in ordinary quantum mechanics, no problem exists in
the localization of space-time points.

Concluding we can say that even though the space-time background of quantum field theory
is the same ideal dense array of clocks that we have already introduced in ordinary quantum me-
chanics, in quantum field theory the accuracy of a measurement of the position of a particle is
however limited, the limit being imposed by the measuring procedure itself. In other words, the
coexistence of the Heisenberg uncertainty principle with Special Relativity prevents from obtaining
a sharp measurements of the position of a finite mass particle, even though the concept of classical
space-time is preserved. However, this appear to be no longer possible when gravity is present. On
one side, in fact, quantum mechanics obliges to consider an infinite mass point particle in order to
give sense to a sharp localization procedure, but, on the other side, this is incompatible with GR
for obvious reasons and the entire sharp localization procedure falls into troubles.

2.2.3 Space-time in General Relativity

General Relativity is the theory describing the dynamics of space-time, in this sense even the
shortest discussion implies a deepening into the basic principles and the main ideas which led
Einstein to the formulation of his geometrical theory of the gravitational field. We are not referring
to the construction of the Einstein dynamical equations, but to the more subtle and complicate
“struggle with the meaning of the coordinates.”

Generally speaking, in constructing the field equations of GR one has a number of hints as,
for example, the fact that the static limit of the field equations must be the Newton law, or the
fact that the mass of a particle is the source of the Newtonian gravitational field: Then, the mass
being a form of energy, as Einstein himself clarified in special relativity, it is reasonable that the
energy-momentum tensor be the source of the relativistic field equations. Finally, the concept that
no privileged reference systems exist suggests that the equations have to be covariant under a class
of general coordinates transformations. Einstein, some years before the publication of his most
famous paper in 1915, learned that the only possible combination of second order partial derivatives
of the gravitational field transforming covariantly under general coordinates transformations is the
Riemann tensor. It became soon clear to his mind how the equations of motion of GR had to look

6From another perspective this is the reason why in place of relativistic quantum mechanics, a quantum field theory
is required to describe such phenomena, we need, in fact, a theoretical framework which does not require to fix the
number of particles of the system.
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like. But the subtlest and most striking aspect of GR, which Einstein dedicated himself to for a
long period, regards the philosophical content of the theory: The real novelty introduced by GR is
that coordinates have no physical meaning independently from the value of the physical field and
the trajectories of the physical particles.

The Equations of GR are, in fact, generally covariant, or, in other words, if e a
µ (x) is a solution

of the field equations, then, given the general coordinates transformation y = y(x), also e′ a
ν (y),

e′ a
ν (y(x))

∂yν (x)
∂xµ

= e a
µ (x) , (2.7)

is a solution of the field equations. Physically, this means that the physical laws are the same in all
the reference frames, namely in all coordinates systems.

Now, in order to understand the meaning of general covariance, which will be useful for clari-
fying the structure of space-time of GR, let us consider a region of space-time, say U , containing
the event P, and, assigned in U the system of coordinates X , let us indicate with xP its coordinates.
Let e a

µ (x) be a solution of the generally covariant field equations and let us assume that

R|P = R(xP) = 0 , (2.8)

where R(x) is the Ricci scalar. Suppose now that we decide to change our system of coordinates in
the region U . Specifically, be Y the new system of coordinates and y = F (x) the transformation
law from one system to the other. Thus e′ a

ν (y(x)), obtained from e a
µ (x) via the relation (2.7), is a

solution of the equations of motion too. In other words, e′ a
ν describes the same gravitational field

as e a
µ , but in the Y system of coordinates. Moreover, the Ricci scalar still vanishes around the

point P:
R′
∣∣
P = R′ (yP) = R

(
F−1 (yP)

)
= R(xP) = 0 . (2.9)

Let us now proceed considering the new gravitational field E a
ν defined as follows

E a
ν (x) = e′ a

ν (x) , (2.10)

namely as the primed field in the old system of coordinates X . It is worth stressing that the
gravitational field described by E is different from the one described by e, in particular, altough the
Ricci scalar constructed by e is zero around the point P, namely R(xP) = 0, we cannot draw the
same conclusion for the Ricci scalar of the field E. In fact we have:

R|P = R (xP) = R′ (xP) = R
(
F−1 (xP)

)
. (2.11)

In other words, the Ricci scalar associated to the field E in the space-time point P is given by the
Ricci scalar of e calculated in the point Q = F−1 (xP) and for no reason it must be zero.

It results that, if the gravitational field e is a solution of the equations of motion, E is a solution
too. The reason is that the field E is described in the system of coordinates X by the same function
describing the gravitational field e in the system of coordinates Y ; since the field equations do not
change under a coordinates transformation, if e is a solution, so is E.

This is in essence the content of the so called Einstein’s hole argument. The conclusion of
the above described argument is that the generally covariant field equations are not deterministic,
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because even though e and E are both solutions of the same field equations, they do not determine
the physics at the same space-time point P. For example, while the Ricci scalar associated to the
gravitational field e is zero around P, the same scalar calculated using the field E is in general
different from zero around the same space-time point. Since we know that classical physics is
deterministic we are at a crossroads: either the field equations cannot be generally covariant, or
fixing the space-time event P has no physical meaning.

Einstein had the courage to take the right road, i.e. he understood that there is no physical
meaning in fixing a particular space-time point on a generally covariant space-time. In this respect,
let us consider a solution of the Einstein equations e and two particles moving in this particular
gravitational field. The motion of the particles is described by their respective world lines, x1 (τ)
and x2 (σ), which are determined by the gravitational field. We suppose, without any loss of
generality, that the world lines of the two particles intersect at the space-time event P. Now consider
the gravitational field E = φ∗e, where φ : M → M is a diffeomorphism; obviously the particles
world lines x1 (τ) and x2 (σ) are no longer solutions of the particles equations of motion in the new
gravitational field. In fact, the new particles world lines, determined by the gravitational field E,
can be easily calculated once the world lines in the gravitational field e have been given, they are:

X1 (τ) = [φx1] (τ) and X2 (σ) = [φx2] (σ) . (2.12)

In other words, a diffeomorphism, acting both on the gravitational field and on particles world lines,
sends solutions to solutions. Furthermore, as a consequence of the active diffeomorphism, the parti-
cles do not intersect anymore in P, but in Q = φ (P). So, the fixed point P loses its absolute meaning
and the right physical entity is the point determined by the intersection between the world lines of
the particles. In this sense the theory does not predict the value of the gravitational field around
the space-time point P, but around the point determined by the intersection of two world lines. In
this sense, the issue contained in the hole argument is solved, the theory is deterministic because it
predicts the same value of the gravitational field around the same physical (namely determined via
a diffeomorphisms invariant construction) space-time point. In other words, the characteristics of
the gravitational field e around the intersection of the world lines x1 (τ) and x2 (σ), for example the
flatness of space-time around this point, are exactly mimed by the gravitational field E around the
intersection of the world lines X1 (τ) and X2 (σ). This means that the theory has a gauge invariance
in the sense of Dirac: different solutions, correlated by gauge transformations, represent the same
physical situations (see § 3.3). The gauge group is the group of diffeomorphisms, which reflects the
fact that the localization of an event is not an absolute procedure, but is related to the particles and
fields themselves. We will see in paragraph 2.2.5 that the diffeomorphisms invariance has striking
consequences on the theory, which, as a consequence, can be characterized as a partly relational
theory.

Therefore the space-time of GR is a classical structure, but it is not absolute as in classical
and quantum mechanics. In other words, it is of course possible to localize sharply a point on
a generally covariant space-time, but the localization procedure requires the presence of particles
and fields. In particular the diffeomorphisms invariant procedure for the localization of an event is
based on the possibility to sharply recognize the points of intersection between the world lines of
particles.
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2.2.4 Space-time in Quantum Gravity

What we are going to say here must be intended by the reader as an attempt to explain why
the idea of an absolute limit on the localization of an event has a so long tradition in the quantum
gravity research. We cannot of course give a complete and consistent description of space-time in
quantum gravity simply because the existing theories give us only a pictorial idea of how quantum
space-time could be. So we do not pretend neither to introduce new insights into the quantum
gravity problem nor to give a new pictorial description of quantum space-time. Nevertheless, we
think it could be useful and interesting to investigate how to give an operative meaning to the
localization of an event in a theory that should incorporate both the general covariance and the
quantum uncertainty principles.

In this respect, we want to summarize the conclusion obtained before:

1. in order to satisfy the principle of general covariance, the localization of space-time events
must be realized via a diffeomorphisms invariant procedure;

2. the quantum uncertainty does not allow to localize sharply a finite mass particle, because this
would require the injection into the system of such a quantity of energy that it is impossible
to neglect the creation of copies of the analyzed particle.

Let us now construct a physical diffeomorphisms invariant procedure of localization. In order to
localize an event we need at least two interacting particles, moving along their world lines, we
consider a massive particle and a probe able to interact with the particle. We know from what
stated above that the larger is the mass of the particle greater is the accuracy of the localization:
the relation between the energy of the probe and the uncertainty in the localization of the particle
is E = (∆x)−1. The physical explanation of this formula is simple: in order to determine the
position of an object with a given accuracy ∆x we have to use a probe, represented by a massless
particle interacting with the system under study, localized in a region at least comparable with
the accuracy we require for the experiment. The localization of the probe is proportional to its
Compton wavelength, so the accuracy of the experiment is proportional to the inverse of the energy
of the probe. It is well known that to reveal smaller and smaller structures in particles physics we
have to use larger and larger energy test particles. In this specific context, we have to consider also
the presence of the gravitational field, which fixes a limit on the energy of the system. Indeed, it is
necessary that the Compton wavelength of the system is larger than its Schwarzschild radius, this
means that the energy during the interaction must be smaller than the Planck mass. We consider in
this pictorial context the ideal scattering process, which consists in a collision between a massless
probe and a particle of mass M, the collision lasts for a time ∆t. During this period of time the
system is considered frozen. We can compute the typical time of the interaction ∆t by a very
simple argument: It is the time a signal takes to exchange information between the probe and the
particle, so it is at most equal to the distance ∆x. The energy contained in the gravitational field
during the interaction is V ≈ `2

PlEM
∆t , where E is the energy of the probe. During the collision the

total energy of the system must be smaller than the Planck mass MPl = `−1
Pl , thus we can write the

following relation
`2

PlEM
∆t

< MPl = `−1
Pl . (2.13)
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Now, remembering that the spatial displacement between the probe and the particle is at most equal
to the accuracy of the localization and that the best we can do is to increase the energy of the probe
till to the mass of the particle (in order to avoid the creation of copies of the particle under study),
by using the relation above we obtain:

`2
Pl

(∆x)3 < MPl . (2.14)

From the expression above we deduce that

∆x > `Pl , (2.15)

namely the best accuracy we can determine the position of a particle is greater than the Planck
length.

So space-time in Quantum Gravity is not classical. In other words, taking into account both
the general covariance and the quantum uncertainty principle, we cannot sharply localize an event
because there is an intrinsic limit given by the Planck length in the accuracy of a localization
procedure. As a consequence, all the intuitive concepts about space and time must be abandoned
in a Quantum Gravity theory, the resulting space-time structure is genuinely non classical [2, 4].
More radically, we could say that in Quantum Gravity space-time does not exist at all, in its place
we have a fuzzy quantum structure, which fits well with the pictorial representation Wheeler gave
many years ago: Quantum space-time should appear like a foam. The quantum foam is a state
of the gravitational field, which, at that stage, cannot be identified with a measurable structure
in a proper sense. In fact, what is generally intended as space-time fits well with its classical
actualization. The quantum foam, instead, cannot be considered as a space-time, for example the
existence of a minimum length suggests a fundamental discrete (non-continuous) structure. In order
to reintroduce the common concept of space-time in Quantum Gravity, namely as a measurement
of the time elapsing between two events and the spatial distances separating two disjoint events,
we have to give it a different status. We mean, considering it as an “actualization”, rather than
an “idealization”. One way to “actualize” it is through a relational procedure, which is the next
argument we want to discuss.

2.2.5 Relational versus Absolute space-time

The discussion about relational or absolute space-time could appear as a pure philosophical
one, in stead it regards profoundly Physics and the debate is still open and stimulating [15, 16, 17]
(and references therein). This debate is a long standing one and can be traced back to publication
of Newton’s Principia Mathematica in 1687. In his book Newton espoused an absolute notion of
space-time, according to which the geometry of space-time provided a fixed, eternal and immutable
background structure on which particles move. In striking contrast with Descartes, Leibniz, Huy-
gens, who, in stead, espoused the relational point of view, according to which space-time has to
be intended as a set of “relations” among real objects and events [29] (detailed discussions on this
argument can be found in [18, 19, 20]). The Newton’s absolute view won against relationalism,
supported by the great empirical success Newtonian mechanics had and, for a long period, no
doubts were raised on which notion of space-time Physics should be based on. But the general
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covariance principle introduced by Einstein and mathematically expressed via the invariance under
diffeomorphisms seems to destroy the Newtonian absolute description of space-time. Essentially,
in the Einstein theory fixed space-time is replaced by a dynamical structure on which the events are
no longer points with assigned coordinates, but interactions between physical particles: in other
words relations. So, the relational point of view deserves to be taken in serious consideration as
directly suggested by the commonly accepted theory describing space-time and gravitation.

So the question we want try to answer is: to what extent is GR a relational theory? Obvi-
ously, to answer to this question we have to capture the differences between Newton and Einstein
mechanics, as we are going to do, taking into account the “space-time limitations” we have.

Newton’s mechanics is based on the existence and physical definition of inertial reference
frames. They play a central role in all the classical theories. In particular, they allow to distinguish
between accelerating and uniformly moving point particles. In fact, once fixed an inertial reference
system, the distinction between what is accelerating and what is moving uniformly is a property
of the geometry of the absolute space-time (background), which is completely independent of the
configuration of the matter. In other words, in Newtonian physics there is a clear and absolute
distinction between inertial and non-inertial motion. Furthermore, this distinction does not depend
on something internal to the physical system, but only on the external geometrical properties of
space-time. Physically, we can distinguish between accelerated or uniformly moving particles by
looking at the geometry of the reference frame glued to a generic particle: The presence of non-
inertial forces allows us to make the distinction. This viewpoint was challenged by Mach, who
proposed to eliminate absolute space-time as a cause of distinction between accelerating and non-
accelerating motion, replacing it with a dynamically determining procedure. According to Mach,
the distinction between accelerating and non-accelerating motion should be determined via the
relations between all the structures which compose the whole Universe.

Mach’s idea strongly influenced Einstein, who realized that acceleration should be determined
with respect to a reference frame dynamically determined by the configuration of the whole system.
As a consequence it does not exist any privileged reference frame in the Universe and physical
laws must be equivalent in all the frames. Now, since local reference frames are strictly connected
with the geometry of space-time, then space-time itself becomes a dynamical field, no more fixed
and immutable, but interacting with matter and affected by the matter content of the system. The
equivalence of any reference frame, mathematically expressed by the invariance of the theory under
general coordinates transformations, suggested the name General Relativity for such a theory of
space-time. It is worth noting that, even though Einstein was surely influenced by Mach, we cannot
naively conclude that GR is a Machian theory [2], but, on the other hand, we can say that GR is, by
construction, a partly relational theory as we are going to motivate.

Generally, a physical theory postulates that Nature is made up of a very large collection of
elements. The form of the physical theory is based on the properties acquired by these physi-
cal entities. These properties, in an absolute theory, are referred to a fixed structure as, e.g., the
Newtonian space-time, where the properties of the particles are described by their coordinates on
space-time, evolving with respect to the absolute time t. Put differently, space-time plays the role
of background to which the dynamics is referred. The same role is played by a regular lattice, often
used in the framework of particles physics, in fact particles or fields are confined on the nodes of
the lattice, which does not change in time. The main assumption of a relational theory is that there
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does not exist any background; so the question is: to which structure is the dynamics referred? The
relational view presumes that the fundamental properties of the elementary entities consist entirely
in relations between the elementary entities themselves. Dynamics concerns with the changes of
these relations. The pictorial description of a relational theory is a graph [2], where the nodes rep-
resents the entities, while their properties are incorporated in the connections between the nodes.
The state of the system is just the structure of the links between the nodes and the dynamics is the
law which determines the changes of connections (relations) between different nodes. It is impor-
tant not to confuse the pictorial description of a relational graph with the common image everyone
has of a regular lattice. In this respect, it is worth noting that the pictorial description of a rela-
tional system is completely abstract, while a regular lattice describes a precise physical situation,
i.e. continuous space-time is substituted by a lattice and fields dynamics is referred to this discrete
fixed and external structure.

In relational theories also time loses its usual meaning. Evolution is, in general, incorporated
in the changing of relations between the physical entities and, since time is the parameter of the
evolution itself, it acquires a relational meaning as well. The concept of relational time has a great
importance in QG (see [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and references
therein).

Having described what we mean when we speak about relationalism, let us now focus the
attention on GR. GR is a complicated theory describing all the manifestations of the gravitational
interaction, in particular it describes gravitationally dominated subsystems of the Universe as, for
example, black holes or gravitationally bound systems. In some models describing subsystems of
the Universe, generally we impose conditions on the fields and metric at the boundary, in this case
the question whether or not GR is a relational theory is not interesting [29], because imposing the
boundary conditions is equivalent to introduce a background. Moreover, the existence of a region
of space-time which is external to the system we are modeling would imply that the theory is not
a fundamental one. But GR is widely believed to be the theory describing the whole Universe, in
other words GR is considered the best candidate for a cosmological theory. This fact is absolutely
not in contrast with the fact that the same theory, with suitable boundary or asymptotic conditions,
could describe subsystems of the Universe, although one could expect that some modifications ap-
pear in the dynamical equations, as for example a non-vanishing cosmological constant. Anyway,
this argument is not affected by the choice of a particular dynamics, which regards a completely
different problem with respect to the relational content of the theory, mainly related to the funda-
mental concepts the theory is based on. Therefore, assuming that GR is a cosmological theory, the
question whether or not GR is a relational theory acquires a profound meaning.

GR contains a lot of structures, which are fixed a priori, they are: dimensions, signature, topol-
ogy and differential structure. All these structures belong to what is intended as “background,” in
fact, they can be varied from model to model, but they are fixed and are not subjected to dynamical
laws. More precisely, they describe the manifold M ; in stead, the metric gµν and tensor fields T (a)

are the dynamical entities of the theory. So, a space-time corresponds to a determination of the
manifold, metric and fields, namely

(
M ,gµν ;T (a)

)
. But, in order to define a physical space-time,

we have to take into account the gauge freedom of the theory, which, as described in paragraph
2.2.3, is encoded in the invariance under the group of diffeomorphisms. Therefore we define a
physical space-time as an equivalence class of manifolds, metrics and fields under the action of the
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group Di f f (M ). We denote the equivalence class as
{
M ,gµν ;T (a)

}
. Now, as already mentioned,

the points and open sets of the manifold M are not preserved under the action of the diffeomor-
phisms group. Diffeomorphisms send points to other points, in this sense the information encoded
in the physical space-time is a system of relations between the fields, rather than a collection of
the values fields take in the generic points of the manifold. Then, apart from the specification of
topology, signature, dimensions and differential structure, GR is a relational physical theory.

It remains to answer a question: which is the physical entity replacing the Newton’s absolute
space-time? The answer is now simple: it is the gravitational field! In other words, it is the
gravitational field that tells objects if they are accelerating or not. This is the profound difference
between Newton’s and Einstein’s mechanics. In Newton mechanics the whole dynamics is referred
to an absolute structure external to the system, in Einstein’s mechanics the dynamics is referred to
the dynamical gravitational field, carrying out the relational idea.

2.3 Possible phenomenological implications of QG

Generally speaking, a quantum theory of gravity should incorporate a sort of space-time foam
[31, 32]. The physical Nature of this foam depends on the theory describing the quantum effects
of gravity, but its phenomenological implications are shared by the different approaches to QG. In
particular, a possible candidate for a quantum gravity effect is an energy dependent electromagnetic
dispersion relation in vacuo. The modified dispersion relation we analyze is of the following form

p2 = E2
(

1+ f
(

E
EQG

))
, (2.16)

where EQG is an effective quantum gravity energy, which can be identified with the Planck energy,
but in some model, as for example, large extra-dimensions theories, it could be even lesser than
the Planck energy. Now, let us suppose for simplicity that the Hamilton equations of motion are
approximately valid in the present scenario, then the velocity of the particle follows from equation
(2.16) and, for energies much lesser than the Planck scale, it results to be:

v =
∂E
∂ p
≈ 1−ξ

E
EQG

, (2.17)

where ξ is a positive or negative factor, which should be fixed by the particular framework.
Before deepening into the phenomenological aspects, let us first briefly review how modified

laws for the propagation of particles have emerged independently in different quantum-gravity ap-
proaches. It was generally believed that QG effects interest too high energies to be experimented,
until some years ago the first suggestions that quantum-gravitational fluctuations might modify
particles propagation in an observable way began to appear [33, 34]. As a consequence, different
classes of physical phenomena began to be studied. In particular, the effect that a modification in
the particles propagation could have on the neutral kaon system [35, 36] was tested in laboratory
experiments, fixing a lower limits on parameters analogous to EQG [37]. Other examples of quan-
tum gravitational effects more related to String Theory and LQG can be found in [38] (see also [39]
for another string motivated deformation) and [40, 41]. Deformed dispersion relations, consistent
with the formula above, arise also in other approaches as the “κ” quantum deformations of the
Poincaré symmetry [42, 43] or quantization of point particles on a discrete space-times [44].
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Let us now deepen into the problem of finding a physical system which can be used to test
such a deformation on the dispersion relation. Surely the deformation on the velocity of the photon
in (2.17) is really small for practical purpose, nevertheless it could give a sensible effect if photons
of different energies travel for a very long distance before being detected. In particular photons of
different energies emitted at the same time acquire a relative time delay over a distance L of the
order

∆t ≈ ξ L
∆E
EQG

. (2.18)

So, wider is the spectrum of the emitted photons and larger the distance traveled, greater will be
the time-delay effect. In this respect, the best candidates to observe such an effect are Gamma Ray
Bursts (GRB).

GRBs are, in fact, explosive events at cosmological distances. The typical spectrum of emis-
sion is in the range 0.1−100 MeV, but it can extend up to the TeV scale. Moreover, a time structure
of the order of the millisecond is typically observed in the light curves. It should result now clear
why GRB are good candidates to study the effects of deformation in the dispersion relation. By
a simple calculation it results that a GRB with a time structure of the order of the milliseconds,
emitting photons of energy of the order of few MeVs and at a distance of≈ 1026 m≈ 1010 ly, could
test the QG structure up to EQG ≈ 1019 GeV. Sensible sensitivities can be already obtainable from
the existing GRB’s data and we address the interested readers to [5, 6] and in particular to [45, 46].
It is clear that the same time-delay effects in the arrival time of photons of different energies could
be due to a possible tiny photons mass, or to interaction with the interstellar medium, but a simple
analysis excludes these possibilities.

We conclude this introductory section stressing the importance that this kind of phenomeno-
logical studies could have on the research in QG, as well as a possible bridge with particles physics.

3. Preliminaries

This Section is dedicated to describe some fundamental arguments considered as preliminary,
in the sense that they represent the foundations which the forthcoming discussion is based on.
They are pretty general and unrelated arguments, very well described in many books, in which
many more details can be found. Here I collected the main results and definitions, according to
my own experience as student, inspired by my own notes taken during courses and referring to my
favorite textbooks. So the description is far from being complete and I exhort the interested readers
to refer to the cited Literature for a more complete treatment.

As I said in the Introduction, the focus of this paper is on the canonical formulation of GR.
In this respect, it is important to realize that in order to canonically formulate any theory, we have
to clarify the causal structure of space-time. This is a trivial task when we treat gauge theories
on a flat Minkowski fixed background, but everything becomes more involved when the dynamics
of the theory directly concerns the geometrical structure of the space-time itself as in GR. In fact,
the identification of the gravitational field with the geometry of space-time implies that some re-
strictions have to be imposed on its global (causal) structure in order to canonically formalize the
theory. In particular, we have to clearly understand under which conditions it is possible to “split”
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space-time and describe the dynamics of the gravitational field as the time evolution of a geometri-
cal spatial quantity.7 It is important to understand that this is a necessary step to consistently define
a canonical theory; we recall, in this respect, that, in fact, in classical mechanics, the Hamiltonian
can be considered as the momentum conjugate to the time coordinate. This should give an idea of
how much complicated the situation is in GR, since the invariance under diffeomorphisms prevents
from determining a preferred time coordinate and, in general, it does not exist any global system
of coordinates.

