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Based on product representation a new performance for abelian symmetry is developed. It yields a new gauge

modelU(1) diverse from Stueckelberg formalism. It generates two potential fields that describes a massive

non-linear photon plus the usual photon field. We derive the lagrangian corresponding for the symmetry

U(1)⊗U(1) that describes an extendedQED with one massive boson gauge invariant and the usual photon

massless case. Also a leptonic sector with a fieldW±µ is considered. As result we obtain the Feynman rules

for propagators and vertices of this lagrangian on the momentum space.
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A gauge field model for abelian symmetry U(1)⊗U(1)

A gauge field theory for abelian symmetryU(1)⊗U(1)

An abelian model for composite leptons is presented as a extension of the quantum electrodynamics sym-
metry. It yields the possibility to explore anU(1) symmetry enlargement, as a particular case of those extended
Yang-Mills symmetrySU(N)⊗SU(N) [1]. As a first consequence, it yields a possible insertion ofmass terms
into the lagrangian without requiring the Stueckelberg formalism or breaking gauge symmetry [2, 3].

Based on mathematics formalism involving direct product [4] between fields we construct an abelian gauge
symmetryU(1)⊗U(1) for matter composite fields [1]. It appears an extended symmetry gauge for quantum
electrodynamics and seems to introduce a massive vectorialboson beside the usual massless photon.

The description of the interactions by means of composite fields already was considered by J. Schwinger
[5]. A model of leptons also was developed, notably by S. Weinberg, S. Glashow and A. Salam as a description
of the weak interactions by the composite symmetrySU(2)×U(1) [6]. For a review of electroweak theory and
applications,see[7].

In our approach, firstly we consider the direct product between spinor and scalar fields(ψ ,φ)
χ =ψ⊗φ , (1)

respectively, in which it transforms independently in accord with

ψ ′ =U1(x)ψ and φ ′ =U2(x)φ . (2)

The groupsU1 andU2 are given by local phase transformation for the abelian groupsU(1)
U1(x) = eiω1(x) and U2(x) = eiω2(x) , (3)

in which ω1 andω2 are real functions.Thus we define gauge fieldsBµ andCµ independents and associated to
gauge transformation (2)

B ′µ = Bµ + 1
e

∂µω1 and C ′µ =Cµ + 1
g1

∂µω2 , (4)

wheree andg1 are coupling constants. Using the direct products properties, the compose matter field has the
following transformation

χ ′ =U(x)χ with U(x) =U1⊗U2 . (5)

The associated composite covariant derivative is

Dµ(B,C) = αDµ(B)⊗1+β1⊗Dµ(C) , (6)

whereDµ(B) andDµ(C) are defined as usual, and(α ,β) are real parameters. Now we making the variables
changing

(Bµ ,Cµ)z→ (Aµ ,Zµ) , (7)

where

eAµ = eBµ +g1Cµ and g1Zµ = eBµ −g1Cµ , (8)
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and we will implement the composite abelian gauge theory with the new fields(Aµ ,Zµ). Moreover using (4),
we obtain the transformation for the physical fields(Aµ ,Zµ)

A ′µ =Aµ + 1
e

∂µ(ω1+ω2) and Z ′µ = Zµ + 1
g1

∂µ(ω1−ω2) , (9)

respectively. The corresponding covariant derivative will be redefined as

Dµ(A,Z) = ∂µ + ieAµ + ig1Zµ , (10)

in which we have redefined the constants coupling. Thus the main property of such gauge composite fields is the
expansion of the symmetry benefits. This means that it allowsa new distribution of a given symmetry for more
fields, coupling constants, conservation laws and son on. For this one has to takeω1 =ω2 =ω , consequently the
transformation (9) takes the form

A ′µ = Aµ + 1
e

∂µω and Z ′µ = Zµ . (11)

which yields a new abelian lagrangian given by

L = −1
4

GµνGµν + 1
2

m2ZµZµ , (12)

in which Gµν is invariant by (11) and split antisymmetric and symmetric parts

G[µν] = Fµν +a (∂µZν −∂νZµ) and G(µν) = b (∂µZν +∂νZµ)+c g2ZµZν , (13)

respectively, where

Fµν = ∂µAν −∂νAµ , (14)

with a,b andc real parameters