For this reason, we consider the study of the causal structure of space-time as the natural
starting point for the canonical formulation of gravity. In particular, the scope of the first part of
this Section is the introduction of the Geroch theorem, which clarifies under which hypotheses
a global time function can be assigned on a generic space-time. In this sense, the Geroch theo-
rem restricts the class of space-times whose dynamics can be canonically formulated, generating a
question about the resulting canonical quantum theory: Is canonical quantum gravity applicable to
a restricted class of space-times as well, or the classical conditions can be relaxed in the quantum
theory? Up to my understanding, this question cannot be rigorously answered until a complete
canonical quantum gravity theory has been formulated; nevertheless, since the canonical quantiza-
tion procedure is, generally speaking, a mathematical tool to face the problem of quantization, once
the procedure has been rigorously completed, it is reasonable to expect that the resulting quantum
theory will not be affected by purely classical restrictions, which are naturally relaxed by the quan-
tization in a very precise and suggestive sense: In a complete theory of QG there is no room for
space-time.

The discussion of the causal structure of space-time and the subsequent canonical formulation
of gravity, open the way to another interesting argument, namely the initial value formulation of
a theory with gauge symmetries and, in particular, of GR. It should be clear that, in fact, once
rewritten GR as describing the “time” evolution of a 3-dimensional geometry, it is expectable that
an initial value problem can be consistently formulated by assigning a complete set of initial data
on the initial spatial hypersurface. Generally speaking, physical theories are formulated on a fixed
Minkowski space-time and the task of the initial value problem is to extract the (unique) evolution
of a classical physical system starting from a complete set of initial data, as referred to an external
fixed background. In this sense, the case of GR is much more involved. We cannot, in fact, refer
the evolution of the initial data to a preferred background, rather the theory describes the evolution
of the background itself, once assigned a particular starting configuration for the metric and its
time derivatives. In other words, the fact that the gauge symmetries of GR are mathematically
described by the group of 4-diffs complicates the formulation of a well posed initial value problem,
not only from a mathematical perspective, but also conceptually. Nevertheless, a suitably adapted
procedure can be applied to GR in order to assign a well posed initial value problem and extract a
unique evolution from the Einstein equations, even though with some limitations.

In order to introduce the reader into this argument, we start by briefly recalling some elements
of group theory, useful to introduce gauge theories, which will be used as a useful example in what
follows. In particular at to make the general description of the canonical formulation of a gauge

7It is worth noting that the word time here does not refer to the quantity measured by using clocks, which, on the
one hand, would imply that the space-time metric is completely determined, but, on the other hand, it is the unknown
variable in the Einstein equations.
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theory more concrete, we will refer to the simple case of the electromagnetic field, which is a gauge
theory of the abelian group U(1).

Finally, once the causal structure of space-time has been clarified and the generalities about
the electromagnetic theory described, we face the problem of the initial value formulation giving
a brief account of the main theorems used to study the problem. Also in facing this argument the
electromagnetic theory will be useful, providing a simple, but non-trivial example to show how
gauge symmetries enters in the formulation of an initial value problem for a classical system.

3.1 Causal Structure of space-time

The causal structure of flat Minkowski space-time is very simple and intuitive: Once a limit
on the propagation of a signal is fixed, we can associate to any event p in space-time a light cone.
The future is represented by a half cone, while the past is represented by the other half. The events
contained in the future half of the light cone can be reached by a matter particle leaving from p,
all these events are generally referred as chronological future of p. More generally, all the events
lying in the interior of the future light cone together with those on the cone itself represent the
causal future, physically representing all the events which can be, in principle, influenced by a
signal emitted from p.

The causal structure on a generic manifold M is only locally similar to that of flat space,
globally, in fact, the situation can be much more complicate. Obviously, in this brief paragraph we
cannot give a complete account of the causal structure of a generic space-time. Our aim is to give
only a sketch of the problematic coming out studying the causal structure of a general space-time.
Non-trivial topologies or space-time singularities in general complicate enormously the situation,
so we restrict the discussion by pointing out only those definitions, theorems, and lemmas we
consider useful for what will be said below. For a more detailed description of the causal structure
and the problem of singularities in GR, we address the reader to the book of Wald [9] from which
we extracted the main theorems of this Section and to the book of Hawking and Ellis [10] in which
one can find complete demonstrations.

Let me begin giving a simple, but important

Definition 3.1. The space-time (M,gµν) is time orientable, if ∀p ∈ M it is possible to make a
continuous designation of future and past.

The simplicity of this definition stands in its intuitiveness, the importance, instead, is connected
with the necessity to distinguish a particular class of space-times: in what follows we will always
refer to time orientable space-times. It is simple to understand that in general a non-simply con-
nected space-time cannot be time orientable; from the physical viewpoint in a non-time orientable
space-time we cannot consistently distinguish between going “forward in time” or “backward in
time”. Time orientable space-times satisfy the property expressed by the following

Lemma 3.1. Let (M,gµν) a time orientable space-time, then there exists a non-unique smooth
non-vanishing time-like vector field tµ on M.

The proof of this Lemma is based on the paracompactness of M and we address the reader to [9] for
a complete proof. It is interesting to note that the above Lemma suggests a more useful definition
in order to designate time orientable space-times:
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Definition 3.2. The space-time (M,gµν) is time orientable, if there exists on M a time-like, contin-
uous, non-vanishing vector field.

For the sake of completeness and selfconsistency of the material presented in this work we recall
also the following well known definitions:

Definition 3.3. A differentiable curve γ(t) is said to be a future directed time-like curve, if at each
p ∈ γ the tangent vector tµ is time-like and future directed.

It is simple to generalize this definition to future directed causal curve, it is sufficient to replace the
adjective “time-like” with “causal”. The next definition automatically follows

Definition 3.4. The set of events that can be reached by a future directed time-like curve starting
from p represents the chronological future of p, namely

I+(p) = {q ∈ M : ∃λ (t) (future directed time-like curve) with λ (0) = p ; λ (1) = q} .

Again the definition of causal future is the same of that for chronological future except substituting
the words “future directed time-like curve” with “future directed causal curve”. Finally we remark
that

Definition 3.5. For any subset S⊂M

I+(S) =
⋃
p∈S

I+(p).

It is worth noting that, even though in Minkowski space-time I+(p) consists of the interior of
the future light cone, in an arbitrary space-time the situation could be more complicated and the
usual properties of flat spaces are in general not applicable to arbitrary space-times (it is simple
to construct examples of pathological arbitrary space-times removing points from flat Minkowski
space). However, at least locally, the same properties remain valid as stated by the following

Theorem 3.1. Let (M,gµν) be an arbitrary space-time and let p ∈ M. Then there exists a convex
normal neighborhood of p, i.e., an open set U with p ∈ U such that ∀q , r ∈ U there exists a
unique geodesic γ connecting q and r and staying entirely within U. Furthermore for any such
U, I+(p)|U consists of all points reached by future directed time-like geodesics starting from p
and contained within U, where I+(p)|U denotes the chronological future of p in the space-time

(U,gµν). In addition
·
I +(p)|U is generated by the future directed null geodesics in U emanating

from p.

The fact that all general relativistic space-times have locally the same qualitative causal struc-
ture as Minkowski space-time, means that globally remarkable differences could appear. As a
consequence space-time could be not causally well behaving. In order to clarify this point con-
sider, for instance, a space-time with topology S1 ×R3, constructed identifying the t = 0 and
t = 1 hyperplanes of Minkowski flat space. It is easy to realize that in such a space-time an
observer should have no difficulty in altering past events; in fact, the integral curves with tan-
gent vector tµ = (∂/∂ t)µ will be closed and time-like. As a consequence, we have ∀ p ∈ M,
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I+(p) = I+(p) = M [9]. Although the previous example could seem rather artificial, we stress
that many general space-times with the property of allowing closed time-like curves exist and they
occur in much less artificial examples than that described above.

From a physical perspective space-times with non-trivial closed causal curves cannot be con-
sidered physically realistic, because an observer could alter past events. From a mathematical point
of view we have to assure that time-like geodesics do not intersect themselves. But the problem
is slightly more complicated than it could appear at a first glance, the reason being that we have
also to consider physically unreasonable those space-times in which time-like geodesics come “ar-
bitrarily close” to intersect themselves (without doing it). They could, in fact, violate the causality
condition if a small perturbation of the metric occur. Then we characterize physical space-times as

Definition 3.6. A space-time (M,gµν) is said to be strongly causal if ∀ p ∈M and every neighbor-
hood U of p, there exists a neighborhood V of p contained in U, i.e., V ⊂U such that no causal
curve intersects V more than once.

So, strongly causal space-time are characterized by the fact that causal curves cannot come arbi-
trarily close to themselves, but this is not sufficient to assure that one is not on the verge to violate
physical causality. For this reason it is in general reasonable to give a stronger notion of causality
as follows:

Definition 3.7. A space-time (M,gµν) is said to be stably causal if there exists a continuous non-
vanishing time-like vector field tµ such that the space time (M, g̃µν), where

g̃µν = gµν − tµtν (3.1)

possesses no closed time-like curve.

The definition of stable causality avoids that a strong causal space-time could violate causality
by perturbing the metric. A perturbation of the metric could, in fact, “open out” the light cone
so much that a causal curve can come arbitrarily close to itself. The light cones of space-time
(M, g̃µν) is strictly larger than that of (M,gµν), consequently if closed time-like curves do not exist
for (M, g̃µν), surely they will not exist for (M,gµν) too.

For our purposes, the content of the next theorem is particularly important.

Theorem 3.2. A space-time (M,gµν) is stably causal if and only if there exists a differentiable
function f on M such that ∇µ f is a past directed time-like vector field.

Or, in other words, a stably causal space-time is equivalent to the existence of a global time func-
tion. For brevity we do not give the proof of this theorem here, but we address the reader to [9, 10]
for the details of the proof. Furthermore it is important to quote the result contained in the following

Corollary 1. Stable causality implies strong causality.

This result is, in a certain sense, expectable and allows us to conclude that stable causality is the
appropriate notion to be sure that a space-time is not going to violate causality, which is a crucial
request for all physical reasonable space-times.

Above we give the definition of causality, namely we studied the collection of events I+(S)
which can be influenced by a set of events S, now we want to study the collection of events “com-
pletely determined” by a set of events S. Above all, we have to give the following two definitions:
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Definition 3.8. A set S is said achronal if I+(S)∩S = 0.

Definition 3.9. Let S be an achronal set, the future domain of dependence of S, D+(S), is the
collection of events p such that every past inextendible causal curve passing through p intersect S.

It is worth noting that the following relations hold S ⊂ D+(S) and, S being achronal, D+(S)∩
I−(S) = 0. The physical importance of the future domain of dependence relies on the fact that,
since no signal can travel faster than light, then any signal received in p ∈ D+(S) must have been
registered on S, therefore giving suitable initial conditions on S, we should be able to predict what
will happen in P. On the other hand if p ∈ I+(S), but p /∈ D+(S) it is possible to reach p with
a signal not passing through S. In general the full domain of dependence of an achronal set S is
defined as D(S) = D+(S)∪D−(S) and physically represents the complete set of events which can
be completely determined in future and past by fixing initial conditions on S.

Definition 3.10. A closed achronal set Σ of M such that D(Σ) = M is said a Cauchy surface.

Now since the edge of an achronal set S is the set of point p ∈ S such that every open neighborhood
U of p contains two point q ∈ I+(S) and r ∈ I−(S) and a time-like curve λ (t) from r to q which
does not intersect S; then it follows that the edge of a Cauchy surface is empty. Therefore, by the
following

Theorem 3.3. Let S be a closed achronal set with edge (S) = 0, then S is a three-dimensional,
embedded, C0 submanifold of M,

we can conclude that the Cauchy surface is a 3-dimensional embedded C0 submanifold of M. More-
over since Σ is achronal, it represents an “instant of time” of the Universe [9]. As a consequence,
we give the following

Definition 3.11. (Wald [9]) A space-time (M,gµν) which possessing a Cauchy surface is globally
hyperbolic.

So, in a global hyperbolic space-time, we can predict or retrodict the entire evolution of the Uni-
verse by assigning suitable initial condition on the Cauchy surface Σ. Established the importance
of globally hyperbolic space-time, we want to give a criterion for recognize globally hyperbolic
space-times. In this respect, the first step is to introduce the so called Cauchy horizons:

Definition 3.12. Let S be an achronal set, the future Cauchy horizon of S, denoted by H+(S) is

H+(S) = D+(S)− I−
[
D+(S)

]
and let us immediately quote the following

Proposition 3.1. Being H(S) = H+(S)∪H−(S) and being
•
D(S) the boundary of the future domain

of dependence, we have

H(S) =
•
D(S) .

From the above proposition follows the following
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Corollary 2. If M is connected then a non-empty closed achronal set Σ is a Cauchy surface if and
only if H(S) = 0.

Proof. If H(S) = 0 then by the proposition follows
•
D(S) = 0, thus D(S) = int[D(S)] = D(S),

so D(S) is simultaneously closed and open, but the only sets both open and closed are the empty
set and the entire set, so we conclude D(S) = M.

This corollary allows us to enunciate the following theorem, which represent a useful criterion to
establish if a surface embedded in a manifold is a Cauchy surface:

Theorem 3.4. If Σ is a closed achronal edgeless set, then Σ is a Cauchy surface if and only if every
inextendible null geodesic intersects Σ and enters I+(S) and I−(S).

Now, it is easy to understand that, if a space-time is globally hyperbolic, then no closed time-
like curves can exist in M, because either a closed time-like (or causal) curve never intersects the
Cauchy surface Σ violating global hyperbolicity or it intersects Σ twice violating achronality. This
fact suggests that global hyperbolic space-times have a “well causal behaviour”, as stated by the
following

Theorem 3.5. (Geroch 1970 [47]). Let (M,gµν) be a globally hyperbolic space-time. Then (M,gµν)
is stably causal. Furthermore, a global time function, t, can be chosen such that each surface of
constant t is a Cauchy surface. Thus M can be foliated by Cauchy surfaces and the topology of M
is R×Σ, where Σ denotes any Cauchy surface.

We refrain from giving the proof of this famous theorem addressing the interested reader to the
original reference, nevertheless we want to stress its importance in view of the canonical approach
and quantization of gravity. The Geroch’s theorem, in fact, allows to recast the gravitational action
in the canonical form operating a 3 + 1 foliation of space-time, extracting a continuous function,
which will play the role of evolution parameter. It will be clear that the dynamical degrees of
freedom of the gravitational field are entirely contained in the geometry (metric modulo diffeo-
morphisms) of the 3-dimensional Cauchy surface. Pictorially, the evolution of the system can be
described registering the changes of the 3-geometry going from one Cauchy surface to the next
one, following the integral curve of the past directed time-like vector field ∇µt.

3.2 Elements of group theory

Let us now completely change argument, introducing some elements of group theory. Group
theory represents one of the main tool to construct gauge theories of physical interactions. Here, we
describe some of the elements necessary to this scope, refraining from deepen into the interesting
geometrical aspects of gauge theories, related, e.g., to the theory of fiber bundles. This, even though
important to appreciate the general mathematical structure of this framework, in fact, would lead
us away from the scope of this paper.

So let us start from the following

Definition 3.13. Let G and G ′ be groups, thus a map f : G → G ′ is an homomorphism if ∀g1,g2 ∈
G we have f (g1g2) = f (g1) f (g2). A homomorphism h : G → GL(V ) is called a representation of
the group G and V is called the representation space. The representation is said to be of dimension
N if the representation space is N-dimensional.
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A gauge theory can be constructed by using any compact group G, we recall that a group is said
compact if the parameters which describe the group take values in a compact set. In what follows,
we will focus our attention on the compact group SU(N), which is represented by the special
group of the unitary N×N matrices. Its fundamental representation is N dimensional, indeed, if
g ∈ SU(N) is an element of the group, we have that its representation U = h(g) is a unitary N×N
matrix, which acts on a N-dimensional complex space. Using the direct product, we can construct
many other representations, which are in general reducible, usually called tensorial representation.
For instance, let us consider the tensorial representation space V ⊗V , on which the elements of the
group act as follows: UikU jlvkl = v′i j. In general this representation is reducible, as one can verify
constructing group invariants. Another possible representation is the conjugate one, which acts as
well as the fundamental representation on the space V , consequently they have the same dimension.
Usually, the N-dimensional conjugate representation is denoted by the symbol N. Remarkably, the
conjugate representation of the group SU(2) is equivalent to the fundamental one.8

Before going further introducing the so called adjoint representation, we briefly describe
the parametrization of the group SU(N). In order to understand which is the most convenient
parametrization for this group, we observe that the generic unitary matrix U can be rewritten as

U = eiλ , with λ = λ
† , (3.2)

furthermore if U ∈ SU(N)⇒ Trλ = 0, so the group SU(N) can be parametrized by the hermitian
matrices with null trace and, as a consequence, is determined by N2−1 parameters.

Let λ a with a = 1,2...,N2−1 be a basis on the space of the N×N hermitian matrices, H, with
the orthogonality condition

Tr
(

λ
a
λ

b
)

=
1
2

δ
ab (3.3)

and commutation relation [
λ

a,λ b
]

= i f abc
λ

c , (3.4)

easily justifiable by considering that the commutator of two hermitian matrices is an anti-hermitian
matrix. The structure constants of the group, f abc, turn out to be real and completely antisymmetric
in the exchange of their three indexes. The λ a matrices are said generators of the SU(N) group.

Therefore, the generic element U ∈ SU(N) can be rewritten as

U = eigaλ a
, where ga ∈R, λ

a ∈ H, with Trλ
a = 0 . (3.5)

Let us now consider the action of a SU(N) operator infinitesimally close to the identity on
the representation space. This can be parametrized by the first order expansion of the general
parametrization (3.5), in symbols we have: eigaλ a

= I + igaλ a. The elements of the group in the
connected component of the identity generate the algebra of SU(N), which useful for the construc-
tion of gauge theories. In this respect, we want to anticipate here that the canonical constraints
we are going to calculate below are the generators of small gauge transformations only, i.e. they
generate those gauge transformations in the connected component of the identity. In other words,
the behavior of the states of the theory under large gauge transformations, i.e. those generated by

8Two representations are said equivalent if it exists a unitary map W : h1 (g)→ h2 (g), such that Wh1 (g)W † =
h2 (g) , ∀g.
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the elements of the group characterized by a non-vanishing winding number (see the Appendix B),
cannot be deduced by the theory. This leads to an extremely interesting issue. The observables
of a gauge theory are, in fact, invariant under the full group, so they can be used to super-select
states of the theory belonging to gauge sectors characterized by different winding numbers. From
this perspective the global (and in general non-trivial) structure of the gauge group enters in the
physical outcomes of the theory.9

By considering the direct product between the fundamental and the conjugate representations,
we can construct the following representation, acting on N×N matrices as follows:

v
′
i j = UikU∗jlvkl where U ∈ SU(N), vkl ∈V ⊗V . (3.6)

The adjoint representation is reducible, to decompose it in its irreducible components, let us iden-
tify the generic element vkl of the vector space as the “kl” entry of the matrix W , thus we have

W
′
= UWU+ . (3.7)

It is worth noting that the hermitian matrices form an invariant subspace,10 as one can easily verify.
The trace is an invariant too, so that we can reduce the representation considering the subspace
formed by the hermitian matrices with null trace.

The representation acting on the N ×N hermitian matrices with null trace is called adjoint
representation and has dimension N2−1.

Let us now study the algebraic structure of the adjoint representation. We consider an infinites-
imal transformation, which acts on the hermitian traceless matrix V , we have:

V
′
= UVU+ = (I + iga

λ
a)V

(
I− igb

λ
b
)

= V + igb
[
λ

b,V
]

. (3.8)

Now, by expanding V on the basis, we obtain the transformation law of the component V a, namely:

V
′a = V a− f abcgbV c =

(
δ

ac− f abcgb
)

V c. (3.9)

The above expression (3.9) allows us to identify the generators of the adjoint representation, they
are, in fact, given by the matrices of components “bc” identified with (Qa)bc = f abc. It is straightfor-
ward to verify the universality of the commutation rules of the generators, in other words starting
from the Jacobi identity for the λ a matrices and using the commutation relations (3.4) one can
demonstrate that [

Qa,Qb
]

= f abcQc . (3.10)

In other words, the structure constants characterize the group independently from the represen-
tation, as their name suggests. It should appear obvious that the structure constants characterize

9Interestingly enough, this fact is not only of mathematical interest, in this respect that the solution of the so-called
U(1)A puzzle in QCD is directly correlated to the topological aspects of the gauge group. For the sake of completeness,
we also stress that the extension of the theory to contain topologically non-trivial terms in the action has led to an
interesting “beyond the Standard Model” prediction, the existence of the axion, which is considered as a natural solution
to the so-called strong CP problem.

10Considering only the hermitian matrices is not restrictive because a generic matrix A can be rewritten as A =
A1 + iA2, with A1 = A†

1 and A2 = A†
2
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only the algebraic properties of the group, not the global ones, which cannot be deduced from the
algebra.

We are now ready to introduce SU(N) Yang–Mills gauge theories. In this respect, let

Ψ(x) =

 ψ1(x)
...

ψN(x)

 (3.11)

be a collection of N Dirac spinor fields, the dynamics of which is described by the Dirac Lagrangian

L [Ψ,Ψ] = Ψ(x)
(
iγµ

∂µ −M
)

Ψ(x) , (3.12)

where M is the N×N mass matrix.11 The Lagrangian above is symmetric under the action of the
SU(N) group, acting on the spinor field Ψ and its conjugate Ψ according to the following rules:

Ψ(x) → Ψ
′(x) = U [g]Ψ(x) = eigaλ a

Ψ(x) , (3.13)

Ψ(x) → Ψ
′(x) = Ψ(x)U†[g] = Ψ(x)e−igbλ b

. (3.14)

where ga are the N2− 1 constant parameters of the transformation. In other words, the collective
spinor Ψ transforms in the vectorial representation of the group SU(N).

The gauge principle states that the minimal coupling interaction between fermions and boson
gauge fields can be obtained by requiring the local gauge invariance of the Dirac Lagrangian.
In other words, we can directly extract the right minimal coupling by simply requiring that the
Lagrangian (3.12) is invariant under the following local transformations

Ψ(x) → Ψ
′(x) = U [g(x)]Ψ(x) = eiga(x)λ a

Ψ(x) , (3.15)

Ψ(x) → Ψ
′(x) = Ψ(x)U†[g(x)] = Ψ(x)e−igb(x)λ b

. (3.16)

It is worth noting that, in fact, the kinetic term in the Lagrangian (3.12) cannot be invariant under
such a transformation for a very simple reason: The derivative operator is defined through a limiting
procedure of objects transforming differently under the local SU(N) group. More practically, we
can say that the ordinary derivative of a spinor do not transform in the vectorial representation
of the SU(N) group. Even more straightforwardly one can note that the action of the derivative
operator on the transformed spinor field Ψ′(x) generates a term which cannot be reabsorbed unless
we introduce a counter term.

So the invariance requirement induces to modify the Lagrangian by defining a new derivative
operator, Dµ , which transforms in the adjoint representation of the SU(N) group, so that

Dµψ →
(
Dµψ

)′ = U [g(x)]DµU†[g(x)]U [g(x)]Ψ = U [g(x)]DµΨ . (3.17)

This can be easily achieved by introducing a connection gauge field Aµ = Aa
µλ a, valued on the

group SU(N) and transforming according to the following equation

Aµ → A′µ = U [g(x)]AµU†[g(x)]− iU [g(x)]∂µU†[g(x)]

= eiga(x)λ a
Ac

µλ
ce−iga(x)λ a− ieiga(x)λ a

∂µe−iga(x)λ a
. (3.18)

11The mass matrix M can be in general non-diagonal. It fact, it can be easily diagonalized by a chiral transformation.
This procedure, even though completely safe in the classical theory, can produce striking effects in the quantum theory,
because of the chiral anomaly.
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Consequently, for an infinitesimal gauge transformation we have:

Aa
µ → A′aµ = Aa

µ + i f abcgbAc
µ −∂µga = Aa

µ −Dµga , (3.19)

where the covariant derivative of the adjoint representation, Dµ , has been defined. In order to
rigorously introduce the mathematical concept of connections and study their properties, we should
digress on the geometrical theory of fiber bundles, but this is far from the scope of this paper. So
let us just remark that the replacement

∂µΨ(x) → DµΨ(x) = ∂µΨ(x)+ iAµΨ , (3.20)

is motivated by the fact that the global symmetry group has been promoted to be a local group and
this introduces a fiber bundle structure which motivates the introduction of connections.

Now, it is a simple exercise writing a Dirac Lagrangian which features the required properties
of symmetry, i.e.

L [Ψ,Ψ,A] = Ψ(x)
(
iγµDµ −M

)
Ψ(x)

= Ψ(x)
(
iγµ

∂µ −M
)

Ψ(x)−Ψ(x)Ai
µλ

i
Ψ = L [Ψ,Ψ]+Lint[Ψ,Ψ,A] , (3.21)

Remarkably, a new interaction term denoted by Lint has appeared in the full Lagrangian, repre-
senting the minimal interaction of the SU(N) gauge connection and the spinor matter fields.

So, by fulfilling the requirement of the gauge principle we have been able to automatically
extract the correct minimal interaction between fermions and boson gauge fields. But, the gauge
principle does not give us any hint on how to construct a kinetic term for the new gauge field Aµ .
From the general theory of fiber bundles we know that once a connection has been defined, a natural
curvature tensor can be constructed. Usually, in physics books, the curvature tensor is defined as
follows: [

Dµ ,Dµ

]
Ψ = iFµνΨ , (3.22)

where Fµν = Fa
µνλ a is said curvature or strength tensor. By the above definition it is easy to extract

the explicit expression of the curvature tensor as function of the connection, i.e.

Fµν = ∂µAν −∂νAµ +
[
Aµ ,Aµ

]
. (3.23)

The curvature tensor satisfies the so-called Bianchi identity,

D[µFνρ] = 0 , (3.24)

which, remembering the definition (3.22), can be considered as a consequence of the Jacobi identity
associated to the covariant derivative operator Dµ .

It is worth noting that if the gauge symmetry is represented by the U(1) group, the structure
constants vanish as a consequence of the vanishing of the commutator between the group generators
(Abelian group) and, in this specific case, the connection physically describes the electromagnetic
potential, while the curvature tensor is the field strength.

The curvature tensor transforms as a proper element of the adjoint representation (in contrast
with the connection), specifically we have:

Fµν → F ′µν = U [g(x)]FµνU†[g(x)] . (3.25)
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This fact and the existing analogy with the electromagnetic field suggest the expression of the
action for the field Aµ . Specifically, requiring that the dynamics be described by second order
partial differential equations of motion, a good action is:

S[A] =−1
2

∫
d4xTrFµνFµν =−1

4

∫
d4x∑

a
Fa

µνFa µν , (3.26)

where in the second equality we used the orthogonality condition (3.3). The trace acts on the N2−1
gauge internal indexes and makes the action invariant under the action of the SU(N) group as can
be easily demonstrated.

As a final remark, note that we can add a term to the above action without affecting the classical
equations of motion, i.e. the action

Sθ [A] =−1
4

∫
d4x∑

a
Fa

µνFa µν +
θ

64π2

∫
d4x∑

b
Fb

µνFb
ρσ (3.27)

is dynamically equivalent to S[A], since the θ -term contribution to the classical equations of mo-
tion vanishes identically according to the Bianchi identity (3.24). Even though such a term does
not affect the classical theory, it produces striking effects in the non-perturbative quantum theory
(further details are given in Appendix B). Keep in mind the form of the action Sθ [A], since an
analog situation will characterize the Ashtekar–Barbero formulation of canonical gravity.

3.3 Gauge Symmetries and Constraints

Let us now start describing the canonical formulation of theories with gauge symmetries. This
argument is particularly important for us, since it is the classical starting point of the canonical
quantization of gauge systems. At the end of the section we will calculate the canonical Hamilto-
nian of the electromagnetic theory, which will serve as a description of the formalism in a simple
practical example.

3.3.1 General formalism

Let us consider a physical system described by a Lagrangian

L = L(qi, q̇k) , (3.28)

where Latin indexes denotes the different generalized coordinates and velocities determining the
classical motion of the system on the configuration space. The Lagrangian equations of motion
will be

d
dt

(
∂L
∂ q̇i

)
=

∂L
∂qi

. (3.29)

It is possible to rewrite the equations of motion of a physical system as referred to the generalized
coordinates and their conjugate momenta, by suitably define the momenta and performing the so-
called Legendre transformation. In this respect, we define the momentum pk as

pk =
∂L
∂ q̇k

. (3.30)
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The couple of canonical variables (qi, pk) define the so-called phase space. Usually, in classical
mechanics, we introduce the hypothesis that the momenta are independent functions of the veloci-
ties. Even though this hypothesis is fulfilled in many interesting classical macroscopic systems, it
is too restrictive to be applied to more fundamental physical theories based on the gauge principle.

In general, in fact, the Lagrangian could result singular, namely

det
[

∂ 2L
∂ q̇i∂ q̇k

]
= 0 . (3.31)

If this is the case, the velocities cannot be all inverted as functions of the generalized coordinates
and momenta. By the way, it is easy to show starting from the Lagrangian equations of motion that
the vanishing of the above determinant implies also that the velocities cannot be uniquely expressed
as functions of the positions and velocities. As a consequence, the momenta are not all independent,
rather some relations resulting from the definition of the momenta crop up. Specifically, we have

φm(qi, pk) = 0 , m = 1,2, · · · ,M . (3.32)

These relations are called primary constraints, emphasizing that they result from the very definition
of the momenta. The submanifold determined in the phase space by the conditions (3.32) is called
primary constraint surface.

At this point, let us define the following function

H = ∑
k

pkq̇k−L(qi, q̇k(p j)) , (3.33)

and calculate its variation:

δH = ∑
i

δ piq̇i +∑
k

pkδ q̇k−∑
j

(
δL(qi, q̇k)

δq j

)
δq j−∑

l

(
δL(qi, q̇k)

δ q̇l

)
δ q̇l

= ∑
k

δ pkq̇k−∑
j

(
δL(qi, q̇k)

δq j

)
δq j , (3.34)

this is called canonical Hamiltonian and its variation depends only on the positions and canonical
momenta. However, the Hamiltonian defined above is not uniquely determined because we can add
to it any linear combination of the primary constraints, which are to be zero. In other words, the
thory cannot distinguish between the Hamiltonian H defined above and the new Hamiltonian H? =
H + ∑m cmφm. Nevertheless, since the above equation has to hold for any variation, provided that
the variation preserves the conditions (3.32), we can obtain the following Hamiltonian equations
of motion:

q̇i =
∂H
∂ pi

+∑
m

um
∂φm

∂ pi
, (3.35a)

−ṗk =
∂H
∂qk

+∑
m

um
∂φm

∂qk
, (3.35b)

which are in accordance with the general method of the calculus of variations applied to a system
with constraints. We stress that the symbol um denotes a completely arbitrary set of functions. Be-
fore going on, it is convenient to introduce a formalism that allows to write the canonical equations
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of motion in a compact way. We are referring to the Poisson brackets. Let f and g be two generic
functions of the canonical variables, then we define:

[ f ,g] = ∑
i

(
∂ f
∂qi

∂ f
∂ pi
− ∂ f

∂ pi

∂ f
∂qi

)
. (3.36)

It immediately follows that
[qi, pk] = δik , (3.37)

where δik is the Kronecker symbol. Moreover, it is easy to demonstrate that the equations of motion
(3.35a) can be easily rewritten as

q̇i = [qi,H]+∑
m

um [qi,φm] , (3.38)

ṗk = [pk,H]+∑
m

um [pk,φm] . (3.39)

more generically, we have
ġ = [g,H]+∑

m
um [g,φm] , (3.40)

where g is a generic functions of the canonical variables. The Poisson brackets are defined only for
those quantities that are functions of the canonical variables, nonetheless, the above definition for
the time derivative of the generic function g can be rewritten more concisely as:

ġ = [g,HT ] , (3.41)

where the total Hamiltonian HT is defined as

HT = H +∑
m

umφm . (3.42)

One may immediately wonder about the acceptability of this definition, because one of the term
that come out from Poisson bracket (3.41) is ∑m [g,um]φm. This is badly defined because the um are
arbitrary functions not depending on the canonical variables. But, the correctness of this definition
stems from the fact that the Poisson brackets multiply the vanishing functions φm. So, we have
to carefully consider the fact that in dealing with the Poisson formulation of classical mechanics
in theories with constraints, these have to be imposed only after having calculated all the Poisson
brackets, otherwise we would affect the consistency of the construction. That is the reason why the
weakly vanishing symbol “≈” is widely used; it emphasizes the fact that the constraints have to
be imposed at the end of the canonical analysis, limiting the evolution of the system to a restricted
region of the phase space.

As a consistency requirement, we have to impose another condition on the dynamics. Namely,
we have to require that the primary constraints surface be preserved by the Hamiltonian flow, i.e.

φ̇n = [φn,H]+∑
m

um [φn,φm]≈ 0 . (3.43)

If the above equation is automatically satisfied, namely the time derivative of the primary con-
straints vanishes on the primary constraints surface, then no other consistency check is necessary.
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But, in general, other different cases may occur. In particular, if φ̇n 6= 0 for certain values of n,
then some secondary constraints χ(qi, pk)≈ 0 have to be imposed, further restricting the available
region of the phase space. Obviously, the same consistency condition in (3.43) has to be satisfied
by the secondary constraints, otherwise tertiary constraints have to be imposed and so on.

Since there is no fundamental difference between primary and secondary constraints, we col-
lect all of them in the same symbol, i.e.

φm(qi, pk)≈ 0 , m = 1,2, · · · ,M +K , (3.44)

where K is the number of secondary constraints. A closer look at the consistency equation is now
in order, because it, in fact, contains some interesting informations about the arbitrary functions
entering in the Hamiltonian. We have:

[φn,H]+∑
m

um [φn,φm]≈ 0 , (3.45)

generally, if det([φn,φm]) 6= 0, we can extract a solution for the um by inverting the matrix Cnm =
[φn,φm]; for convinience let us indicate this set of solutions as Um(qi, pk). Moreover, in order to
write the general solution of the equation above, to the particular solutions Um(qi, pk), we must add
the solution of the homogeneous equation, namely

∑
m

Vm ([φn,φm])≈ 0 . (3.46)

In general, there can be A independent solution of the equation above, which we indicate as Vam. So
that the most general solution of the consistency condition is un = Un + ∑a vaVan, where the com-
ponents of the functions um which can be fixed by the consistency conditions have been separated
from that which remains arbitrary. In terms of this new expression for um, the total Hamiltonian
can be rewritten as

HT = H +∑
m

Umφm +∑
a

vaφa = H ′+∑
a

vaφa , (3.47)

where we have defined H ′= H +∑mUmφm and φa =Vamφm. The total Hamiltonian can be now used
to calculate the canonical equations of motion through the Poisson brackets formalism. Obviously,
even though some of the arbitrariness has been eliminated via the consistency condition, they still
contain arbitrary functions, va. Nevertheless, the canonical equations of motion are equivalent, by
construction, to the Lagrangian ones.

At this point the introduction of some terminology is in order. We call first class all those
functions of the canonical variables which have weakly vanishing Poisson brackets with all the
constraints. By remembering that the φ ’s are the only independent quantities which are weakly
zero, then the function S = S(qi, pk) is first class if

[S,φm] = ∑
n

cmnφn , ∀m = 1, · · · ,M +K . (3.48)

All the other functions of the canonical variables are said to be second class. It is easy to demon-
strate that the Poisson bracket of two first class functions is first class as well as the Hamiltonian
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H ′ defined in (3.47). This terminology applies to constraints as well: We call first class constraints
the set of φm with m≤ K +M such that

[φm,φn] = ∑
p

cmnpφp , ∀m = 1, · · · ,M +K , (3.49)

while the others are referred as second class constraints.
Finally, we want to digress on the kind of transformation induced by the first class constraints.

In order to do that, let us stress that in a theory with constraints the evolution of the generalized
coordinates and momenta are not uniquely determined by the initial state because of the presence of
the arbitrary functions va. This means that there are many choices of the fundamental variables that
characterize the same physical state. In this respect, it is interesting to consider particular values
of phase space variables (let us call them g) at an initial time, e.g. g0 = g(t = 0), and look at their
values after an infinitesimal temporal lapse δ t. By using the Poisson brackets we obtain

g(δ t) = g0 + ġδ t = g0 +[g,HT ]δ t = g0 +δ t
([

g,H ′
]
+∑

a
va [g,φa]

)
. (3.50)

Imagine now that we had taken different functions v′a, then we would have obtained

g′(δ t) = g0 + ġδ t = g0 +[g,HT ]δ t = g0 +δ t
([

g,H ′
]
+∑

a
v′a [g,φa]

)
. (3.51)

In other words, during the infinitesimal time δ t, the difference ∆va of the two functions va and v′a
(i.e. ∆va = va− v′a) generates a difference between g and g′ given by

∆g(δ t) = δ t∆va [g,φa] = εa [g,φa] , (3.52)

where εa is a small quantity, being proportional to δ t. So, according to the above rule, the variables
describing a particular physical configuration of the system can be arbitrarily changed without
affecting the state of the system. In other words, many different sets of canonical variables related
each other by the above transformation equivalently describe the same physical state. Hence, the
functions φa result to be the generators of gauge transformations.

Concluding, we have found that first class primary constraints generate gauge transformations,
but it is, in general, expectable that also secondary first class constraints can generate gauge trans-
formations, and, in fact, this happens in many mechanical systems. It is commonly believed that
all the first class constraints are generators of gauge transformations, even though, we have to say,
this belief is not supported by a rigorous proof and is sometimes referred as Dirac’s conjecture.

3.3.2 Electromagnetic canonical theory

The electromagnetic theory provides a very simple, but non-trivial and practically interesting
example to operatively use the procedure just described. In order to be definite, we start from the
Lagrangian for the Maxwell’s theory, i.e.

L(A,∂A) =−1
4

∫
d3xFµνFµν . (3.53)
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Here the fundamental variable is the electromagnetic potential Aµ , which, as is well known, is the
connection field associated to the U(1) gauge symmetry; namely, acting with a gauge transforma-
tion on Aµ , we have that

Aµ → A′µ = Aµ +∂µλ , (3.54)

where λ is a generic function of the space-time points. According to what said above, the presence
of a gauge symmetry will reveal in the canonical theory through the appearance of first class con-
straints, associated with the generators of the gauge transformation. Let us check if this is the case,
starting the canonical analysis of the electromagnetic theory by calculating the conjugate momenta
to the variables Aµ . Namely,

Eα =
∂L

∂Aα

=−∂
0Aα +∂

αA0 = Fα0 , and P0 =
∂L
∂A0

= 0 , (3.55)

are respectively the momenta conjugate to Aα and A0 (the Greek indexes indicate purely spatial
components, while the index 0 indicates the time component). The resulting phase space is 8-
dimensional with coordinates (Aα ,A0,Eα ,P0), and can be equipped with the following symplectic
structure: [

Aα(t,x),Eβ (t,x′)
]

= δ
β

α δ (x,x′) ,
[
A0(t,x),P0(t,x′)

]
= δ (x,x′) , (3.56)

the other brackets vanishing.
The fact that the right hand side of the momentum P0 does not contain any velocity implies

that the Lagrangian is singular, according to definition (3.28); moreover it generates a primary
constraint, i.e.

φ := P0 ≈ 0 . (3.57)

Now, the canonical Hamiltonian can be calculated by performing the Legendre transformation,
obtaining:12

H =
∫

d3x
[

1
2

EαEα +
1
4

Fαβ Fαβ −Eα
∂αA0

]
. (3.58)

So, the primary total Hamiltonian results to be:

HT =
∫

d3x
[

1
2

EαEα +
1
4

Fαβ Fαβ +A0∂αEα +uφ

]
, (3.59)

where we integrated by parts the third term. As a consistency check, we calculate the time deriva-
tive of the primary constraint P0, we have:

φ̇ = [φ ,H] =−∂αEα , (3.60)

so that we obtain a secondary constraint, namely

χ := ∂αEα ≈ 0 . (3.61)

The next consistency check does not generate any tertiary constraint, indeed

χ̇ = [χ,H] = 0 . (3.62)
12It is worth noting that the velocity Ȧα can be rewritten as function of the momentum as Ȧα = Eα + ∂α A0, where

we have taken into account the signature of the metric, i.e. −,+,+,+.
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So, the theory generates one primary and one secondary constraint which form a set of first class
constraints, i.e.

[φ ,φ ] = 0 , [φ ,χ] = 0 , [χ,χ] = 0 . (3.63)

Now, in order to get the most general physically possible motion, we write the extended Hamilto-
nian containing the secondary constraint as well, we have:

HE =
∫

d3x
[

1
2

EαEα +
1
4

Fαβ Fαβ +A0∂αEα +uφ + vχ

]
. (3.64)

The equations of motion can be easily obtained by calculating the Poisson bracket of the canonical
variables with the extended Hamiltonian above; but, interestingly enough, given the structure of HE ,
some simplifications are possible. In this respect, let us firstly, calculate the equation of motion of
A0, obtaining

Ȧ0 = [A0,HE ] = u , (3.65)

revealing the nature of one of the ambiguities of the theory, which turns out to be the time derivative
of A0. More importantly, the above equations states that the evolution of A0 is completely arbitrary.
So, remembering the expression of the secondary constraint χ , we can reabsorb the variable A0

in the definition of the arbitrary function v. Moreover, the momentum P0 is constrained to vanish
along all the evolution and its presence in the Hamiltonian only ensures that the variable A0 is an
arbitrary function. So, in order to simplify the expression of the extended Hamiltonian and reduce
the number of unphysical degrees of freedom we can drop both the variables A0 and P0. It is worth
stressing that the dynamics of the physically relevant degrees of freedom is not affected by this
reduction. Finally, the total Hamiltonian turns out to be:

HT =
∫

d3x
[

1
2

EαEα +
1
4

Fαβ Fαβ + v∂αEα

]
, (3.66)

which can be used to calculate the canonical equations of motion, or to quantize the system by
implementing the Dirac procedure described in § 6.1. We remark that the only survived constrain
is the first class Gauss constraint ∂αEα ≈ 0. A Gauss constraint appears in Yang–Mills gauge
theories of non-abelian groups as well, in that case the ordinary derivative is replaced by a covariant
derivative, so the connection field enters in the Gauss constraint, complicating its mathematical
structure (see, e.g. (B.1)).

It is interesting to note that the Gauss constraint, in fact, generates gauge transformations. Let
us, for example, consider the action of the smeared Gauss constraint, i.e.

G( f ) =
∫

d3x f (t,x)∂αEα(t,x) , (3.67)

on the fundamental variable Aα , we have:

δAα(t,x) = [Aα(t,x),G( f )] = ∂α f (t,x) , (3.68)

where the generic smearing function f plays the role of λ in (3.54).
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3.4 Initial Value Formulation

We conclude this section giving an account of the fundamental theorems for establishing a well
posed initial value formulation for gauge theories and GR. The results expressed by these theorems
are pretty general, but as we will show below, they can easily applied to specific cases. As an
example we will address the simple problem regarding the initial value formulation of Maxwell’s
electromagnetism. The case of electromagnetism is interesting because, being a gauge theory,
shares with GR the presence of first class constraints and, as a consequence, the necessity to make
a proper “gauge choice” in order to write the equations in a suitably form to face the initial value
problem.

3.4.1 Some important theorems

First of all we enunciate the following theorem without demonstrating it, addressing the reader
to [10] for a complete proof (a partial proof can be found in Wald’s book [9]):

Theorem 3.6. Let (M,gµν) be a globally hyperbolic space-time (or a globally hyperbolic region
of an arbitrary space-time) and let ∇µ be any derivative operator. Let Σ be a smooth, space-like
Cauchy surface. Consider the system of n linear equations for n unknown functions φ1, . . . ,φn of
the form

gµν
∇µ∇νφi +∑

j
Aµ

i j∇µφ j +∑
j

Bi jφ j +Ci = 0 , (3.69)

namely a linear, diagonal, second order hyperbolic system. Then equation (3.69) has a well posed
initial value formulation on Σ. More precisely, given arbitrary smooth initial data, (φi,nµ∇µφi) for
i = 1, . . . ,n on Σ, there exists a unique solution of equation (3.69) throughout M. Furthermore, the
solutions depend continuously on the initial data. Finally, a variation of the initial data outside of
a closed subset, S, of Σ does not affect the solution in D(S).

It is worth noting that the theorem explicitly refers to linear systems of equations, moreover, al-
though there are few results concerning the initial value formulation for non-linear systems of
equations, an important result exists concerning the so called quasi-linear, diagonal second order
hyperbolic equations due to Leray in 1952 and is contained in the following theorem:

Theorem 3.7. Let (φ0)1, . . . ,(φ0)n be any solution of a quasi-linear hyperbolic system of equations
below

gµν(x;φ j,∇µφ j)∇µ∇νφi = Fi(x;φ j,∇µφ j) , (3.70)

on a manifold M and let (g0)µν = gµν(x;(φ0) j,∇µ(φ0) j). Suppose (M,(g0)µν) is globally hy-
perbolic (or alternatively consider a globally hyperbolic region of this space-time). Let Σ be a
smooth space-like Cauchy surface for (M,(g0)µν). Then, the initial value formulation of equation
(3.70) is well posed on Σ in the following sense: for initial data on Σ sufficiently close to the initial
data for (φ0)1, . . . ,(φ0)n, there exists an open neighborhood O of Σ such that equation (3.70) has
a solution φ1, . . . ,φn, in O and (O,gµν(x;φ j,∇µφ j) is globally hyperbolic. The solution is unique
in O and propagates causally in the sense that if the initial data for φ ′1, . . . ,φ

′
n agree with that of

(φ0)1, . . . ,(φ0)n on a subset S of Σ, then the solution agree on O∩D+(S). Finally the solutions
depend continuously on the initial data.
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As before we do not give the demonstration of the theorem, which can be find in [10], together with
some other interesting properties of the solutions. Let us remark that equation (3.70) differs from
(3.69), because the Lorentzian metric field gµν is now allowed to depend on the unknown variables
and their first derivatives, while the smooth functions Fi may have a non-linear dependence on
these variables. An interesting recent application of Leray’s theorem is the demonstration that a
well posed initial value formulation can be formulated for the scalar-gravity coupled system as
showed in [48].

3.4.2 Initial value formulation for the electromagnetic field

The strategy we want to follow in order to show that the Maxwell system of equations has
a well posed initial value formulation should be now clear: It basically consists in recasting the
equations in a form which can be traced back to those in line (3.69).

So let us start recalling the expression of the Maxwell system of equations in Minkowski
space-time:

∂µ (∂ µAν −∂
νAµ) = 0. (3.71)

Now we can easily split the background, fixing a one parameter family of hypersurfaces Σt parametrized
by constant values of the inertial time t, in particular let us assume that Σ0 = Σt=t0 be our initial
hypersurface. This procedure allows to emphasize a central feature of the Maxwell system of equa-
tions: the appearance of the so called Gauss constraint, due to the fact that the time component of
the equation above does not contain any second time derivative term. Namely:

∇iE i = 0, (3.72)

where

E i = δ
i j

∇ jA0− ∂Ai

∂ t
, (3.73)

is the electric field. Thus equation (3.72) represents a constraint for the initial data (Aµ ,∂Aν/∂ t)
on Σ0. In other words, the choice of the initial data is not free, they must, in fact, satisfy the Gauss
constraint, otherwise they cannot generate solutions of the Maxwell’s equations. One could expect
that differentiating the Gauss constraint with respect to time, an equation containing a second time
derivative of the scalar potential A0 can be obtained. But, as can be easily verified, the Bianchi
identity dF = 0 (where F = dA is the curvature 2-form associated to the electromagnetic field A
and d is the exterior derivative operator) prevents from generating second order time derivatives of
A0. As a side remark, we stress that in the opposite case, the initial value problem would have a
simple solution, at least in the sense expressed by the Cauchy-Kowalewski theorem:

Theorem 3.8. (Cauchy-Kowalewski theorem): Let (t,x1, . . . ,xm− 1) be coordinates of Rm. Con-
sider a system of n partial differential equations for n unknown functions φ1, . . . ,φn in Rm, having
the following form

∂ 2φi

∂ t2 = Fi

(
t,xa;φ j;

∂φ j

∂ t
;
∂φ j

∂xa ;
∂ 2φ j

∂ t∂xa ;
∂ 2φi

∂xa∂xb

)
, (3.74)

where each Fi is an analytic function of its variables. Let fi(xa) and gi(xa) be analytic functions.
Then there is an open neighborhood O of the initial hypersurface t = t0 such that within O there
exists a unique analytic solution of equation (3.74) such that φi(t0,xa) = fi(xa) and ∂φi

∂ t (t0,xa) =
gi(xa).
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Unfortunately, it is not the case: the Maxwell system of equations (3.71) is under-determined, be-
ing equivalent to the dynamical equations for the spatial components of the electromagnetic field,
which contain second time derivatives, plus a constraint equation for four unknown functions. But
this feature is absolutely not unexpected. It simply reflects the presence of the U(1) gauge freedom.
In other words, the existing gauge freedom prevents the Maxwell equations from completely deter-
mining the potential Aµ , namely we should expect that they uniquely determine the potential up to
a gauge transformation. From this perspective, it is easy to understand that the system of Maxwell
equations admit a well posed initial value formulation only for the physical states of the theory.
In fact, once realized how the gauge transformations enter into the game, the solution becomes
simple.

In order to clarify this point, let us fix the Lorentz gauge, i.e.

∂µAµ = 0 , (3.75a)

which is particularly useful to treat this problem. The gauge choice allows to simplify the structure
of Eq. (3.71), i.e.

∂ν∂
νAµ = 0 . (3.75b)

The system of equations are physically equivalent to (3.71). More precisely, solutions of the Eq.
(3.71) can differ from those obtainable by solving the system of equations in (3.75a) and (3.75b)
only by a gauge transformation. So, from a physical perspective, the dynamics is well described by
Eqs. (3.75a) and (3.75b), with the remarkable advantage that now we can use the result of theorem
(3.6).

Specifically, let us suppose that the initial data are chosen in such a way that they satisfy the
Lorentz gauge condition in Eq. (3.75a) on the initial hypersurface Σ0 (if they don’t we can operate
on them by a suitable gauge transformation), then, using equation (3.75b) and the Schwarz theorem,
we can write:

∂µ∂
µ (∂νAν) = ∂ν

(
∂µ∂

µAν
)

= 0 . (3.76)

Hence, provided that equation ∂µ∂ µAν = 0 is satisfied everywhere, as a consequence of theorem
(3.6), also the gauge condition will be satisfied everywhere if and only if ∂∂µAµ/∂ t = 0 on Σ0. It is
worth explaining the role played here by the Gauss constraint. At a first glance the Gauss constraint
seems to have disappeared; actually, it has only been written in a different form. In fact, we have
required that ∂∂µAµ/∂ t = 0 on Σ0, namely

0 =
∂

∂ t
∂µAµ = ∂

2
t A0 +∂i∂tAi

= ∂
2
t A0 +∂i

(
E i−∂

iA0)= ∂iE i , (3.77)

where we used equation (3.75b). It is not surprising at all that the Gauss constraint turns out to be
encapsulated in the initial conditions, because the initial field configuration must satisfy not only
the gauge condition, but also the constraint. In particular, its role is to assure that, if equation
(3.75b) holds everywhere and provided that ∂iE i = 0 on Σ0, the Lorentz gauge condition remains
valid throughout all the evolution for the gauge transformed initial data.

It remains only to solve the dynamical equations (3.75b), with the given, suitably chosen,
initial data. But now the problem is simple, the equations have in fact the desired form, i.e. that
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required to apply the result of theorem (3.6), which indeed establishes the existence of a well
posed initial data formulation. The last question is: can we conclude that the solutions are unique?
We can briefly answer to this question supposing that the original systems of Maxwell equations
(3.71) provides two solutions, S1 and S2, with the same initial conditions. By making a gauge
transformation, it is possible to recast them into the solution of the equation (3.75b) with the same
initial condition. But, since the solution of the system (3.75b) is unique, once assigned suitably
initial conditions, then we conclude that S1 and S2 can differ at most by a gauge transformation.
In other words they represent the same physical field configuration. Concluding, physically the
solution is, in fact, unique.

4. Canonical General Relativity

As we have clarified above, the canonical constraints play a crucial role in the initial value
formulation of a theory with gauge freedom. The same consideration is valid as far as we re-
gard GR, which features a gauge symmetry correlated with the invariance under diffeomorphisms.
Moreover, as will be clarified later, the canonical quantization of a system with gauge symmetry
requires that the classical constraints are promoted to operators, acting as supplementary conditions
on the quantum states of the theory. So, in view of discussing the problem of quantum gravity, in
this section we calculate the constraints of GR.

Specifically, starting from the description of the so-called 3+1 splitting procedure, we finally
arrive at writing the canonical equations of motion of GR, for the first time studied by Dirac [49]
and then by Arnowitt, Deser and Misner [50, 51, 52, 53]. A brief digression on the initial value
formulation in gravity will conclude the section.

4.1 3+1 splitting of space-time

Specifically, the splitting procedure allows to sort an evolution parameter out of the covariant
general relativistic space-time. It is worth stressing that covariance is not lost in this formulation,
even though it is no longer manifest as in the Lagrangian approach. As suggested by the Geroch
theorem, by using a gauge transformation, which we refer to as embedding diffeomorphism, it
is possible to “slice” a globally hyperbolic space-time, representing it as the evolution in “time”
of 3-dimensional space. As any gauge transformation, the embedding diffeomorphisms does not
affect the dynamical content of the theory, in other words the canonical Hamiltonian equations plus
constraints (obviously!) are completely equivalent to the usual Einstein equations.

Technically, what we are going to do is the following: Starting from the Hilbert-Einstein
action,

SH−E(g) =
1
2

∫
M

d4x
√
−gR , (4.1)

where R = gµρgνσ Rµνρσ is the Ricci scalar curvature (R σ
µνρ vσ =

[
∇µ ,∇ν

]
vρ being the Riemann

curvature tensor), we restrict M to be a globally hyperbolic space-time, M , so that, according to
theorem (3.5), M =R×Σ3; Σ3 being a compact three-dimensional manifold without boundary.

It is interesting to note that the restriction to globally hyperbolic space-times is a quite strong
requirement, especially in view of the formalization of a quantum theory of gravity. Being aware
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of this strong hypothesis, necessary to canonically quantize the theory, we expect that it could be
relaxed once a rigorous formulation of the quantum theory will be at hand, as suggested in [3].
Unfortunately, so far and up to the author’s knowledge, no rigorous prescription exists that allows
to get rid of this hypothesis or consider different topologies directly in the quantum theory.

However, once the hypothesis of the Geroch theorem are satisfied, we can foliate M by

Cauchy hypersurfaces Σ3
t

de f
= yt(σ), in other words ∀ t ∈ R,∃ a globally injective immersion (em-

beddings) yt : σ → M, defined by yt(xi) = y(t,xi), where xi ∈ σ are the coordinates over the hy-
persurfaces Σ3. Hence, Σ3

t represents a foliation of the manifold M parametrized by the continuous
function t. Now let us denote nµ the unit normal vector to the hypersurfaces Σ3

t , so that the four-
dimensional metric gµν induces a three-dimensional Riemannian metric hµν on each hypersurface:

hµν = gµν +nµnν . (4.2)

The above relation is often referred as first fundamental form of Σ. Now, consider a vector field
tµ , called “deformation vector”, satisfying the the following relation tµ∇µt = 1. It generates a
1-parameter family of diffeomorphisms, φt : R× σ → M, defined as (t,x)→ yµ(t,x) := yµ

t (x),
called embedding diffeomorphisms. Geometrically, the deformation vector represents the “flow
of time” throughout space-time, in other words it is the tangent vector to the “time line”, namely
the directional derivative it generates corresponds to an increment in label time t. Remarkably, the
label time t does not correspond to physical time, the measure of which would imply the knowledge
of the space-time metric, rather it is a mere label denoting the different Cauchy hypersurfaces.13

So, the embedding diffeomorphisms is completely arbitrary and can be usefully parametrized
by decomposing the deformation vector in its normal and tangential components with respect to
Σt . Specifically, by defining the “Lapse function” N and the “Shift vector” Nµ as

N =−nµtµ =
(
nµ

∇µt
)−1

, (4.3a)

Nµ = hµνtν , (4.3b)

we have:

tµ(y) =
(

∂yµ(t,x)
∂ t

)
|y(t,x)=yt(x) = N(y)nµ(y)+Nµ(y) . (4.4)

It is important to note that in order to generate a consistent foliation the Lapse function has to be
monotonic.

At this point a brief digression is in order. It should be easy for the reader familiar with
the canonical formalism to imagine that the lapse function and shift vector, being two completely
arbitrary functions which parametrize the time flow, will turn out to be Lagrange multipliers. As
regarding the 4-metric, four of its entries directly depend on them. So, only six out of the ten
component of the metric are dynamical variables. This fact nicely reflects in the canonical theory,
where the 3-metric, with its six components, turns out to be the fundamental dynamical variable.
In other words, a globally hyperbolic space-time represents the time evolution of a Riemannian
3-metric field on a 3-dimensional abstract manifold [9], while the other four components express

13Note that if we do not fix the metric the lapse of time, say ∆t, dividing two different spatial hypersurfaces, Σ3
t and

Σ3
t+∆t , is completely general and correlated with the integral curve of tµ , which generates the embedding diffeomor-

phism. So it is not referable to any real physical measurement, being correlated to gauge transformations.
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only the arbitrariness we have in choosing the reference system [54]. It is worth recalling that the
Einstein equations in vacuum

Rµν = 0 (4.5)

are, in fact, six equations (not ten!) because of the Bianchi identity ∇µRµ

ν = 1
2 ∂νR), which relates

some of the components of the Ricci tensor.
Let us now enter in the technical details of the canonical formulation of gravity, starting by

enunciating the following Lemma, which represents an important “working tool”.

Lemma 4.1. Let (M,gµν) be a space-time and let Σ be a smooth space-like hypersurface in M. Let
hµν denote the induced metric on Σ and let Dµ denote the covariant derivative operator associated
with the metric hµν . Then the action of Dµ is given by the formula

DρT ν1···νn
µ1···µm

= hν1
α1
· · ·hνn

αn
h β1

µ1 · · ·h
βm

µm h σ
ρ ∇σ T α1···αn

β1···βm
, (4.6)

where ∇σ is the derivative operator associated with gµν .
Proof. It is simple to verify that Dµ satisfies the following properties: Linearity, Leibniz rule,

Commutativity with contraction, Torsion free (∀ f ∈F ,
[
Dµ ,Dν

]
f = 0) and acts as a directional

derivative on scalar functions f . Moreover we have:

Dµhρσ = h α
ρ h β

σ h γ

µ ∇γ

(
gαβ +nαnβ

)
, (4.7)

because ∇µgρσ = 0 and hµνnν = 0. Thus Dµ is the unique derivative operator associated with
hµν . �

Let us define the second fundamental form of Σ3, called extrinsic curvature:

Kµν = h ρ

µ h σ
ν ∇(ρnσ) =

1
2

h ρ

µ h σ
ν £nhρσ =

1
2

(£nh)
µν

, (4.8)

where the symbol £v denotes the Lie derivative with respect to the vector field vµ . The extrinsic
curvature is a spatial vector by definition and represents the parallel transport of the normal vector
along the hypersurface Σ or the variation of the three-metric along the integral line of nµ . We can
easily rewrite the extrinsic curvature in order to make explicit the Lie time derivative of the 3-metric
as we are going to show:

Kµν =
1
2

(£nh)
µν

=
1
2

h ρ

µ h σ
ν

(
nα

∇αhρσ +hρα∇σ nα +hασ ∇ρnα
)

=
1

2N
h ρ

µ h σ
ν

(
Nnα

∇αhρσ +hρα∇σ (Nnα)+hασ ∇ρ(Nnα)
)

=
1

2N
h ρ

µ h σ
ν £(t−N)hρσ =

1
2N

(
ḣµν −2D(µNν)

)
, (4.9)

where we defined ḣµν = h ρ

µ h σ
ν £thρσ and we used equation (4.7).

Once defined the covariant derivative operator (4.7), we can define the curvature tensor of the
Cauchy surface Σ as usual:

(3)R σ
µνρ ωσ = DµDνωρ −DνDµωρ . (4.10)
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Now using the prescription to express the covariant derivative on the 3-dimensional manifold as
projection of the 4-dimensional derivative operator we have:

DµDνωρ = Dµ

(
h σ

ν h τ
ρ ∇σ ωτ

)
= h α

ν h β

ρ h γ

µ ∇γ

(
h σ

α h τ

β
∇σ ωτ

)
= h σ

ν h τ
ρ h γ

µ ∇γ∇σ ωτ +h α
ν h β

ρ h γ

µ ∇γ

(
h σ

α h τ

β

)
∇σ ωτ

= h σ
ν h τ

ρ h γ

µ ∇γ∇σ ωτ +h τ
ρ Kνµnσ

∇σ ωτ +h σ
ν Kµρnτ

∇σ ωτ , (4.11)

where we used the expression of the 3-metric as function of the 4-metric and the normal vector
(4.2).

At last, we have all the elements to write down the relation between the 3-dimensional curva-
ture tensor as function of the 4-dimensional Riemann tensor and extrinsic curvature:

(3)R σ
µνρ ωσ = DµDνωρ −DνDµωρ = 2D[µDν ]ωρ

= 2h γ

[µ h σ

ν ] h τ
ρ ∇γ∇σ ωτ +2h τ

ρ K[νµ]n
σ

∇σ ωτ −2K[µ|ρ|K
σ

ν ] ωσ

= h γ

µ h β

ν h τ
ρ hσ

αR α

γβτ
ωσ −KµρK σ

ν ωσ +KνρK σ
µ ωσ , (4.12)

where, in the second line, we used h σ
ν Kµρnτ∇σ ωτ = h σ

ν Kµρ∇σ (nτωτ)−h σ
ν Kµρωτ∇σ nτ = KµρK τ

ν ωτ

and K[µν ] = 0. Now, considering that ωµ is a common factor, we can write down the first Gauss-
Codacci relation:

(3)R σ
µνρ = h γ

µ h β

ν h τ
ρ hσ

αR α

γβτ
−KµρK σ

ν +KνρK σ
µ . (4.13)

With an analogous procedure, we can also easily obtain the second Gauss-Codacci relation:

DµKµ

ν
−DνKµ

µ
= Rµρnρhµ

ν
. (4.14)

At this point, once we realize that

Rµνρσ hµρhνσ = Rµνρσ (gµρ +nµnρ)(gνσ +nνnσ ) = R+2Rνσ nνnσ , (4.15)

we can write the Ricci scalar as

R = Rµνρσ hµρhνσ −2Rνσ nνnσ (4.16)

and from the first Gauss-Codacci relation we have:

R = (3)R+(Kµ

µ
)2−KµνKµν −2Rνσ nνnσ . (4.17)

Moreover,

Rνσ nνnσ = R ρ

νρσ nνnσ =−nν
(
∇ν∇ρ −∇ρ∇ν

)
nρ

= (Kµ

µ
)2−KµνKµν −∇µ

(
nµ

∇ρnρ
)
+∇ρ

(
nµ

∇µnρ
)

. (4.18)

Therefore, being
√
−g = N

√
h, from equations (4.17) and (4.18) we finally obtain the following

action for the gravitational field (having dropped the last term in the last line above, which being a
total divergence, does not affect the equations of motion):

S3+1(N,Nµ ,hµν) =
1
2

∫
R×σ

dtd3xN
√

h
(

(3)R+KµνKµν − (Kµ

µ
)2
)

. (4.19)
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It is particularly useful to pull back spatial tensors to the hypersurface Σ3. This can be easily done
by suitably defining the projectors X µ

α = (∂yµ(t,x)/∂xα)|yt(x)=y(t,x), where xα are spatial coordi-
nates on Σ3. In this respect, let us define

hαβ = hµνX µ

α Xν

β
= gµνX µ

α Xν

β
, (4.20a)

Kαβ = KµνX µ

α Xν

β
, (4.20b)

so that we can rewrite the extrinsic curvature as

Kαβ =
1

2N

(
ḣαβ −2D(αNβ )

)
, (4.21)

where only spatial indexes appear.
The Lagrangian contains the time derivatives of the 3-metric field through the terms depending

on the extrinsic curvature, while no time derivatives of the lapse function and the shift vectors
appear. Hence, the Lagrangian is singular and we expect that the theory generates four primary
constraints as, in fact, we are going to demonstrate.

The next step in the canonical analysis is the definition of the conjugate momenta. Once the
space-time has been split, we recall that the fundamental variables are N, Nα and hβγ , the conjugate
momenta of which respectively are

p(N) =
∂L3+1

∂ Ṅ
= 0 , (4.22a)

p(N)
α =

∂L3+1

∂ Ṅα
= 0 , (4.22b)

pαβ =
∂L3+1

∂ ḣαβ

=
√

h
2

(
Kαβ −hαβ K

)
. (4.22c)

So, the phase space is twenty dimensional and coordinatized by the set N,Nα ,hβγ , p(N), p(N)
α , pβγ

and equipped with the following symplectic structure:{
N(t,x), p(N)(t,x′)

}
= δ (x,x′) , (4.23a){

Nα(t,x), p(N)
β

(t,x′)
}

= δ
α

β
δ (x,x′) , (4.23b){

hαβ (t,x), pγδ (t,x′)
}

= δ
γδ

αβ
δ (x,x′) , (4.23c)

where the symbol {· · · , · · ·} denotes the Poisson brackets, while δ
γδ

αβ
= 1

2

(
δ

γ

αδ δ

β
−δ

γ

β
δ δ

α

)
.

From the definition of conjugate momenta, we immediately obtain four primary constraints as
expected, i.e.

C (N) := p(N) ≈ 0 , (4.24a)

C
(N)
α := p(N)

α ≈ 0 . (4.24b)

Now, we can perform the Legendre transformation. Because of the presence of primary con-
straints, we cannot re-express all the velocities as functions of the fundamental variables and their
conjugate momenta. This implies that the Hamiltonian, usually defined as

H = ∑
i

piq̇i−L , (4.25)
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where qi and pk are the generalized coordinates on the phase space, is not uniquely determined as
function of the fundamental variables and momenta. In other words, because of the presence of the
primary constraints, the Hamiltonian is well defined only on a restricted region of the phase space
determined by the primary constraints. So that, in order to take into account the restriction of the
phase space implied by the four constraints (4.24), we have to introduce four Lagrange multipliers
λ and λ α , which have to be varied independently in the action. We have,

S3+1(N, pN ,Nα , p(N)
β

,hγδ , pαβ ) =
1
2

∫
R×σ

dtd3x
[

pαβ £thαβ + pNṄ + p(N)
γ Ṅγ

−NH−NαHα −λC (N)−λ
β C

(N)
β

]
, (4.26)

where the super-Hamiltonian H and super-momentum Hα are defined as:

H =
1√
h

[
pαβ pαβ − 1

2

(
hαβ pαβ

)2
]
−
√

h (3)R =
1
2

Gαβγδ pαβ pγδ −
√

h (3)R , (4.27a)

Hγ =−2Dδ pγδ . (4.27b)

Above we have introduced the so called super-metric Gαβγδ = 1√
h

(
hαγhβδ +hαδ hβγ −hαβ hγδ

)
and dropped the total divergence 2Dα(h−1/2Nβ pαβ ).

Finally, we write down the canonical Hamiltonian for the gravitational field,

Hcan =
∫
σ3

d3x
[
NH +NαHα +λC(N) +λ

β C
(N)
β

]
, (4.28)

and go on to discuss the dynamics.

4.2 Canonical constrained dynamics

This Section is devoted to the study of the constrained dynamics of the gravitational field.
Namely, starting from the split action (4.26), we are going to calculate the Hamiltonian equations
of motion. At the end, a discussion about the formulation of a well posed initial value problem
will follow, in correlation also with a well known issue of canonical quantum gravity, the so-called
problem of time. In GR, in fact, once suitable initial conditions have been assigned and the gauge
fixed, the time evolution is uniquely determined and depends continuously on the initial data; but,
as remarked more than once the t parameter appearing in the equations of motion does not represent
physical time, rather it is a label denoting the different Cauchy hypersurfaces. The fact that “time”
evolution is a symmetry of the theory induces to say that in GR “time does not exist”. From the
canonical point of view this reflects on the fact that the Hamiltonian is constrained to weakly vanish,
in other words it does not generate time translations, but gauge transformations (on the classical
trajectories). The concept of time evolution can be reintroduced in such a “frozen” formalism
through a physical procedure, consisting in associating the time evolution to the relational dynamics
of other dynamical fields coupled to gravity. We consider this aspect of GR extremely natural,
because the theory is describing the dynamics of the space-time itself and not the dynamics of
a field on a background. Moreover, from a quantum perspective, the frozen formalism does not
affect the interpretation of the outcomes of the theory, which describes the actual quantum state of
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space-time and, eventually, the transition from one quantum configuration to another. From this
perspective, the classical idea of evolution in time has to be completely abandoned, as the concept
of classical trajectories has to be abandoned in describing the quantum transitions of an electron in
an atom.

Having in mind the above premise, let me start the canonical analysis by varying action (4.26)
with respect to the Lagrange multipliers λ and λ k, thus obtaining the primary constraints (4.24).
In order to guarantee that the dynamics of the system is consistent we have to require that the
constraints be preserved during the evolution, namely that the Poisson brackets of the constraints
with the Hamiltonian vanish. We have,

Ċ (N)(t,x) =
{

Hcan,C
(N)(t,x)

}
= H(t,x) , (4.29a)

Ċ
(N)
α (t,x) =

{
Hcan,C

(N)
α (t,x)

}
= Hα(t,x) , (4.29b)

hence a set of secondary constraints have to be imposed, i.e.

H(t,x)≈ 0 , (4.30a)

Hα(t,x)≈ 0 , (4.30b)

for all x ∈ Σ. The above weak equations are called super-Hamiltonian and super-momentum con-
straints and generate the following algebra{

Hα (t,x) ,Hβ

(
t,x′
)}

= Hβ (t,x)∂αδ
(
x,x′
)
−Hα(t,x)∂β δ

(
x′,x
)

, (4.31a){
Hα (t,x) ,H

(
t,x′
)}

= H (t,x)∂αδ
(
x,x′
)

, (4.31b){
H (t,x) ,H

(
t,x′
)}

= Hβ (t,x)∂β δ
(
x,x′
)
−Hβ

(
t,x′
)

∂β δ
(
x′,x
)

. (4.31c)

The algebra above reveals that the super-Hamiltonian and super-momentum constraints are the
generators of diffeomorphisms: It is worth noting that differently from the usual Yang-Mills gauge
theories, the algebra of the constraints has structure functions instead of structure constants. Fur-
thermore, the above relations prevent from the emergence of tertiary constraints.

The fact that the Poisson brackets between the whole set of constraints weakly vanish indicate
that the super-Hamiltonian and super-momentum together with the primary constraints form a set
of first class constraints. Interestingly enough, this set can be easily reduced, by taking into account
that the primary constraints can be strongly satisfied by considering the lapse function N and the
shift vector Nα as Lagrange multipliers. In other words, let us consider the dynamical equations
for N and Nα , i.e.

Ṅ(t,x) = λ (t,x) , (4.32a)

Ṅα(t,x) = λ
α(t,x) , (4.32b)

so, as we can immediately understand, the evolution of the Lapse function and the Shift vector
is completely arbitrary, being their time derivatives related to the Lagrange multipliers λ and λ α ,
which are unspecified functions. Henceforth, we can consider the Lapse function and the Shift
vector themselves as Lagrange multipliers, so that their momenta identically vanish satisfying the
primary constraints (4.24) and, simultaneously, reducing the dimensions of the phase space, which
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is now coordinatized by the remaining variables hαβ and pγδ . The dynamical equations for hαβ

and pγδ can be directly calculated from the reduced Hamiltonian

H =
∫
Σ3

d3x [NH +NαHα ] , (4.33)

obtaining:

ḣαβ =2N Gαβγδ pγδ +2∇(αNβ ) , (4.34a)

ṗαβ =
1

2
√

h
Nhαβ

(
pγδ pγδ −

1
2

p2
)
− 2N√

h

(
pαγ p β

γ −
1
2

ppαβ

)
−N
√

h
(

(3)Rαβ − 1
2

(3)Rhαβ

)
+
√

h
(

∇
α

∇
β N−hαβ

∇
γ
∇γN

)
−2pγ(α

∇γNβ ) +∇γ

(
Nγ pαβ

)
, (4.34b)

where we ignored all the boundary terms and used equation (4.30b). The system of equations
(4.30a), (4.30b), (4.34a) and (4.34b) is equivalent to the vacuum Einstein equations Rµν = 0. As
remarked above, the super-Hamiltonian and super-momentum constraints are first class (see Eqs.
(4.31)) and reflect the gauge invariance of the theory. They, in fact, provided that the spatial equa-
tions of motion are satisfied, generate a diffeomorphisms flow on the phase space according to the
following identifications:

{H(N), . . .}= £Nnµ (. . .) , (4.35a){→
H(
→
N), . . .

}
= £Nµ (. . .), (4.35b)

where we used the following notation:

H(N) =
∫
σ

d3xN(t,x)H(t,x) and
→
H(
→
N) =

∫
σ

d3xNi(t,x)Hi(t,x) . (4.36)

In particular, the super-momentum or vectorial constraint is clearly correlated with spatial dif-
feomorphisms and can be satisfied by introducing the Wheeler superspace.14 The super-Hamiltonian
or scalar constraint, instead, represents a serious obstacle toward the canonical quantization of the
gravitational field. As we remarked before, it generates diffeomorphisms along the normal vector to
the Cauchy hypersurfaces, provided that the spatial equations of motion are satisfied. Interestingly
enough, as noted by Wald and Kuchař, the scalar constraint is strictly analogous to the constraint
coming out when one tries to parametrize an original non-constrained theory on fixed background.
More specifically, an analogous constraint crops up when one introduces within the Lagrangian a
time function which labels the hypersurfaces Σt , starting from an initial hypersurface Σ0 and then
treats this “time function” as a dynamical variable [9, 55]. But, as one can easily verify in the case
of the point particle in flat space-time [56], the parametrized theory is linear in the momentum con-
jugate to the time function, thus the theory can be easily deparametrized by solving the constraint

14The Wheeler superspace is the space of the 3-metrics modulo 3-diffeomorphisms. Namely, two metric fields
related by a spatial diffeomorphisms represent the same point on the Wheeler superspace).
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with respect to this momentum. The scalar constraint of GR is, in stead, quadratic in the momenta,
therefore such a deparametrization seems not to be possible, at least in pure gravity.15

In order to understand how many physical degrees of freedom are described by the theory, let
us count the number of independent variables. Obviously, the presence of first class constraints
associated with the gauge freedom of the theory, indicates that there is more than one set of canon-
ical variables which correspond to a particular physical state. In other words, a physical state is
well described by two or more different sets of canonical variables if they are correlated by a gauge
transformation. Or, we can rephrase saying, a physical state is represented by the class of equiva-
lence of canonical variables under the symmetries of the theory. Usually, in order to eliminate such
an ambiguity in the description of the physical system, a set of gauge condition are imposed on
the canonical variables. The gauge conditions are chosen ad hoc and are, sometimes, suggested by
the mathematical or physical structure of the theory, but they are not a consequence of the theory.
They are external conditions, nevertheless, removing only the unphysical degrees of freedom of the
theory, are completely admissible, on condition that they satisfy some consistency requirements.
Firstly, they have to be accessible, i.e. it must exist a transformation which maps the original set
of variables to the set satisfying the gauge condition. Secondly, we have to require that the gauge
condition be preserved by the symmetry flow. The two requirements above imply that the number
of gauge conditions has to be equal to the number of first class constraints in order to completely fix
the gauge. Moreover, the determinant of the square matrix constructed with the Poisson brackets
between the gauge conditions and the first class constraints has to be different from zero. Remark-
ably, this is exactly the definition of a set of second class constraints, which can be in principle
solved through the Dirac procedure [49]. At this point the count of the number of physical degrees
of freedom is easy. We have to subtract to the number of canonical variables the total number of
second class constraints, or, according to what said before, the number of first class constraints plus
the number of gauge conditions plus the second class constraints not coming from the gauge fixing.
In other words, we have to subtract to the number of canonical variables twice the number of first
class constraints plus independent second class constraints. It is worth noting that in the present
case the number of physical degrees of freedom in the phase space is four, which correspond to the
two polarization of the graviton in the configuration space.

Concluding, we can say that the symmetry group of GR is well implemented in the canonical
formalism, which is in this sense generally covariant, even though the covariance of the theory is
not manifest as in the Lagrangian formulation. We want also to stress the importance of the invari-
ance under diffeomorphisms, pointing out that every possible observable for this theory must be
invariant under this group of symmetries of the action. But the meaning of this statement goes over
the usual meaning it has in Yang-Mills gauge theories, because the request of 4-diffeomorphisms
invariance involves also the dynamics, therefore the definition of an observable is not only a kine-
matical problem, it necessarily implies to solve the dynamics. In other words in GR kinematics and
dynamics are inextricably bound. Quoting a famous sentence by J. Stachel, we can say: “There is
no kinematics without dynamics”.

15In the case matter fields are introduced in the dynamics, a deparametrization is, in fact, possible [57] (see also
[27, 28, 30]). In this framework, the evolution of the physical system can be interpreted in terms of relational variables
[14, 25] and the so-called problem of time can be solved, by referring the evolution to the dynamical “relations” between
distinguished fields.
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4.3 Initial value formulation for gravity

As we have shown above, the Hamiltonian of GR is not a true Hamiltonian, but a linear com-
bination of constraints. In particular, if we assume that the spatial components of the Einstein
equations are satisfied, then it generates a flow along the integral curve of the deformation vec-
tor, rather than time translations. Nevertheless, the Cauchy problem can be well posed until the
appearance of a singularity affects the consistency of the theory itself.

In order to construct a parallel with the case of electromagnetism, it is worth recalling that
the Gauss constraint comes out from the time component of the Maxwell equations, which does
not contain second time derivatives. The same consideration can is valid for Einstein equations
in vacuum. In fact, the equations Gµνnν = 0 do not contain second time derivatives of anyone of
the metric component, namely, as in the electromagnetic case, these equations depend only on the
initial data: In other words, they represent a restriction on the possible acceptable initial data set.
So, we expect that the canonical constraints be contained in the equations Gµνnν = 0, indeed we
have:

Gµνnµnν =− H
2
√

h
= 0 , (4.37a)

Gµνnµeν
i =

Hi

2
√

h
= 0 . (4.37b)

Therefore, the constraints equations are actually equivalent to four of the Einstein dynamical equa-
tions; furthermore the Bianchi identity ∇µGµν = ∇µRµν−1/2∂ νR = 0, together with the equations
of motion for the spatial components, implies that the constraints are involutive. Namely, provided
that the super-Hamiltonian and super-momentum constraints are satisfied on the initial Cauchy
surface and the equations of motion are satisfied everywhere, then also the constraints are satisfied
along the evolution. A very simple argument allows to show what just claimed. Assuming that
we have already solved the equations for the spatial components of the gravitational field, then the
Bianchi identity represents a relation between the time derivative of the normal components of the
Einstein tensor Gµνnν and the non-time differentiated components of Gµν and their spatial deriva-
tives. Now, by pulling back equation ∇µGµν = 0 on the solution for the spatial components of the
Einstein equations and realizing that the spatial part of Gµν vanishes, the Bianchi identity becomes
a linear homogeneous system of four first order partial equations for the four unknown functions
Gµνnν . Then, it follows that if Gµνnν vanish on the initial slice, they must vanish on any slice.

From the Lagrangian point of view the vanishing of four of the Einstein vacuum equations
could appear as an under-determination of the components of the gravitational field, instead it
just reflect the invariance of the theory under the group of diffeomorphisms, as we have already
explained above. In other words, the apparent under-determination is not a physical one, exactly as
in the electrodynamics case. In fact, if φ : M→M is a diffeomorphisms and (M,gµν) is a solution
of the Einstein equations, then (M,φ ∗gµν) is a solution too. So, the number of the “non-gauge”
components of the gravitational field is exactly six, as the number of the dynamical equations.

Now, in analogy with the electromagnetic case, we fix the gauge: since the gauge freedom of
GR regards the general coordinates transformation, then choosing a gauge means to fix a particular
system of coordinates. A suitable choice is the “harmonic” gauge, characterized by a system of
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coordinates satisfying the following equations:

∇µ∇
µyρ = 0 . (4.38)

This choice does not affect the generality of the procedure. Specifically, in a neighborhood of a
portion of space-time covered by an original set of coordinates, say xµ , we can proceed as follows:
firstly, let us note that equation (4.38) has the form of equation (3.69), therefore, assuming as
initial data the old set xµ and its derivative ∇µxν , we can uniquely solve equation (4.38) in a
neighborhood of the portion of space-time covered by the old set of coordinates. Since ∇µxν are
linearly independent, then also ∇µyρ are linearly independent and consequently the set yρ will
provide a local coordinates system. The choice of the harmonic coordinates will result in the
following equation:

0 = ∇µ∇
µya =

1√
−g

∂µ

(√
−ggµν

∂νya)=
1√
−g

(
∂µ

√
−ggµa)= ∂µgµa +

1
2

gµagρσ
∂agρσ .

(4.39)
Furthermore, we have that the Ricci tensor Rµν can be written as

Rµν =−1
2

gρσ
[
−2∂σ ∂(νgµ)ρ +∂σ ∂ρgµν +∂µ∂νgρσ

]
+Fµν (g,∂g) . (4.40)

the above expression emphasizes that the Ricci tensor is, in fact, linear in the second derivatives
of the metric tensor, where Fµν (g,∂g) contains the non-linear dependence on the metric and its
derivatives. So that, considering both Eq. (4.39) and (4.40), we can isolate, in the Einstein equa-
tions, the non-linear dependence on the metric and its derivatives, obtaining [58]:

(h)Rµν = Rµν +gρ(µ∂ν)∇σ ∇
σ yρ =−1

2
gρσ

∂ρ∂σ gµν + F̃µν(g,∂g) = 0 . (4.41)

Therefore, the Einstein equations in vacuum are equivalent to the system of equations (4.41) (gener-
ally referred as reduced Einstein equations) and (4.38). The reduced Einstein equations are suitable
to apply the result of the Leray’s theorem (3.7).

In this respect, let hαβ and Kγδ be the metric and extrinsic curvature of the hypersurface Σ3 and
let us assume that they satisfy the constraints (4.37). Then, after having chosen a suitable system
of coordinates over a portion of the hypersurface Σ3, let me assign the following initial data for the
metric and its time derivative (h0

αβ
, ḣ0

αβ
), such that the extrinsic curvature Kαβ on Σ3 results from

this choice via equation (4.21). Since the Einstein equations involve all the ten components of the
metric field, we have to give the initial values of g00 and g0α too. A very simple choice could be
g00 =−1, g0α = 0 and, as a consequence Kαβ = 1

2 ḣαβ = 1
2 ġαβ . Now the time derivative of the “0”

components of the metric tensor ∂g0µ/∂ t remains undetermined by this choice, but they can be
fixed via the gauge fixing condition ∇µ∇µya = 0 on Σ3. In the canonical formalism this means that
we initially choose the value of the Lapse function N = −1 and Shift vector Ni = 0, then via the
gauge fixing we assign the time evolution of these two geometrical objects. Interestingly enough,
by assigning the functional form of the Lapse and Shift one can completely fix the gauge, i.e. the
reference system.

Now, let us suppose that the chosen initial conditions are sufficiently near that of flat space-
time, then, according to theorem (3.7), we can solve equations (4.41) in a neighborhood of that
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portion of Σ3 covered by the original set of coordinates. Moreover, Σ3 will be a Cauchy surface of
the globally hyperbolic space-time generated by the solution.

Furthermore, it is possible to demonstrate that a solution of equations (4.41) will be a solution
of the vacuum Einstein equations in a neighborhood of a portion of space-time where the condition
(4.38) holds. This concludes this brief digression about the initial value problem in gravity. The
interested reader can find the demonstration of the last statement in [9].

Concluding we can say that we can give a prescription to demonstrate that it exists, at least
locally, a solution of the Einstein equations, moreover the solution depends continuously on the
initial data and the space-time it generates is globally hyperbolic. This demonstration is based on
the assumption that the set of initial data is near to that of flat space, but this requirement can be
relaxed using a trick. The idea is that any curved space if observed from a sufficiently small scale
appears nearly flat, so the trick consists simply in rescaling the initial data metric function via a
coordinate transformation if they did not appear sufficiently flat (for details see [9]).

5. Ashtekar Canonical Gravity

As is well known, the program of canonical quantization is not a rigid algorithm and can be
slightly adapted to the theory one is going to construct. In fact, the general program of quantization
of classical systems requires to make choices in different steps of the quantization procedure, as
is briefly described in the next section. Generally speaking, one could say that the achievement of
the desired result, namely the construction of a rigorous quantum theory, depends on the choices
made in the different steps of the canonical procedure. The structure of the theory could result
remarkably simplified if a smart choice of variables were done, allowing to consistently reduce
the difficulties one has to face in the quantization procedure. In other words, a smart choice of
fundamental variables could make the theory manageable in view of quantization.

To be more specific, the introduction of the Ashtekar self-dual SL(2,C) connections [59] al-
lows to reduce the phase space of GR to that of a Yang–Mills gauge theory, which can be non-
perturbatively quantized by formulating the theory using holonomies and fluxes as fundamental
variables, à la Wilson.16 But, let me follow the natural order of things, clarifying one thing at the
time.

It is possible to demonstrate, in fact, that by introducing the Ashtekar self-dual SL(2,C) con-
nections in the framework of canonical GR, a Gauss constraint, which incorporates the generators
of the local Lorentz boosts and rotations in a complex combination, appears besides the vectorial
and scalar constraints, both connected with the diffeomorphisms gauge invariance of the theory.
Simultaneously, the high non-linearity of the Arnowitt–Deser–Misner (ADM) canonical formula-
tion of GR disappears: the new canonical constraints depend polynomially on the fundamental
variables, both in vacuum and in the presence of matter [60].17 By using the Ashtekar formulation

16The loop formalism does not work properly in Yang–Mills gauge theories, remarkably, the reason of this failure
can be traced back to the basic assumption of a continuum space-time. This fact suggests that it may work well in QG,
where a discrete space-time naturally emerges.

17It is worth noting that the standard ADM formulation of GR requires that the metric field is non-degenerate,
since it contains the three-dimensional Ricci scalar, which is constructed by the Ricci tensor saturating the indexes
with the inverse metric field. In the Ashtekar formulation the same requirement is not mandatory, since the constraints
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of GR, a background independent quantum theory of gravity was later formulated [61]. But the
use of complex fundamental variables generates a serious difficulty connected with the implemen-
tation of the reality conditions in the quantum theory, which are strictly necessary to ensure that
the evolution of the system is real. This difficulty has not been overcome so far and, basically, it
can be considered the technical motivation which led to the adoption of the real Ashtekar-Barbero
(AB) connections [62, 63] as fundamental variables, instead of the complex ones. The link existing
between real and complex variables can be clarified by observing that both are obtainable from the
ADM canonical pair via a contact transformation. In particular, a suitable canonical transformation
allows to introduce a finite complex number, β 6= 0, namely the BI parameter, in the definition of
the new variables, so that they correspond to the (anti)self-dual ones when β = ± i and to the real
ones for any real value of β .

Geometrically, the main difference between these two sets of possible new variables for GR is
the following: while the complex connections are the projection over the 3-space of the self-dual
part of the Ricci spin connections, the real ones are non-trivially related to them, complicating their
reconstruction [64]. In fact, the real SU(2) valued connections contain only half of the necessary
information for reconstructing the Lorentz valued connections of GR [3], motivating also the ne-
cessity of fixing the temporal gauge in order to avoid the appearance of second class constraints.18

By fixing the temporal gauge, the accessible part of the phase space is determined by first class
constraints only [65] and the system can be quantized through the Dirac procedure. The result is a
non-perturbative background independent quantum theory of gravity called Loop Quantum Gravity
(LQG) [1, 2, 3, 66].19

Since the BI parameter has been introduced via a canonical transformation, one can naively
believe that different values of β correspond to unitary equivalent quantum theories. Strangely
enough, this is not the case. In fact, β enters in the spectrum of the main geometrical observables
of the theory, e.g. the spectra of the area and volume operators, revealing that a one parameter
family of non-equivalent quantum theories exists. As argued by Rovelli and Thiemann [75], two
dynamically equivalent SO(3)-valued connections exist and, as a consequence, an ambiguity ap-
pears in the theory, which is essentially expressed by the presence of the BI parameter.

Immirzi suggested that the appearance of the BI parameter in the quantum theory was a con-
sequence of the temporal gauge fixing [76], so that it would have disappeared in a fully Lorentz
covariant theory. But this expectation was not completely confirmed by the so-called Covariant
Loop Quantum Gravity (CLQG), which is a fully Lorentz covariant quantum theory of gravity,

are polynomial. So, we can say that the Ashtekar self-dual formulation of Gravity represents a possible extension of
GR allowing the presence of degenerate metrics. Whether or not this extension has any physical relevance, up to my
knowledge, is not completely understood yet.

18The temporal gauge fixing consists in rotating the local basis by using a suitable Wigner boost so that, at every
instant of “time”, its zeroth component is parallel to the normal vector to the instantaneous Cauchy hypersurface Σ3

t .
This condition reduces the local SO(3,1) gauge group to the subgroup of spatial rotations, SO(3), by fixing the boost
component of the Lorentz symmetry.

19LQG besides providing interesting physical predictions as the quantization of areas and volumes [2] (see also
[67, 68]), has been able to cure the inevitable singular behavior of classical GR in symmetric spacetimes [69, 70, 71].
Furthermore, the recently obtained results about the graviton propagator have strengthened the physical content of the
theory, providing new insights into its non-singular behavior [72, 73, 74].
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constructed à la Dirac relaxing the time gauge condition [77].20 This approach, in fact, revealed a
correlation between the choice of the fundamental variables and the appearance of the BI ambiguity
in the quantum theory. In other words, in CLQG different choices of the fundamental variables are
possible. In particular, for a geometrically well motivated specific choice of variables the resulting
area spectrum no longer depends on the BI parameter [78]. But, choosing different fundamental
variables considered as a direct generalization of the AB connections, the resulting area spectrum
turns out to depend on the BI ambiguity [79], reproducing the result of the gauge fixed theory (see
also the interesting paper [80]).

Recently, it has been proposed the idea that the BI parameter is, in fact, analogous to the θ -
angle of the topological sector of Yang–Mills gauge theories [81, 82] (for a brief description of the
topological sector of Yang–Mills gauge theories see Appendix B). This idea, initially proposed by
Gambini, Obregon and Pullin [83], has been lately reconsidered in relation to the proposal to gen-
eralize the action for gravity to contain a topological term [82, 84, 85]. This argument will be better
described below in 5.3, but it is worth anticipating that the presence of a topological term, called
Nieh–Yan density [86], which further generalize the so-called Holst modification [87], allows, in
fact, to construct a precise analogy between the BI parameter and the θ -angle. Furthermore, by
clarifying the large structure of the gauge group involved in gravity through the Nieh-Yan density,
it is possible to demonstrate its supposed topological origin and, as a consequence, the existence of
non-unitary equivalent quantum theories associated to different values of β .

Having briefly outlined the AB formulation of GR and some recent aspects concerning the
interpretation of the BI parameter, let me now enter in more technical details, starting from the
tetrad formulation of gravity and the consequent generalization of the 3+1 splitting procedure.

5.1 3+1 splitting again

Let us introduce a one to one map e : M4→ T M4
x , which sends tensor fields on M4 in tensor

fields in the Minkowskian tangent space T M4
x . The fields e a

µ are commonly called tetrads or
vierbein (or, more physically, gravitational field! [2]) and represent a local reference system for
space-time. They satisfy the following relations with the metric field:

gµν = ηabe a
µ e b

ν , e a
µ eµ

b = δ
a
b , e a

µ eν
a = δ

ν
µ , (5.1)

where Greek and Latin indexes run from 0 to 3, and transform respectively under general coordi-
nates transformations and local Lorentz transformations. The symbol ηab denotes the metric tensor
in the local Minkowski frame. So, the tetrad fields incorporate all the metric properties of M. It
is worth noting that the converse is not true. In fact, there are infinitely many choices of the local
basis which reproduce the same metric tensor: This is clearly a consequence of the local Lorentz
gauge invariance, manifestly present in this formalism. This is also the reason why there are more
components in e a

µ than in the metric gµν , the difference being exactly six, that is the number of
degrees of freedom of the group SO(3,1) representing the number of independent parameters of a
Lorentz rotation in the tangent space-time.

20It is worth remarking that the complicated form of the Dirac brackets, necessary to solve the second class con-
straints (see [49, 108]), prevents the fully Lorentz covariant theory from being rigorously formalized.
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As we briefly described in § 3.2, the presence of a local gauge freedom requires the intro-
duction of a covariant derivative Dµ transforming in the adjoint representation of the gauge group.
This implies the introduction of a Lorentz valued connection (often referred as spin connection),
here denoted as ωab(x) and satisfying the following property ωab(x) = −ωba(x). The covariant
derivative operator Dµ acts on Lorentz valued tensor fields as follows:

DµT a1...am
ν1...νn

= ∂µT a1...am
ν1...νn

−
n

∑
k=1

Γ
ρ

µνk T
a1...am

ν1...νk−1ρνk+1...νn
+

m

∑
l=1

ω
al

bµ
T a1...al−1bal+1...am

ν1...νn

= ∇µT a1...am
ν1...νn

+
m

∑
l=1

ω
al

bµ
T a1...al−1bal+1...am

ν1...νn , (5.2)

where Γ
ρ

µν denotes the affine connection. Now, requiring the compatibility of the above defined
covariant derivative operator with the tetrad basis, we can extrapolate the expression of the spin
connection as function of the local basis vectors:

Dµe a
ν = 0 =⇒ ω

a
bµ = e a

ρ ∇µeρ

b, (5.3)

where ∇µ as usual satisfies the metric compatibility condition, i.e. ∇µgρσ = 0.
As we are going to show, the same conclusion can be derived from the solution of the second

Cartan structure equation, which will be extensively used below. In this respect, from the expres-
sion given above for the four dimensional spin connection as function of the tetrad fields, it is easy
to derive the following equation:

∇[µe a
ρ] =−ω

ab
[µ eρ]b . (5.4)

If the torsion-less condition holds, namely

∇µ∇ν f = ∇ν∇µ f , (5.5)

and remembering that the ∇ operator is compatible with the metric, we can easily deduce

∂[µe a
ρ] =−ω

ab
[µ eρ]b , (5.6)

which recalling the definition of exterior derivative of n-forms can be rewritten as:

dea +ω
a
b∧ eb = 0 . (5.7)

The above equation is called homogeneous second Cartan structure equation and completely de-
termines the spin connection as function of the gravitational field.21 It is worth noting that in the
case of non-vanishing torsion, the affine connection Γ

ρ

µν has also an antisymmetric part, then the
second Cartan structure equation generalizes to:

dea +ω
a
b∧ eb = T a , (5.8)

where the torsion 2-form T a is defined as

T a
µν = e a

ρ

(
Γ

ρ

µν −Γ
ρ

νµ

)
. (5.9)

21For the reader’s convenience, we collected a description of the forms formalism in Appendix A, where he/she can
also find the Hilbert-Palatini and matter actions translated in the forms language.
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In this more general case, the solution of the second Cartan structure equation provides the full spin
connection as a sum of its torsion-less component ωab[e] plus a contortion term Kab, namely

Ω
ab[e, . . . ] = ω

ab[e]+Kab[e, . . . ] , (5.10)

where the dots indicate that the contortion component can depend on matter fields as in the case of
spinors coupled to gravity.

The spin connection 1-form generates, in the usual way, the curvature 2-form Ra
b through the

following identification (in what follows let us use the compact notation d(ω)(. . .)≡ d(. . .)+ω ∧
(. . .)):

d(ω) ◦d(ω)va = Ra
b∧ vb . (5.11)

Explicitly we have
Ra

b = dω
a
b +ω

a
c∧ω

c
b , (5.12)

which is called first Cartan structure equation. The curvature tensor satisfies the Bianchi identity

d(ω)Ra
b = 0 , (5.13)

which, as we noted before, is a consequence of the Jacobi identity applied to the covariant exterior
derivatives operator, i.e. d(ω) ◦ d(ω) ◦ d(ω) = 0. Another identity can be obtained applying the
exterior covariant derivative operator on the left and right hand sides of the second Cartan structure
equation (5.8), i.e.

Ra
b∧ eb = dT a +ω

a
b∧T b , (5.14)

which in the torsion-less case reduces to the Bianchi cyclic identity:

Ra
b∧ eb = 0 . (5.15)

It is possible to rewrite the action for gravity in the tetrad formalism by using the relations
given in (5.1), specifically we have

S[e] =
1
2

∫
d4xdet[e]eµ

aeν
bR ab

µν , (5.16)

which can be used as starting point to canonically reformulate the gravitational theory. Actually,
the canonical formulation of tetrad gravity can be straightforwardly deduced from the canonical
theory described in Sections 4.1 and 4.2, by taking into account the presence of an additional local
symmetry in this new framework.

So, in order to construct the canonical theory, let us assume that the space-time is a globally
hyperbolic metric manifold (M = R× Σ3,gµν = ηabe a

µ e b
ν ). Let hµν = gµν + nµnν and Kµν =

1/2£nhµν be respectively the first and second fundamental form of the Cauchy hypersurface Σ3, so
that, by using the tetrad fields, we can write:

hµν = ηabe a
µ e b

ν +nµnν =−e 0
µ e 0

ν +δi je i
µ e j

ν +nµnν . (5.17)

The expression of the first fundamental form above suggests a very simple gauge choice to elimi-
nate ab initio some non-dynamical degrees of freedom. Specifically, by operating a Wigner boost
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it is possible to rotate the local basis in such a way that the component e 0
µ results to coincide with

the normal vector nµ . This gauge choice, called temporal gauge, reduces the local gauge symmetry
to the group of spatial rotations, since the boost component of the original Lorentz group is obliged
to vanish by having chosen the direction of one of the component of the local basis.22

By implementing the temporal gauge and projecting the 3-metric on the hypersurface, we have

hαβ = δi je i
α e j

β
, (5.18)

where Greek indexes α,β ,γ . . . run over 1,2,3, while Latin indexes i, j,k, . . . are related to the
SO(3) (or via an isomorphism SU(2)) local symmetry. Note that the orthogonality condition
nµhµν = 0 is automatically fulfilled according to the properties of the tetrad basis. This allows
us to easily write the components of the tetrad fields and their inverse in the coordinates system
(t,x), we have

e a
µ =

(
N Nαe i

α

0 e i
α

)
and eν

b =

 1
N

0

−Nβ

N
eβ

j

 , (5.19)

as before N denotes the Lapse function, while Nα the Shift vector. This identification of some of
the components of the local basis with the Lapse and Shift is possible by considering that the line
element

ds2 = e a
µ eaνdxµdxν = N2dt2−hαβ (Nαdt +dxα)(Nβ dt +dxβ ) , (5.20)

corresponds to the ADM decomposition of the 4-metric. It is important to note that the 3-metric
(5.18) is invariant under a local SO(3) rotations of the tetrad basis, namely the dreibein carries three
degrees of freedom more with respect to the three-metric hαβ . As a consequence also the number
of constraints of the canonical theory written in tetradic formalism must increase. In particular,
we should have three (first class) constraints more in order to reabsorb the local gauge degrees of
freedom connected with the SO(3) symmetry.

In this respect, consider the second fundamental form. Define the 1-form K i
α on Σ3 and con-

tract the internal index with the tetrads, i.e.

Kαβ = δikK i
α ek

β
. (5.21)

Now, it is easy to realize that the symmetric part of the tensor Kαβ is the extrinsic curvature,
namely

K(αβ ) = Kαβ , (5.22)

while its antisymmetric part has to vanish corresponding to the antisymmetric part of the extrinsic
curvature, which is naturally symmetric. Then the 1-form K i

α must satisfies the following con-

22It is worth stressing that the fixation of the temporal gauge remarkably simplifies the canonical theory. Neverthe-
less, we have to say that, the temporal gauge is not a mandatory choice to construct the canonical theory. In fact, we can
canonically formulate the theory as well without fixing the gauge, but the technical difficulties one would have to face
in solving the second class constraints are far from the scope of this paper.

60



P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity Simone Mercuri

straint:23

K[αβ ] = K i
[αeβ ]i ≈ 0 . (5.23)

K[αβ ] is a 3×3 antisymmetric matrix constrained to vanish, so it reabsorbs exactly the three degrees
of freedom that we have introduced with the choice of the tetrads as elementary variables.24

As a next step, let me introduce the weighted triad fields

Eα
i = eeα

i , (5.24)

where e = det[e i
α ].25 By using them, we can rewrite the constraint (5.23) as

Gi j = Kα[iE
α

j] ≈ 0 . (5.25)

At this point we are ready for changing variables, specifically we can easily rewrite the canon-
ical ADM variables as:

hαβ = δi jE i
α E j

β
, (5.26a)

pαβ = δ
(α
δ

Eβ )iE k
γ E [γ

iK
δ ]
k . (5.26b)

The new couple of fundamental variables can be introduced in the scalar and vectorial constraints
too, we obtain

Hα =−Dβ

[
K i

α Eβ

i−δ
β

α K i
γ Eγ

i

]
, (5.27a)

H =
1

(det[E i
α ])1/2 Eα

iE
β

j

(
K j

α K i
β
−K i

α K j
β

)
−
(
det[E i

α ]
)1/2 (3)R(E) , (5.27b)

where the Ricci scalar curvature(3)R(E) is considered as function of the weighted tetrads. At this
point, it is important to demonstrate that the canonical dynamics, described by the new variables
on the extended phase space,26 is equivalent to that described by the usual ADM variables. In this
respect, we can easily demonstrate that once the extended phase space is equipped with the natural
symplectic structure {

E i
γ (t,x),Kδ

j(t,y)
}

= δ
i
jδ

δ
γ δ (x− y) , (5.28a){

E i
γ (t,x),E j

δ
(t,y)

}
=
{

Kγ

i(t,x),K
δ

j(t,y)
}

= 0 , (5.28b)

23It is important to note that here we are working in the second order formalism, namely torsion vanishes ab initio. In
first order formalism, the same result can be obtained for pure gravity, but the situation changes when, e.g., spinor matter
fields are considered in the dynamics. Spinors, in fact, are a matter source for torsion and, in general, their presence
prevents the antisymmetric part of the tensor Kαβ from vanishing, so that a source appears in the rotational constraint.

24The reader may wonder about the legitimacy of the weakly vanishing symbol in (5.23). In this respect, we have
to say that Ki

α has been generically defined, but only when it satisfies the condition expressed by (5.23), it can be safely
related to the extrinsic curvature. Since the final goal will be to change variables and describe the canonical dynamics
through the canonical couple (Ki

α ,Eβ

k ), the second being defined below, such a canonical system describes ordinary
gravity when (5.23) is satisfied. In other words, condition (5.23) plays exactly the role of a constraint (weak equation)
limiting the physically relevant evolution to a restricted region of the enlarged phase space.

25Notice that the inverse of the weighted triad is divided by the determinant of e i
α .

26The adjective “extended” refers to the fact that the phase space associated to the new couple of variables has six
dimensions more with respect to the ADM one.
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the constraint
G(α) =

∫
σ

d3xα
ikKαiEα

j, (5.29)

where α ik is an arbitrary antisymmetric matrix function, generates SO(3) rotations. Moreover,
as soon as G(α) = 0, namely the rotational constraint is satisfied, the ADM canonical variables,
written as functions of the extended phase space variables, generate the usual Poisson brackets
(4.23c). In fact, calculating the Poisson algebra generated by the rotational constraint, we obtain:{

G(α),G(α ′)
}

= G
([

α,α ′
])

, (5.30)

which is exactly the algebra of spatial SO(3) rotations. Furthermore, any Poisson bracket between
the rotational constraint and the ADM canonical variables vanishes, simply because the latter are
manifestly rotations invariant. The 3-metric tensor hαβ , being a function only of the weighted
tetrad fields (see relation (5.26a)), simply satisfies the following relation:{

hαβ (t,x),hγδ (t,y)
}

= 0 . (5.31)

The case of the canonical momentum is more complicated, but finally we have [3]:{
pαβ (t,x), pγδ (t,y)

}
=−
√

h
8

[
hαγGβδ +hαδ Gβγ +hβγGαδ +hβδ Gαγ

]
(t,x) δ (x− y) . (5.32)

Namely, the above brackets vanish as soon as the rotation constraint is satisfied, as anticipated
above. At last, with few algebraic passages we also obtain that{

pαβ (t,x),hγδ (t,y)
}

= δ
α

(γδ
β

δ )δ (x− y) . (5.33)

Summarizing, the new extended phase space elementary variables E i
α and Kα

i reduces through the
definitions in lines (5.26a) and (5.26b) to the ADM ones, moreover their Poisson brackets mimic the
ADM ones as soon as the rotational constraint is satisfied. So we can conclude that the Hamiltonian
system described by the action

S3+1(E,K) =
1
2

∫
R×σ

dtd3x
(

Kα
i

·
E i

α −NH−NαHα +OikGik

)
,

once solved the rotational constraint, Gik = 0, is equivalent to that described by the ADM action
(4.33).

The constraints (5.23), (5.27a) and (5.27b) are first class, as can be demonstrated with some
algebra. They reflect the gauge structure of the theory, indeed they are correlated to the auto-
morphisms of the tangent bundle, namely the SO(3) rotational symmetry, and to the space-time
diffeomorphisms.27

27It should be clear from what stated above that this statement does not mean that the flow generated by the “new”
super-Hamiltonian and super-momentum constraints on the extended phase space is a diffeomorphisms. Rather, once
the rotational constraint is satisfied, i.e. on the constraint surface determined by the condition Gi j = 0, it still exists a
representation of the diffeomorphisms group. There, in fact, the Hamiltonian flow of the rotational invariant variables
hαβ and pαβ is equivalent to that generated on the ADM phase space.
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5.2 Canonical transformations and new variables for gravity

Let us begin noting that, given the symplectic structure (5.28), the transformations Eα
j →

Eα
j/β and K j

α → βK j
α are canonical, in fact they do not change the symplectic structure. The

parameter β is called Barbero–Immirzi (BI) parameter and is, in general, a complex number. It is
worth noting that the rotational constraint remains invariant under this rescaling, so we can rewrite
it as

Gk = εki jGi j = εki j
(β )K i

α
(β )Eα j ≈ 0, (5.34)

where we used the properties of the total antisymmetric symbol εki j and we indicated as (β )K i
α and

(β )Eα
i the canonical variables rescaled by the BI parameter.
Let us now going on discussing the canonical formalism of tetrad gravity by introducing the

connection associated with the SO(3) symmetry (or equivalently SU(2)). So, we introduce the
connection 1-form Γ

i j
α

, in order to covariantly derive SO(3) valued tensors. In particular, let
us define the connection via its action on the generic tensor T i1...im

α1...αn containing both vectorial and
SO(3) indexes, i.e.

Dβ T i1...im
α1...αn

= ∂β T i1...im
α1...αn

−
n

∑
k=1

Γ
γ

βαk
T i1...im

α1...αk−1γαk+1...αn
+

m

∑
l=1

Γ
il

jβ T i1...il−1 jil+1...im
α1...αn . (5.35)

It can be verified by direct analysis of the formula above that the generalized covariant derivative
Dβ on Σ sends each smooth SO(3) valued tensor field of type (p,q) to a smooth SO(3) valued
tensor of type (p,q + 1). As usual, we require that the covariant derivative operator is compatible
with the tetrad basis, i.e. it annihilates the field e i

α , namely we have

Dβ e i
α = 0 =⇒ Γ

i j
α

= eβ i
∇αe j

β
. (5.36)

As usual we can associate to the connection the curvature 2-form R i j
αβ

defined via the action on a
SO(3) scalar

R i
αβ jv

j =
[
Dα ,Dβ

]
vi −→ R ik

αβ
= 2∂[αΓ

ik
β ] +Γ

i
j[αΓ

jk
β ] . (5.37)

Let us now note that the following relation holds:

DαEβ

j = ∇α

(
eeβ

j

)
−Γ

k
jαeeβ

k = eDαeβ

j = 0 , (5.38)

where we taken into account the compatibility condition (5.36). Consequently we have,

DαEα
j = 0 , (5.39)

moreover, being ∂αEα
j = ∂α

(
eeα

j

)
= ∇αEα

j, we finally obtain the following important relation:

DαEα
j = ∂αEα

j −Γ
k
jαEα

k = ∂αEα
j + ε

l
jk Γ

k
αEα

j = 0 , (5.40)

where we defined Γk
α

de f
= −1/2εk

i jΓ
i j

α
. It is worth noting that the above defined Γi

α as function
of the dreibeins fields can be recasted as function of the weighted triads Eα

j, we give below the
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expression:28

Γ
i
α =

1
2

ε
i

jkEβk
[
∂β E j

α −∂αE j
β

+Eγ jEαl∂β E l
γ

]
+

1
4

ε
i

jkEβk

[
2E j

α

∂β

(
det[E i

γ ]
)

det[E i
γ ]

−E j
β

∂α

(
det[E i

γ ]
)

det[E i
γ ]

]
, (5.41)

which can be calculated simply by substituting the definition (5.24) in the expression (5.36) for the
spatial spin connection. We also note that Γk

α is not affected by the rescaling Eα
j → (β )Eα

j = Eα
j/β

of the weighted tetrad fields. By using the strong equation (5.40), we can now replace the rotational
constraint (5.25) with a Gauss constraint of an SO(3) or SU(2) Yang-Mills gauge theory, as follows

Gk = ε
j

ki
(β )K i

α
(β )Eα

j = ∂α
(β )Eα

k + ε
j

ki Γ
i
α

(β )Eα
j + ε

j
ki

(β )K i
α

(β )Eα
j

= ∂α
(β )Eα

k + ε
j

ki
(β )A i

α
(β )Eα

j ≈ 0 , (5.42)

where the Ashtekar-Barbero connection, defined as (β )A i
α = Γi

α + βK i
α has been introduced. For

β =± i we obtain the original definition of the Ashtekar self-dual variables for gravity.
Again a change of variables is in order. Specifically, we can replace the canonical couple

(Ki
α ,Eβ

k ) with the new couple ((β )A i
α ,(β )Eβ

k ) and, once checked that the replacement does not
affect the symplectic structure (canonical transformation),29 i.e.{

(β )E i
γ (t,x), (β )Aδ

j(t,y)
}

= δ
i
jδ

δ
γ δ (x,y) , (5.43a){

(β )E i
γ (t,x), (β )E j

δ
(t,y)

}
=
{

(β )Aγ

i(t,x),
(β )Aδ

j(t,y)
}

= 0 , (5.43b)

we can go on to rewrite the canonical constraints as functions of the new variables.
So, let us define the curvature of the new connections

F k
αβ

= 2∂[α
(β )A k

β ] + ε
k
i j

(β )A i
α

(β )A j
β
, (5.44)

satisfying the following relation

F k
αβ

= ε
k
i jR

i j
αβ

+2D[α
(β )K k

β ] + ε
k
i j

(β )K i
α

(β )K j
β

. (5.45)

As a useful formula, we rewrite the 3-dimensional Bianchi cyclic identity, R i j
[αβ

eγ]i = 0, as

ε
i

jkR jk
[αβ

Eγ]i = 0 . (5.46)

By using the definition (5.44) and the equations (5.45) and (5.46), the canonical constraints can be
rewrite as follows:

Hα = (β )Eγ

i F i
αγ − (β )Ki

αGi , (5.47a)

H =
β 2

2(det[E i
α ])1/2

(β )Eα
i

(β )Eγ

j

[
ε

i j
kF

k
αγ −2

(
β

2 +1
)

Ki
[αK j

γ]

]
+ (β )Eγ

j DγG j , (5.47b)

28The expression of the 3-dimensional spin connection as function of the densitized triad is the one that we should
use in (5.27b) to rewrite the Ricci scalar as function of the Eα

i . This can be easily done considering that R(E) =
Eα

i Eβ

k
det[E] R

ik
αβ

[Γ(E)], where R ik
αβ

[Γ(E)] is the curvature tensor associated with the connection Γ and defined in (5.37).
29The only non-trivial check is that the Poisson bracket

{
(β )Aγ

i(t,x),
(β )Aδ

j(t,y)
}

in fact vanishes. This is a non-

trivial result, mainly based on the fact that
{

Γi
α (E),K j

β

}
= 0.
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Where we have taken into account of the formula given in note 24. It is interesting to note that both
the scalar and vectorial constraints (5.47) involve the Gauss constraint. Obviously, since the new
expressions of the canonical constraints (5.42) and (5.47) are the consequence of a well defined
canonical transformation, the structure of their Poisson brackets is unaffected. In other words, they
still represent a set of first class constraints, correlated with the gauge symmetry of the system and
oblige the system to evolve in a restricted region of the extended phase space. The same dynamics
can be obtained directly working with the following set of first class constraints:

Gi = DαEα
i = ∂αEα

i + ε
k

i j
(β )A j

α Eα
k ≈ 0 , (5.48a)

Cα = Eβ

i F i
αβ
≈ 0 , (5.48b)

C =
1

2(det[E i
α ])1/2 Eα

i Eβ

j

[
ε

i j
kF

k
αβ
−2
(
β

2 +1
)

Ki
[αK j

β ]

]
≈ 0 , (5.48c)

which are dynamically equivalent to the previous ones.
It is worth noting that the Gauss law (5.48a) and the vector constraint (5.48b) do not depend on

the BI parameter β , while the scalar constraint (5.48c) is β -dependent, implying that the physical
predictions of the quantum theory will in general depend on the Immirzi parameter. A weird fact
is that even physical quantities not directly depending on the Hamiltonian, for example the area
operator come out to be β -dependent.

As a final remark, the values β = ± i corresponding to the complex Ashtekar (anti)self-dual
variables are pretty special: The constraints become polynomial, provided that we can reabsorb the
determinant of the densitized triad in the denominator of the scalar constraint, e.g. reabsorbing it
in the Lapse function [60].

5.3 Holst action as Lagrangian formulation of Ashtekar gravity

So far, we have never introduced the action which correspond to the AB constraints calculated
previously. We dedicate this last part of the section to this argument, describing also a recent
proposal for a possible generalization of the so-called Holst action.

The Holst action represents an important contribute in understanding the geometrical content
of the Ashtekar-Barbero formalism. In [87], Holst showed that the AB canonical constraints of
GR [62, 63] can be derived by splitting a generalized Hilbert-Palatini action. The Hilbert-Palatini
action in tetrad formalism is:30

S[e,ω] =
1
2

∫
ea∧ eb∧?Rab(ω) . (5.49)

The Riemann tensor is a function of the spin-connection, ω , which is considered as a separate
distinct variables with respect to the gravitational 1-form ea = ea

µdxµ . In other words, the action
as to be varied with respect to both the gravitational field and the spin connections to write down
the full set of equation of motion. Specifically, by varying the action with respect to ω and e
respectively, we obtain

dea +ω
a
b∧ eb = 0 , (5.50a)

ε
a
bcdeb∧Rcd(ω) = 0 . (5.50b)

30Let us use differential forms in order to be more concise in formulating this argument. Some details are given in
Appendix A.
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The first one of the above equations is the second Cartan structure equation (5.8), containing the
information about the relation between the spin connection and the gravitational field. This can be
easily solved and the solution can be put in (5.50b), which are the Einstein equations in vacuum.

It is worth noting that the presence of matter, in general, affects the Einstein equations by
generating a source in the right hand side of (5.50b). Remarkably spinor fields, which interact with
gravity through both the gravitational field and the spin connection, generate also a source for the
second Cartan structure equation, namely they represent a source for torsion [84].

We claim that the Holst action

S (e,ω) = SHP (e,ω)+SHol (e,ω) =
1
2

∫
ea∧ eb∧

(
?Rab− 1

β
Rab
)

, (5.51)

where β is the BI parameter, is the starting point to formulate canonical gravity in the AB variables.
The Holst action is made up of two parts, the first one is the usual Hilbert-Einstein action, while
the second one is an “on (half-)shell” vanishing term. Classically, the Holst action is dynamically
equivalent to the HP one, indeed, by varying it with respect to the spin connection we get the
unmodified second Cartan structure equation, while the variation with respect to the gravitational
field gives

ε
a
bcd eb∧Rcd (ω)− 1

β
eb∧Rab (ω) = 0 . (5.52)

But as previously demonstrated, the homogeneous second Cartan structure equation implies the
cyclic Bianchi identity (5.15), which ensures that the Einstein dynamics is preserved by the Holst
modification.

We note that in the Holst formulation the BI parameter turns out to be a multiplicative con-
stant in front of a on (half-)shell vanishing term, this clarifies why it does not affect the classical
dynamics, while it has important effects on the quantum dynamics as remarked previously. This
behavior is reminiscent of the parameter characterizing the topological sector of Yang–Mills gauge
theories (see action (3.27) and the comment below; see also Appendix B). If the θ -angle and
the BI parameter β have an analogous origin, then it must exist a classical framework where the
analogy between the two parameters can be made manifest. In the pure gravitational case, in fact,
the argument proposed fails to be completely convincing. The Holst modification, in fact, is not
a topological density. It does not reduce to a total divergence, rather it is an on-shell identically
vanishing term. But the action (5.51) can be further generalized to include in the picture also the
interesting case of torsional space-times. In particular, in [84, 85], by introducing spinor matter
fields, an interesting hint was given to complete the Holst picture; specifically, the presence of
spinors can generate the necessary torsion contribution to generalize the Holst modification and
construct a topological term. In other words, by using a non-minimal coupling between spinors
and gravity,31 it has been, indirectly, demonstrated that the EC action can be generalized without
modifying the classical dynamics by adding the Nieh–Yan topological density [86], i.e.

SGrav = SHP [e,ω]+SNY [e,ω] =
1
2

∫
ea∧ eb∧?Rab +

1
2β

∫ (
T a∧Ta− ea∧ eb∧Rab

)
.

31See [88] for the extension to supergravity theories.
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By remembering the definition of the torsion 2-form T a = dea +ωa
b∧eb, the NY term can be easily

rewritten as a total divergence, i.e.∫ (
T a∧Ta− ea∧ eb∧Rab

)
=
∫

d (ea∧T a) . (5.53)

The modification is now a true topological term related to the Chern–Pontryagin classes [89], so
that new interesting insights can be provided on the physical origin of the BI parameter. Moreover,
this generalization is quite natural [90, 91] and motivated another approach similar to the discussion
in the Appendix B, presented in [81], as well as other recent works [92, 93]. The structure of the
large gauge group, which is supposed to be at the base of the proposed interpretation of the BI
parameter is quite subtle; a possible framework is described in [82].

Finally, we want to briefly digress on an interesting possibility which has lately attracted much
interest. The analogy existing between the θ -angle of Yang–Mills gauge theories and the BI pa-
rameter in gravity suggest a further generalization, namely the idea that the BI parameter is actually
a field [94, 92, 95]. Initially, this idea was considered just as a possible generalization of the theory,
but recently it has been demonstrated that promoting the BI parameter to be a field could be neces-
sary in order to reabsorb a divergence coming from the chiral anomaly on space-time with torsion
[91]. This proposal has an interesting outcome, indeed, once the BI field is coupled to gravity via
the Nieh–Yan density, this ceases to be topological and the presence of the new field generates a
torsion contribution in the second Cartan structure equation. In the case of pure gravity interacting
with the BI field, the net effect of the presence of torsion is the appearance of a kinetic term for the
BI field, which becomes a decoupled pseudo-scalar field. A more interesting dynamics appears as
soon as we consider the presence of fermion fields. Indeed, the BI field turns out to interact with
fermions and, through the chiral anomaly, with boson fields as well [91, 93, 96]. As it happens for
the axion, also in this case instantonic effects can give an extremely small mass to the BI field. The
mass of the BI field can be easily evaluated [91, 93], as well as some cosmological implications
[97].

We conclude this section saying that the nature of the BI parameter is still unclear and is
argument of active discussion from both the purely classical and quantum perspective.

6. Quantization Program

Previously in this paper, specifically in § 2.1, we discussed some general and very well known
arguments which motivates the attempts to formulate a consistent QG. Remarkably, the necessity
of a quantum theory of gravity was pointed out by Einstein himself in 1916: More than ninety years
later a fully consistent and complete formulation of a quantum gravity theory still lacks.

On the one hand, it appeared immediately obvious from the pioneering works of Dirac, Wheeler,
and DeWitt, that the problem of quantizing gravity was much more conceptually involved than
other analogous problems regarding the other interactions. This led to the idea that the problem
of QG could not be solved separately from the other interactions, namely, that it was inextrica-
bly bound to the issue of unification. So, for many years, the problem of quantizing pure gravity
marginally interested physicists, more attracted by the attempt of unifying the other interactions or,
more recently, by the idea of supersymmetry and extra-dimensions. Another interesting aspect that

67



P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity Simone Mercuri

is worth mentioning is the belief that the main question to answer to construct a consistent quan-
tum gravity was the disappearance of time. In other words, initially it seemed that the so called
frozen formalism was the main obstacle to obtain a physically consistent formulation of QG. But
the peculiar role played by time in ordinary quantum mechanics is mainly correlated with the, let’s
say, evolutionary interpretation of physical theory we have been used to by classical mechanics.
The presence of an evolutionary parameter is neither a fundamental request of the quantization
procedure, nor a fundamental ingredient for the physical interpretation of the theory. A quantum
theory without time can be, in fact, perfectly consistent.

On the other hand, the physical situation a theoretical physicist is called to face in constructing
a quantum theory of gravity should be the best he/she can imagine. At present, in fact, there is no
strong experimental constraint on the quantum gravity regimes. Naively, one could expect that a
rich variety of different consistent theories has been formulated so far, on the contrary, we do not
have anyone. Most likely, the reason is the double nature of GR, namely as a field theory describing
gravity and as a theory of space-time. Any quantum gravity theory, in fact, has to put together three
fundamental dynamical elements, i.e. geometry, gravity and quantum laws. In this perspective,
the ordinary quantum theory of field cannot provide any insightful hint as one of the fundamental
ingredients lacks, i.e. the dynamical nature of the space-time geometry.

We know, in fact, that as soon as we treat quantum gravity perturbatively, namely neglecting
the full dynamics of space-time, as one would do following the prescriptions of quantum field
theory, the result we get is a non-renormalizable theory. So, it seems pretty natural to incorporate
the full dynamics of space-time in the theory through a non-perturbative approach. But one may
wonder if a non-perturbative quantum theory of gravity can actually be a consistent theory. This
question is often suggested by a naive analogy based on the behavior at high energy of the Fermi
theory for the weak interaction. As is well known, the Fermi model contains a point-like four
fermions interaction, which is non-renormalizable. Fermi’s model works well at low energy, but
it is doomed to fail at high energies. A striking progress was done in this sense by completely
reformulating the theory through the introduction of the massive bosons W± and Z0 carrying the
weak interaction.

It is often argued that an analogous procedure has to be applied to GR, since its perturbative
non-renormalizability points in a direction similar to that of the Fermi model of weak interaction.
Nevertheless, this argumentation completely fails in getting an essential difference between the
weak and the gravitational interaction, namely the fact that perturbative expansions presuppose that
the space-time is a smooth continuum at all the energy scales. But, there is no reason to believe
that the classical concept of continuum space-time has to survive at scales of the order of the Plank
energy. That is why a non-perturbative approach, able to incorporate the complete dynamics of the
geometry of space-time, may safely describe quantum general relativity.

Furthermore, the failure of the standard perturbation expansion in gravity may well reflect the
fact that GR is characterized by a non-trivial fixed point of the renormalization group flow. This
extremely fascinating aspect of perturbative QG has been well described in this school by Roberto
Percacci, who, in his two lectures, has pointed out that there is a growing evidence that this is
exactly the case. Furthermore the requirement that the fixed point should continue to exist also in
presence of matter fields constrains the possible couplings in an interesting physical way [98].

In general, it is expectable that a consistent quantum theory of gravity is able to remove sin-
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gularities, replacing them with a well defined quantum state of the gravitational field. Initially, this
was just a hope, but now encouraging results exist. They are mainly due to the general quantization
program of Loop Quantum Gravity, which faces the problem of quantum gravity merging together
the three main ingredients said above. They are still partial results, in the sense that it is possi-
ble to remove singularities at least in symmetric space-times, both of cosmological origin, as the
Big Bang singularity [70, 99, 100, 101, 102, 103, 104, 105] and those resulting from a complete
gravitational collapse [71, 106, 107]. Of course, a theorem establishing a general result about the
possibility to avoid singularities in LQG still lacks.

However, the existing results make us confident that a suitable background independent quan-
tization of the gravitational field can solve the problem of classical singularities and the program
of canonical quantization of gravity has exactly this task. But, it is a matter of fact, that so far the
complicated structure of the canonical constraints has prevented from making progresses in the full
theory.

Below, we describe the main features of canonical quantization, starting from a brief account
of the prescriptions of the Dirac quantization procedure, then we digress on the old Wheeler-DeWitt
quantum gravity and finally we go on to briefly introduce some aspects of Loop Quantum Gravity.

6.1 Dirac quantization procedure

The Dirac quantization procedure is a set of prescriptions aiming to consistently face the quan-
tization of constrained physical system. One useful example to understand how the Dirac procedure
works is the quantization of the electromagnetic field, which, as remarked in § 3.2 is a gauge theory
of the compact U(1) group.

Canonical quantum electrodynamics is usually constructed by imposing a gauge condition
on the electromagnetic potential, as initially suggested by Fermi. Specifically, the quantization
usually chosen is the so-called Lorentz gauge ∂µAµ = 0. By imposing the gauge in the action, the
definition of the momenta conjugated to the electromagnetic potential do not generate any primary
constraint. So, the theory can be quantized and the gauge condition weakly imposed on the Fock
quantum states, reducing the physical degrees of freedom to the two polarization of the photon.
Another possibility is to consider the full canonical classical theory, as we have calculated in § 3.3
a first class Gauss constraint appears, and can be solved by a gauge fixing. A possible choice is
the Coloumb gauge ∂αAα = 0. The dynamical variables (Aα ,Eβ ) have to satisfy both the gauge
fixing condition and the Gauss constraint. As we said in Sec. 4.2, the general conditions that a
consistent gauge fixing has to satisfy imply that the Gauss constraint and the gauge condition form
a set of second class constraints. Thus, the degrees of freedom in configuration space are exactly
reduced to those corresponding to the two polarizations of the photon field. Finally, once the non-
physical degrees of freedom have been eliminated, the system can be quantized by promoting the
canonical variables to operators, satisfying the relations derived from promoting the Dirac brackets
to quantum commutators.

This procedure works well if applied to linear physical systems, but it presents some com-
plicated issues when applied to non-linear systems as, for example, gravity or Yang-Mills SU(N)
gauge theories for N ≥ 2. The reason is connected with the existence of the so called Gribov am-
biguities, which are produced by the complicated geometrical aspects of the complete phase space
associated with the dynamics of gauge theories. In fact, in general, the geometry of the constraints
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surface and gauge orbits could be such that the gauge fixing surface cuts some of the orbits more
than once and it does not intersect some others at all [108]. So the gauge fixing surface works
properly only locally, in general, it is impossible to find a global suitable gauge condition. This
fact is generally referred as the Gribov obstruction and represents a shared characteristic of all the
non-abelian gauge theories. Also gravity is affected by this problem, indeed, studying the classical
canonical aspects of the theory, we pointed out that the attempts to solve the Cauchy problem in
GR reveals the non-existence of global gauge conditions. In fact, it is possible to find a solution of
the Cauchy problem at most locally.

For these reasons it is important to develop a theory of first class constraints without having the
necessity to fix the gauge by using the procedure above. The way, suggested by Dirac, is to impose
the first class constraints after the quantization, namely directly on the quantum states. In other
words, the idea is to set up a Schrödinger-like equation by promoting the first class Hamiltonian to
a quantum operator acting on the states of the theory. The classical first class constraints, in stead,
are imposed on the state functional as a supplementary conditions, i.e.

ĈI |ψ〉= 0 . (6.1)

The action of the first class Hamiltonian and the first class constraints on the state functional is
dictated by the upgrade of the classical Dirac brackets to quantum commutators.

In this way, every quantum state remains unchanged under a transformation generated by the
constraints, namely we are reintroducing the gauge invariance at a quantum level. In fact the
condition above implies, as a consequence, that the quantum states are invariant under finite gauge
transformations in the sector connected with the identity,32 i.e.

exp
{

iαIĈI

}
|ψ〉= |ψ〉 . (6.2)

We are assuming that the set of classical constraints CI is first class, i.e.

{CI,CJ}= f K
IJ CK , (6.3)

if this relation is preserved by the quantization we have[
ĈI,ĈJ

]
= ih̄ f̂ K

IJ ĈK , (6.4)

but in general it is possible that the first class conditions above show the presence of additional
terms of quantum mechanical origin, i.e. we could have[

ĈI,ĈJ

]
= ih̄ f̂ K

IJ ĈK + h̄2ÂIJ . (6.5)

If this is the case the physical states, namely the states invariant under finite gauge transformation
connected with the identity, must satisfy the additional condition

ÂIJ |ψ〉= 0 , (6.6)

32The transformation properties of the physical states under “large gauge transformation”, that is those not connected
with the identity, are not contained in the action principle, indeed no constraint is generated by them, so requiring the
invariance of the physical states under this larger class of transformation would be an extra assumption. See Appendix
B for more details.
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which has not a classical analogue and in general restrict the phase space too much. In particular
if the operator ÂIJ is invertible, it would imply that the space of the physical states is empty. So,
on the one hand, we cannot impose such a condition without drastically affecting the content of the
theory. But, on the other hand, if we do not pose that condition the operator ĈI is not first class
any longer, so it no longer generates gauge transformations. In other words, the gauge invariance
is broken at a quantum level, i.e. the quantization of the system has produced a gauge anomaly.
Summarizing, if quantum effects break down gauge invariance, then it is meaningless to search
for gauge invariant physical states, i.e. we cannot impose equation (6.1). We can finally say that
if a gauge anomaly is present the Dirac quantization method cannot be applied and a different
quantization procedure, e.g. BRST, must be considered, with the hope that it could improve the
situation in view of a consistent quantum theory.

6.2 Wheeler-DeWitt equation

The Wheeler-DeWitt equation is essentially the result of the Dirac quantization procedure to
gravity. There is one peculiar aspect that makes this argument interesting, namely the fact that the
first class Hamiltonian of GR is a combination of constraints, so that it does not exist the equivalent
of the Schrödinger equation in QG. This aspect is well known and, as remarked previously, it is
often referred as the problem of time. Nevertheless, the quantization can be formally performed,
by following the standard procedure.

Firstly, let us define the smeared ADM variables,

Q(h) =
∫
Σ

d3xhαβ Qαβ , (6.7a)

P( f ) =
∫
Σ

d3x pαβ fαβ , (6.7b)

where Qαβ and fγδ are smooth tensor valued function, while hαβ and pγδ are the canonical vari-
ables defined in § 4.1. As is well known the wave function depends only on half of the elementary
variables, since in this case a natural separation between configuration variables and momenta ex-
ists, then the “polarization of the symplectic manifold” is pretty natural, i.e. the wave function
will depend on Q(h). Now, once a suitable quantum configuration space C has been introduced,
it has to be equipped with the structure of an Hilbert space. This consists in choosing a suitable
measure dµ0, in such a way that C becomes naturally an L2 space. Obviously, the present Hilbert
space does not know about the dynamics, so it will be referred as kinematic Hilbert space. Now
the quantization proceeds in the usual way, namely requiring that the operator representation of
the elementary variables, i.e. Q̂(h) and P̂( f ), acting as linear operator on a common dense domain
of the kinematic Hilbert space H (L2,dµ0) generate an irreducible representation of the canonical
commutation relation. In other words, we require that[

Q̂(h), P̂( f )
]

= ih̄ ̂{Q(h),P( f )} . (6.8)

As usual, Q̂(h) operates by multiplication when valuated on the quantum configuration space, i.e.

〈h| Q̂(h) |ψ〉= Q(h)〈h|ψ〉= Q(h)Ψ(h) , (6.9)
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while P̂( f ) acts as a functional derivative operator, i.e.

〈h| P̂( f ) |ψ〉= h̄
i

∫
d3x fαβ

δ

δhαβ

〈h|ψ〉= h̄
i

∫
d3x fαβ

δ

δhαβ

Ψ(h) . (6.10)

Now, the naive quantization of the system follows from the translation of the classical constraints
to quantum operators, in accordance with the prescription above, i.e.

~H(~N)≈ 0 =⇒ Ĥ(~N)Ψ [Q(h)] = 0 , (6.11)

H(N)≈ 0 =⇒ Ĥ(N)Ψ [Q(h)] = 0 . (6.12)

But this procedure presents a lot of shortcomings, some of them are of a general nature, while
others are specific for the gravitational case [3]; we summarize in what follows the main ones.

• We know that in the construction of the quantum phase space functions we can arbitrarily
add to the elementary variables terms proportional to the constant h̄ without affecting the
classical limit of the theory. This ambiguity in the choice of the phase space function is
known as factor ordering ambiguity. Divergences can arise in gauge theories where a bad
factor ordering is fixed, a simple example is provided by QED, in fact only after the choice
of a suitable factor ordering the Hamiltonian operator results well defined, being otherwise
divergent and nowhere defined.

• In general the divergences of an operator are of a worse kind and can be reabsorbed only after
a regularization and renormalization procedure. It is worth noting that the renormalization is
connected with the free possibility of adding localized terms to the quantum operators.

• It is important choose the factor ordering in such a way the quantum operators be self-adjoint,
this is a crucial question in theories with true Hamiltonian, in order to guarantee that the
eigenvalues of the operator be real and could be neglected in theories like gravity with a
constrained Hamiltonian on condition that the eigenvalue zero is contained in the spectrum.
Working with self-adjoint operators is however advantageous.

• The Hamiltonian quantum operator of GR depends neither polynomially nor analytically on
the metric, this fact poses a serious problem because in general operator valued distributions
multiplied at the same point gives divergent results, so a regularization procedure is required;
even worse the presence of distribution in the denominator poses a more difficult problem
of formal definition. Anyway we can try to seek formal solutions of the Wheeler-DeWitt
operator, being aware of the fact that a regularization procedure is however required.

• Let us suppose to neglect initially the amount of technical issues and bad definitions of the
Wheeler-DeWitt approach, hopefully solvable after a suitable regularization and renormal-
ization procedure. Let us suppose that we succeed in finding a solution of this equation,
then a conceptual and interpretative issue arises, indeed, we do not know, in general, how to
interpret the result. This fact is strictly connected with the problem of time and, even though
a quantum mechanics without time can be constructed, then a further amount of work is
required to correctly interpret the result of quantization. A possible solution to this interpre-
tative problem is relational evolution, namely, a Schrödinger-like equation can be constructed
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in place of the Wheeler-DeWitt one, showing that the presence of timein the quantum equa-
tions reflect on the classical theory generating matter fields [28]. The other way around is to
couple matter to gravity, e.g. a free scalar field or a dust of particles and extract a relational
time variables related to the momentum of the scalar field, by using the Brown-Kuchař proce-
dure [57, 30]. It is worth noting that in this kind o approaches the evolution parameter is not
external with respect to the physical system as in background dependent theories, here the
evolution is referred to an “internal time” as one would expect in a background independent
theory.

• Finally we stress that a central issue should be faced and regards the presence of gauge
anomalies. In GR, indeed, the problem is particularly complicate, because the group struc-
ture constants are replaced by structure function depending on the metric field, so in the
computation of equation (6.4) it is possible that an anomalous factor comes out.

All the above described issues have led to seek for a better formalization of the problem. In
particular since the choice of the elementary variables is dictated only by the convenience and sim-
plicity of the resulting constraints, the use of Ashtekar-Barbero variables turned out to be extremely
useful in facing some of these problems. In fact, a consistent anomaly free quantization is possible
and has given interesting results on the spectrum of regularized self-adjoint operators exactly in
line with the results one would expect from a quantum General Relativity theory [1].

6.3 The program of Loop Quantum Gravity

As we showed in Section 5, canonical GR in the Ashtekar–Barbero formulation is character-
ized by the following set of first class constraints:

Gi = ∂αPα
k + ε

j
ki A i

αPα
j ≈ 0 , (6.13)

Cα = Pγ

i F i
αγ ≈ 0 , (6.14)

C =
1
2

Pα
i Pγ

j

[
ε

i j
kF

k
αγ −2

(
β

2 +1
)

Ki
[αK j

γ]

]
≈ 0 , (6.15)

where, to simplify the notation, we defined Pγ

i = (β )Eγ

i and we dropped the upper left β in the
connection, i.e. A i

α = βKi
α +Γi

α . For convenience we rewrite here the symplectic structure as well{
A i

α(t,x),Pγ

k (t,x′)
}

= δ
i
kδ

γ

αδ (x,x′) ,
{

A i
α(t,x),A k

γ (t,x′)
}

= 0 ,
{

Pα
i (t,x),Pγ

k (t,x′)
}

= 0 .

(6.16)
The above formulation of the classical canonical GR is the starting point of LQG. Remarkably, the
AB formulation, allowing to rewrite GR as a theory of connections, provides a sort of kinematical
unification with the other forces, successfully described by Yang–Mills gauge theories, namely
as theories of connections valued on compact groups of the SU(N) family. Nevertheless, it has
to be emphasized that, from a dynamical perspective, a profound different can be immediately
recognized: In Yang–Mills theories the metric of space-time plays a central role, while in QG no
background metric is assumed a priori, better to say that in QG there is no space-time at all.

According to the Dirac prescriptions previously described, the theory can be quantized by
suitably define a quantum representation of the canonical algebra and then imposing the operator
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translation of the canonical constraints on the state functional, Ψ(A ), representing the states of the
theory. A possible choice for the representation is the one suggested by the old Wheeler–DeWitt
approach described before, which, even though formally correct, cannot be made rigorous.

The program of Loop Quantum Gravity goes, in fact, in a different direction. The idea is
to use a different set of fundamental variables,which are more suitable for quantization. In this
respect, let us introduce the holonomies, hγ [A ], of the connection A i

α and the fluxes, P [Σ, f ], of
the momentum Pγ

k respectively as

hγ [A ] = P exp

−
∫
γ

A i
ατi

dxα

ds
ds

 , (6.17)

and

P [S, f ] =
∫
S

Pα
i f i

εαβγ

dxβ

ds1

dxγ

ds2
ds1ds2 , (6.18)

where τi = 1
2 σi are the generators of the SU(2) group, σi being the Pauli matrices, while f i is

an SU(2) valued smearing function. The symbol γ is the parametric oriented curve on which the
holonomy is valued, while S represent a 2-dimensional surface in Σ3. It is easy to demonstrate that
the holonomy has the following properties:

hγ1◦γ2 [A ] = hγ1 [A ]hγ2 [A ] and hγ−1 [A ] = h−1
γ [A ] , (6.19)

where γ1 ◦ γ2 corresponds to join together the end point of γ1 and the initial point of γ2, while γ−1

denotes a change in the orientation of the curve. Notice that the holonomy is an element of the
group SU(2).

Our purpose is to describe the canonical dynamics of the gravitational system by using the
new variables defined above. The first step in this program is the evaluation of the Poisson brackets
between the new configuration observables hγ [A ] and momenta P[S, f ]. Specifically, the Poisson
brackets between two configuration variables vanish, while, considering that any edge γ with γ ∩
S 6= /0 can be trivially written as the union of elementary edges which either lie in S, or intersect S
in exactly one of their end-points, then, for each of these elementary edges γ which intersect S at a
point p, we have:

{he [A ] ,P(Σ, f )}=−κ(S,γ)×

{
hγ [A ]τi f i(p) if p is the source of γ

− f i(p)τihγ [A ] if p is the target of γ
, (6.20)

where

κ(S,γ) =

{
0 if γ ∩Σ = /0 or γ ∩Σ = γ

±1 if γ ∩Σ 6= /0
. (6.21)

Notice that the Poisson brackets between two momenta is non-trivial; the reason being related to
the fact that new variables are still distributional quantities even though they are smeared, since the
smearing is made respectively on one and two dimensional functions for holonomies and fluxes, so
that a particular care has to be taken in handling with Poisson brackets involving two momenta.

According to the usual procedure, the quantum fundamental operators in the auxiliary Hilbert
space will be required to satisfy the algebra originating from the commutation relations. So, one
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of the main issue one has to face is to find a consistent representation for the quantum algebra. It
is worth saying that the properties of the resulting quantum geometry can be extracted through the
momentum operators P̂ [Σ, f ] in that representation, it is, in fact, related to the classical orthonor-
mal basis via the definitions given above. Surprisingly enough, the diffeomorphisms invariance
requirement sort out a unique representation of the quantum algebra. This result is often referred
as LOST theorem by the acronym of Lewandowski, Okolow, Sahlmann, and Thiemann [109] (an
independent result with the same physical content was given by Fleischhack [110])

After this brief introduction, a schematic description of how the Dirac procedure applies to
gravity in the LQG program is in order.

• Holonomies of the connection are chosen as configuration variables. In particular, the auxil-
iary Hilbert space can be constructed and consists of a set of functionals of the holonomies,
square integrable in the Ashtekar–Lewandowski measure.

• The Gauss and vectorial constraints have a natural action on the states of the theory. In
particular, the space of solutions of the Gauss and vectorial constraints is well understood.

• The situation becomes much more involved as far as the scalar constraint is considered. The
main problem is that the scalar constraint is highly non-linear. Some strategies have been
developed to deal with the scalar constraint, particularly through the Thiemann’s “master
constraint program” [111], but many unsolved issues are still present in the theory. Nev-
ertheless, well defined version of the scalar constraint (in symmetric systems) have been
constructed, leading to striking results, which answer some long-standing question about
(quantum) gravity.

• At the present stage of the development of the theory, physical observables are known only
in some special cases.

In order to be more specific, let us give a brief account of these steps by introducing the so-called
spin-networks representation.

In order to be as clear as possible, let us start by defining an abstract graph, Γ, which is intended
as a collection of paths γ ∈ Σ meeting at most at their end-points. Given a graph Γ, we denote by
1,2, · · · ,N its edges γ , i.e. Γ =

⋃N
k=1 γk. We call cylindrical functions of generalized connections a

functional of the holonomies valued on the edges of the graph to complex numbers,

F : SU(2)N → C , (6.22)

defined as
ψΓ,F [A ] = F

(
hγ1 [A ] , · · · ,hγN [A ]

)
. (6.23)

As a simple example, consider a closed loop γ and the functional

Wγ [A ] = ψγ,tr [A ] = tr
{

hγ [A ]
}

, (6.24)

this is often referred as Wilson loop and belongs to the space of cylindrical functions, i.e. Wγ [A ] ∈
CylΓ.
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Let us now denote as F the linear space of all functionals ψΓ, f [A] for all Γ and f . The space
F can be equipped with a scalar product through the following procedure. Define a new state µAL

as
µAL (ψΓ,F) =

∫
∏
γ⊂Γ

dhγF
(
hγ1 , . . . ,hγN

)
, (6.25)

where dhe is the normalized Haar measure of SU(2). The state µAL (ψΓ,F) is normalized, i.e.,
µAL (1) = 1, because the Haar measure is normalized, and positive, i.e.

µAL
(
ψΓ,FψΓ,F

)
=
∫

∏
γ⊂Γ

dhγF∗
(
hγ1 , . . . ,hγN

)
F
(
hγ1 , . . . ,hγN

)
≥ 0 . (6.26)

As a consequence, a scalar product on F can be defined as〈
ψΓ,F |ψΓ′,F ′

〉
= µAL

(
ψΓ,FψΓ′,F ′

)
=
∫

∏
e⊂Γ∪Γ′

dheF∗ (he1 , . . . ,heN )F ′ (he1 , . . . ,heN ) . (6.27)

Usually µAL is called Ashtekar-Lewandowski measure. The above scalar product gives to the kine-
matical state space the structure of an auxiliary Hilbert space. Furthermore, the kinematical scalar
product is invariant under the automorphisms of the local bundle and 3-diffeomorphisms, so that
the kinematical state space carries a unitary representation of local SU(2) and 3-diffeomorphisms.

At this point, the states of the theory, represented by the functionals ψΓ,F ∈ F , have to be re-
stricted by imposing the constraints. In particular, by imposing the Gauss and vectorial constraints,
the state of the theory will be invariant under the local SU(2) symmetry, correlated with the (double
cover of the) group of spatial rotations, and under the 3-diffs. But, in order to rigorously implement
in the quantum theory the following formal equations

ĜiψΓ,F [A ] = 0 , (6.28)

ĈαψΓ,F [A ] = 0 , (6.29)

it is necessary to find a quantum operator representation of the classical elementary variables.
In this respect, the introduction of a suitable basis for the kinematical states space is particularly
useful. Without entering in the details, we can just use the result of the Peter–Weyl theorem, stating
that a basis on the Hilbert space of L2 functions on SU(2) is given by the matrix elements of the
irreducible representations of the group. We indicate the matrix elements in the j-representation as
R( j)m

n, where m,n, . . . denote the matrix elements of the specific representation. Therefore, a basis
for each graph Γ is simply obtained by “tensoring” the basis above, i.e.

ψΓ,F [A ] = ∑
j1··· jN

f m1···mN ,n1···nN
j1··· jN R( j1)

m1n1

(
hγ1 [A ]

)
· · ·R( jN)

mNnN

(
hγN [A ]

)
. (6.30)

The symbol j labels the irreducible representation of SU(2), which can be characterized by half-
integer spins pictorially associated to each edge of the graph Γ. The coefficients of the expansion
f j1··· jN are restricted by the gauge invariance. We can easily construct a simple example for one of
the lements of the sum above by considering a graph Γ made up of three edges γ1,γ2,γ3, to which
we respectively associate the representations 1, 1

2 , 1
2 of the group SU(2), then we have:

ψ(γ1∪γ2∪γ3)[A ] = R(1) (hγ1 [A ]
)i j R(1/2) (hγ2 [A ]

)
AB R(1/2) (hγ3 [A ]

)
CD σ

AC
i σ

BD
j , (6.31)
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where i, j = 1,2,3 are vector indexes, while A,B,C,D = 1,2 are spinor indexes, and σAC
i are the

2× 2 Pauli matrices. It is easy to check that the expression above is gauge invariant, in fact, the
Pauli matrices are invariant tensors in the tensor product representation 1⊗1/2⊗1/2 acting on the
nodes of the graph Γ = γ1∪ γ2∪ γ3. Generally, we can write a gauge invariant state function as

ψΓ[A ] =

(⊗
l

R( jl) (hel [A ])

)
·

(⊗
n

in

)
,

where the invariant tensors in assigned on the nodes of the graph are called intertwiners between
the representations j1, · · · , jN associated to the edges joining in a node. The graph Γ, the labels
jk “coloring” the links and the intertwiners in “coloring” the nodes completely define a state, in
particular a state defined by the triplet (Γ, jk, in) is called spin-network.

Now, in order to physically characterize the states of the theory, represented by spin-networks,
we construct some geometrical operators acting on them, defining their action on the single holon-
omy (the action on the complete state can be extracted by composition). The first operator we wish
to define is the momentum operator, easily correlated to the triad which has a precise geometrical
interpretation as stressed above. Specifically, the momentum Pα

i naturally acts on the holonomies
as a functional derivative, i.e.

P̂ [S, f ] =
h̄
i

∫
S

dsβ dsγ
εαβγ f k δ

δA k
α

, (6.32)

where we introduced the Planck constant h̄ (it is worth recalling that we set 8πG = 1 and c = 1
from the very beginning). To compute the result of the action of the momentum operator on the
holonomy, let us firstly note that

δ

δA i
α(y)

hγ [A ] =
∫

dsδ (x(s),y)
dxα

ds
hγ1 [A ]τihγ2 [A ] , (6.33)

namely, the action of the functional derivative “cuts” the link γ at the point y where the derivative
operator acts, inserting an SU(2) generators in the middle of the holonomies valued on the two
resulting pieces of the original holonomy. Given that, we easily get

P̂ [S, f ]hγ [A ] =
h̄
i

∫
ds1ds2ds3

εαβγ

dxα

ds1
dxβ

ds2
dxγ

ds3 δ
(
x(s3),y(s1,s2)

)
f ihγ1 [A ]τihγ2 [A ] . (6.34)

Notice that the integration is made in 3-dimensions so that the δ distribution can be safely in-
tegrated, moreover its presence ensures that the above integral vanishes if the link γ does not
intersect the surface S. The points of intersection between links and surfaces are usually called
punctures. By using the scalar product defined before, one can show that, in fact, the triad operator
is self-adjoint.

After having established the action of the triad operator on the holonomy, we can now define
an interesting quantum operator, namely the area operator Â. Let me initially refer to a single
holonomy in the fundamental representation. Neglecting some (very important) subtleties, we
have that:

P̂i [S] P̂i [S]hγ [A ] =−h̄2hγ1 [A ]τ i
τihγ2 [A ] =

3
4

h̄2hγ [A ] .
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Considering a general irreducible representation of SU(2), the action of the square of the momen-
tum operator on the holonomy turns out to be

P̂i [S] P̂i [S]R( j) (hγ [A ]
)

=−h̄2 j ( j +1)R( j) (hγ [A ]
)

,

where we assumed that the surface S is punctured only once. For a generic surface S in space
the situation is slightly more complicated and can be reduced to the previous simple case by the
following procedure. Divide the surface S in N cells and consider the full area as a limit, AS =
limN→∞ AN

S , where

AN
S = β

2
N

∑
I=1

√
|Pi(SI)Pi(SI)| , (6.35)

Pi(SI) being the flux through the I-th cell. The factor β stems from the definition of the classical
momentum, Pα

i = (β )Eα
i = Eα

i /β , remembering that the area operator has to be defined with the
geometrical triad Eα

i . So that, the quantum area operator then simply becomes ÂS = limN→∞ ÂN
S .

Considering the result obtained above, the area operator turns out to be diagonal in the basis
of spin-networks and reintroducing the physical constant, its spectrum is given by

ÂS |ψ〉= β`2
Pl ∑

p

√
jp ( jp +1) |ψ〉 , (6.36)

where `Pl is the Planck length. Notice that the cellular decomposition is chosen so that in the limit
N→ ∞ each cell is punctured at most in a single point.

An analog procedure allows to define the kinematic volume operator V̂ . The classical volume
of a region, R, of space can be written as

V (R) =
∫
R

d3x

√
1
3!

∣∣∣εαβγε i jkEα
i Eβ

j Eγ

k

∣∣∣ , (6.37)

which corresponds to a complicated quantum operator. In particular, to calculate the spectrum
of the volume operator, a cellular decomposition analog to that performed in the case of the area
operator results to be very useful. Specifically, the volume operator

V̂ = lim
N→∞

β
3/2`3

Pl

∫
R

d3x

√
1
3!

∣∣∣εαβγε i jkP̂α
i P̂β

j P̂γ

k

∣∣∣ , (6.38)

can be evaluated and its spectrum results to be discrete depending on the quantum numbers coloring
the nodes of the graph. It is worth noting that the Gauss constraint obliges the flux operator at a
node to vanish, so that the volume of a three-valent node vanishes as well.

The fact that the quanta of area depend on the quantum numbers associated with the links or
edges of the graph, while the quanta of volume depend on the quantum numbers of the nodes, a
physical interpretation of a graph can be given. Specifically, any node of a graph represent a chunk
of volume of the quantum space-time, while links describe the quantum properties of the surfaces
between two volumes. This means that quantum space-time at a kinematical level is made up of
quanta of volume separated by quanta of area.

It remains to describe how the canonical constraints can be implemented on the quantum
states of the theory. This argument deserves to be carefully analyzed and is far from the scopes

78



P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity Simone Mercuri

of this paper. Nevertheless, it is important to say that the Gauss and vectorial constraints can be
implemented and solved at the present stage of the development of the theory. They, in fact, have a
pretty natural action on spin-networks, but serious difficulties appear as soon as the scalar constraint
is regarded. Here I want to digress on the general procedure used to deal with such a problem.

As we said before, the space F can be equipped with the structure of an auxiliary Hilbert
space by defining a normalized positive defined kinematical scalar product. Our final purpose is to
define a physical scalar product, namely between states which satisfy the constraints. In order to
give a general brief description of the problem, let us refer to a general constraint Ĉ and define the
following projection operator

S
Ĉ

=
∫

δNeiNĈ . (6.39)

This operator allows to formally define a physical inner product (for details and rigorous procedures
see [1]). The idea is that S

Ĉ
is formally equivalent to a delta function of the constraint operator Ĉ ,

so it can select the states of the theory that satisfy the constraint, i.e.(〈
ψΓ,F |ψΓ′,F ′

〉)
Phys =

〈
ψΓ,F |δ

(
Ĉ
)
|ψΓ′,F ′

〉
. (6.40)

So, formally, the physical inner product corresponds to the following expression

〈
ψΓ,F |SĈ

|ψΓ′,F ′
〉

=
〈

ψΓ,F

∣∣∣∣∫ δNeiNĈ

∣∣∣∣ψΓ′,F ′

〉
=
(〈

ψΓ,F |ψΓ′,F ′
〉)

Phys . (6.41)

which can be made rigorous through the group averaging procedure.
Concluding, we stress that an important result obtained in the framework of LQG is the dis-

creteness of the eigenvalues of geometric operators. But, simultaneously, this fact introduces an
interesting issue. In fact, in the classical theory, to associate a precise physical meaning to geomet-
rical quantities as the area and volume of a region of space-time, one has to define the surfaces and
regions operationally, e.g., by using matter fields. Once this is done, one can simply calculate val-
ues of these observables using the geometrical formulas. An analogous situation characterizes the
quantum theory. For instance, the area of the isolated horizon is a Dirac observable in the classical
theory and the application of the quantum geometry area formula to this surface leads to physical
results [1]. In this situation, the operators and their eigenvalues correspond to the proper lengths,
areas an volumes of physical relevant objects.

Finally, answering to a question asked more than once during the School, it is important to
emphasize that no tension exists between the discreteness of the eigenvalues of geometrical opera-
tors and Lorentz invariance. A simple example from quantum mechanics should clarify this point.
Consider, e.g., the angular momentum operator in ordinary quantum mechanics, its eigenvalues are
discrete and this is perfectly compatible with the rotational invariance of the theory.
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A. Differential forms

In this appendix, we have collected the main definitions and formulas useful to deal with dif-
ferential forms. This language has become pretty common in the literature and sometimes confuses
people used to the index notation. We should say that in a theory like like GR, where the coordi-
nates have no any physical meaning, differential forms represent the most natural formalism, even
though in some problems the index notation is preferable. So, often one has the necessity in treat-
ing physical problems to switch notation, going from forms to indexes and vice versa. This has
induced me to collect some main formulas in few pages, with the hope they will be useful to the
readers as they has been so for me.

As a disclaimer, we have to stress that many different notations are used in the literature, any-
one valid and motivated by precise choices. The definitions and formulas below are in accordance
with a notation commonly used in physics and refers to an arbitrary number of dimensions (unless
differently specified) and to any signature of the n-dimensional manifold.

Let M be an n-dimensional manifold of signature s.33 Let me denote as Λp(T ∗Mn) the

(
n
p

)
-

dimensional space of p-forms on the cotangent bundle. Let ea = ea
µdxµ be the gravitational 1-

form defined in § 5.1, transforming under the vectorial representation of the local symmetry group
SOn− s,s. The canonical basis for Λp(T ∗Mn) is easily induced by the local basis by considering
the wedge product of the 1-forms ea. Specifically any p-form η ∈ Λ

p
∗(T Mn) can be expanded on

the canonical basis according to the following definition

η =
1
p!

η[a1···ap] e
a1 ∧·· ·∧ eap , (A.1)

where the square brackets denote anti-symmetrization. In other words, the p-form η is a smooth
map that associates to any x ∈M an antisymmetric tensor of type (0, p), i.e.

η(ea1 , · · · ,eap) = η[a1···ap] , ∀η ∈ Λ
p(T ∗Mn) . (A.2)

By definition we have that

ea1 ∧·· ·∧ eap = e a1
[µ1
· · ·e ap

µp]
dxµ1 ∧·· ·∧dxµp = (−1)s

ε
a1···apdV , (A.3)

where dV denotes the volume element.
In order to give a precise operative meaning to the definition (A.2), we introduce the internal

or scalar product between a differential p-form and a vector v defined on the tangent bundle T M.
Let ω ∈ Λp(T ∗Mn) and v = vaẽa, where ẽa = eµ

a∂µ is a vector field, then we can evaluate the dif-
ferential form on the vector field, obtaining a (p−1)-form, according to the following prescription:

ω(v) =
1
p!

ωa1···apvb [ea1 ∧·· ·∧ eap ]yeb

=
1
p!

p

∑
i=1

(−1)p−i
δ

ai
b ωa1···ai···apvbea1 ∧·· ·∧ eai−1 ∧ eai+1 ∧·· ·∧ eap

=
1

(p−1)!
ωa1···ap−1bvbea1 ∧·· ·∧ eap−1 , (A.4)

33Namely, s corresponds to the number of minus signs in the metric.
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where in the last line we moved the index saturated with the components of the vector v on the
right by using the antisymmetry of the indexes of ω and renamed the others. By using the above
formula for the internal product, the definition (A.2) can be easily derived as a trivial consequence.

Let us now introduce the exterior or wedge product “∧”. It is defined as producing a map
∧ : Λp(T ∗Mn)×Λq(T ∗Mn)→ Λp+q(T ∗Mn) (p+q≤ n) according to the following prescription:

ω ∧η =
1

p!q!
ω[a1···ap]η[b1···bq]e

a1 ∧ eap ∧ eb1 ∧ ebq

=
1

(p+q)!

(
(p+q)!

p!q!
ω[a1···apηap+1···ap+q]

)
ea1 ∧ eap ∧ eap+1 ∧ eap+q , (A.5)

so, the components of the resulting (p+q)-form are

ω ∧η(ea1 , · · · ,eap+q) =
(p+q)!

p!q!
ω[a1···apηap+1···ap+q] . (A.6)

Another useful operator we want to introduce is the so-called Hodge dual, usually denoted by
the symbol “?”. We prefer to define initially the action of the Hodge dual on the canonical basis
p-form ea1 ∧·· ·∧ eap , i.e., ? : Λp(T ∗Mn)→ Λn−p(T ∗Mn), according to

? (ea1 ∧·· ·∧ eap) =
1

(n− p)!
ε

a1···ap
ap+1···an eap+1 ∧·· ·∧ ean

=
1

(n− p)!
(−1)p(n−p)

ε
a1···ap

ap+1···aneap+1 ∧·· ·∧ ean . (A.7)

The above definition of the Hodge dual is different from th standard one, but we find it more con-
venient for a reason that will be clear soon. An interesting consequence, in fact, is that the wedge
product a p-form with its hodge dual generates the volume element according to the following
formula:

? (ea1 ∧·· ·∧ eap)∧
(
eb1 ∧·· ·∧ ebp

)
= p!δ a1···ap

[b1···bp]
dV (A.8)

where dV is the natural volume element on the n-dimensional manifold, i.e. dV = dx1∧·· ·∧dxn. It
is worth noting that no dependence on the signature or dimensions appear in the formula above, this
is particularly convenient to rewrite actions in terms of differential forms. We note that applying
the dual operator twice we obtain the initial form apart for a possible sign factor, i.e.

? ? (ea1 ∧·· ·∧ eap) = (−1)s+p(n−p)ea1 ∧·· ·∧ eap . (A.9)

Now, using the definitions (A.1) and (A.7), we can easily extract the expression of the dual of
a generic p-form. Specifically,

?ω =
1
p!

ωa1···ap ?(ea1 ∧·· ·∧ eap)=
1

(n− p)!

(
1
p!

(−1)p(n−p)
ωa1···apε

a1···ap
ap+1···an

)
eap+1∧·· ·∧ean .

(A.10)
In other words, the dual of a generic p-form is the (n− p)-form of components

?ω(ea1 , · · ·ean−p) =
1
p!

(−1)p(n−p)
ωa1···apε

a1···ap
ap+1···an (A.11)
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The formula above makes it possible to calculate the wedge product between a the p-form η and
the (n− p)-form ?ω . So let ω, η ∈ Λ

p
∗(T Mn) be two p-form, we have:

?ω ∧η =
1
p!

ωa1···apη
a1···apdV . (A.12)

So, apart for the factor 1/p! the wedge product in (A.12) corresponds to the scalar product between
the components of the two p-forms multiplied by the natural volume element. This can be rewritten
as:

?ω ∧η =
1
p!
(
ω(ea1 , · · · ,eap),η(ea1 , · · · ,eap)

)
dV , (A.13)

where the symbol (. . . , . . .) denotes the internal product. We remark that wedging the p-form with
the canonical basis the factorial of p disappears.

Another fundamental operator we want to define is the exterior derivative operator d, which is
a map from Λp(T ∗Mn) to Λp+1(T ∗Mn) defined as

Λ
p+1(T ∗Mn) 3 η = dω =

1
(p+1)!

(
(p+1)∂[bωa1···ap]

)
eb∧ ea1 ∧·· ·∧ eap , ω ∈ Λ

p(T ∗Mn) ,

(A.14)
where, as usual, we contained in parentheses the components of the resulting (p + 1)-form. By
the definition given above we can immediately extract an important property of the exterior deriva-
tives, i.e. d ◦d = 0, namely the composition of two derivative operators is the vanishing operator.
Moreover, assuming that ω ∈ Λ

p
∗(T Mn) and η ∈ Λ

q
∗(T Mn), it is very easy to show the following

formula
d(ω ∧η) = (dω)∧η +(−1)p

ω ∧dη . (A.15)

The local SO(n−s,s) symmetry requires the definition of a covariant derivative. We require that the
covariant derivative operator acting on SO(s,n− s) valued p-forms generates SO(s,n− s) valued
(p + 1)-forms, namely the derivative operator has to transform in the adjoint representation of the
local symmetry group. In this respect, let us introduce a SO(s,n− s) valued connection 1-form
ωab and define the new derivative operator d(ω) as

d(ω) · · ·= d · · ·+ω ∧·· · . (A.16)

We claim that the above derivative operator has exactly the property required, as can be easily
demonstrated. In order to operatively define the covariant operator, we firstly specify its action on
the basis 1-form ea, we have

d(ω)ea = dea +ω
a
b∧ eb , (A.17)

which as can be easily recognized is the definition of the torsion 2-form T a. Specifically

T a := d(ω)ea = dea +ω
a
b∧ eb , (A.18)

so the presence of torsion reflects on the failure of the covariant exterior derivative of annihilating
the basis element. Sometimes the equation d(ω)ea = T a is referred as second Cartan structure
equation. It is worth noting that the composition of two covariant exterior derivative does not
vanish trivially as the analog composition of two ordinary exterior derivatives, rather we have

d(ω) ◦d(ω)ea = Ra
b∧ eb , (A.19)
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which allows to extract the following expression for the curvature 2-form

Rab = dω
ab +ω

a
c∧ω

cb , (A.20)

known as first Cartan structure equation. It is worth remarking that

Rab = 0 =⇒ ω
a
b =

(
Λ
−1)a

c dΛ
c
b , (A.21)

namely the connection is a pure gauge, Λab = −Λba being a representation of the local symmetry
group. Then, one can demonstrate that by assuming

Rab = 0 =⇒ dea = 0 iff T a = 0 , (A.22)

which implies that ea = dxa, where xa are functions of the original set of coordinates. Moreover,
the components ea

µ = ∂µxa, so they simply represent the soldering forms in flat space between two
local arbitrary accelerated reference frames at the same point of the tangent bundle.

Two useful identities can be easily derived from the above definitions, i.e.

d(ω)Ra
b = 0 , (A.23a)

d(ω)T a
b = Ra

b∧ eb , (A.23b)

respectively known as first and second Bianchi identity.
We refer now to a specific case: we assume that n = 4 and s = 1, which means that we

are referring to a 4-dimensional pseudo-Riemannian manifold M4, which is locally isomorphic to
Minkowski space-time with signature (−,+,+,+), so the local symmetry group is SO(3,1). In
this framework the Hilbert-Palatini action for General Relativity can be rewritten as

S(e,ω) =
1
2

∫
?(ea∧ eb)∧Rab , (A.24)

indeed, remembering definition (A.1) and formula (A.8) we can easily write:

S(e,ω) =
1
2

∫
?(ea∧ eb)∧Rab =

1
2

∫ 1
2

R ab
cd ? (ea∧ eb)∧ ec∧ ed =

1
2

∫
d4xdet(e)R(ω) , (A.25)

where we used dV = det(e)d4x.
An analog procedure allows to rewrite also the Dirac action in the framework of differential

forms, but before it is necessary to consistently define the action of the exterior covariant derivative
on a spinor field, which is a 0-form transforming under the spinor representation of the SO(3,1)
local group. Here we do not enter in the details about the construction of the spinor bundle, we
only say that the action of the exterior covariant derivative operator acts on the spinor fields ψ and
ψ according to the following definitions

Dψ = dψ− i
4

ω
ab

Σabψ , (A.26a)

Dψ = dψ +
i
4

ψΣabω
ab , (A.26b)

where
Σ

ab =
i
2

[
γ

a,γb
]

(A.27)
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are the generators of the Lorentz group. So, the Dirac action becomes

S(ψ,ψ,e,ω) =
i
2

∫
? ea∧

[
ψγ

aDψ−Dψγ
a
ψ +

i
2

mea
ψψ

]
, (A.28)

which is equivalent to the usual Dirac action as can be easily demonstrated by using formula (A.8).
As a final remark, we recall that the Hilbert–Palatini action is not affected by a change in the

signature as (−,+,+,+) → (+,−,−,−), while the Dirac action gets an overall minus sign. So, it
is important to remember that they have a relative minus sign in signature (+,−,−,−), particularly
useful when dealing with spinors.

B. Large gauge transformations in Yang-Mills gauge theories

Let the SU(N) valued connection Aα = ∑I AI
αλ I and its associated electric field Eγ = ∑K Eγ

Kλ K

(where I,J,K, · · · are internal indexes running on 1,2, · · · ,N2−1) be a couple of conjugate variables
in the framework of a canonical formulation of Yang-Mills gauge theories (see § 3.3). The evolution
of the system is limited to a restricted region of the phase space by the first class Gauss constraint,
expressed by the following weak equation:

GI := DαEα
I = ∂αEα

I + f K
IJ AJ

αEα
K ≈ 0 . (B.1)

According to the Dirac quantization procedure [49, 108], the state functional describing the quan-
tum physical system must satisfy the Gauss constraint (B.1), namely we have to require that

ĜIΦ(A) =−iDα

δ

δAI
α

Φ(A) = 0 , (B.2)

where the usual quantum representation of the operators has been assumed.
The Gauss constraint in Eq.(B.1) formalizes the request of gauge invariance of the quantum

state describing the physical system, namely it is equivalent to requiring that the state functional
be invariant under the small component of the gauge group G = SU(N), as can be easily realized.
Since the global structure of the gauge group is non-trivial, in view of quantization, it is particularly
interesting to study the behavior of the state functional under the large gauge transformations. It,
in fact, can produce striking effects in the non-perturbative theory, as, e.g., P and CP violations,
physically motivating this extension of the theory.

In this respect, let Ĝ be the generator of the large gauge transformations, acting on the state
functional Φ(A). Considering that the Hamiltonian operator, Ĥ , is invariant under the full gauge
group (or, more formally, it commutes with the operator Ĝ ), we can construct a set of eigenstates
for the quantum theory by diagonalizing simultaneously Ĥ and Ĝ . In other words, the following
equation

Ĝ Φw(A) = Φw(Ag) = eiθw
Φw(A) , where Ag = gAg−1 +gdg−1 , (B.3)

is a super-selection rule for the states of the theory, which are now labeled by the winding number
w = w(g), according to their behavior under the action of the large gauge transformation operator.
The constant θ introduced in Eq. (B.3) is an angular parameter, which indicates how much the
state functional “rotates” under the action of the large gauge transformations operator. Specifically,
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it represents a quantization ambiguity connected with the non-trivial global structure of the gauge
group.

Eq.(B.3) implies that the wave functionals have to satisfy suitable θ -dependent boundary con-
ditions passing from one “slab” to the next in the configuration space; or, a fully gauge invariant
state functional can be constructed, transferring the θ dependence in the momentum operator. In
this respect, we recall that the so-called Chern-Simons functional,

Y (A) =
1

8π2

∫
tr
(

F ∧A− 1
3

A∧A∧A
)

, (B.4)

is characterized by the following remarkable property:

Y (Ag) = Y (A)+w(g) . (B.5)

This directly implies that the new state functional,

Φ
′(A) = e−iθY (A)

Φw(A) , (B.6)

will be invariant under the full gauge group, as can be easily demonstrated. In other words we have

Ĝ Φ
′(A) = Φ

′(A) . (B.7)

So, by using the rescaling in Eq.(B.6), we have obtained a new fully gauge invariant quantum
state functional, at the price of modifying the momentum operator, namely, the θ -dependence has
been transferred from the boundary conditions to the momentum operator, which becomes:

E ′αΦ
′(A) = e−iθY (A)EαeiθY (A)

Φ
′(A) =−i

[
δ

δAα
− iθ

8π2 ε
βγ

α Fβγ

]
Φ
′(A) . (B.8)

The above modification in the conjugate momentum reflects on the Hamiltonian operator, i.e.

H ′ =
∫

d3x tr

[
1
2

(
Eα −

θ

8π2 ε
βγ

α Fβγ

)2

+
1
4

Fαβ Fαβ

]
, (B.9)

generating a pseudo-vectorial term which prevents the new Hamiltonian H ′ from being invariant
under the CP discrete symmetry.

The new Hamiltonian corresponds to a topological modification of the classical action, con-
sisting in the presence of an additional term belonging to the Pontryagin class, i.e.

Snew(A) =−1
4

∫
tr?F ∧F +

θ

8π2

∫
trF ∧F . (B.10)

The θ parameter appears as a multiplicative constant in front of the modification. It is worth
mentioning that the new term does not affect the classical equations of motion, as we have already
noticed in § 3.2, but modifies the vacuum to vacuum amplitude in the path-integral formulation of
the quantum theory. In other words, it allows to take into account possible tunneling phenomena
between distinct vacua characterized by different winding numbers, violating the CP discrete
symmetry.
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[55] K. Kuchař, Canonical quantization of gravity, Relativity, Astrophysics and Cosmology, Reidel,
Dordrecht 1973, p 237.

[56] S. Mercuri and G. Montani, Nuovo Cim. 120B 2005 1137, [gr-qc/0401102].

88



P
o
S
(
I
S
F
T
G
)
0
1
6

Introduction to Loop Quantum Gravity Simone Mercuri

[57] J.D. Brown and K.V. Kuchař, Phys. Rev. D51 1995 5600.
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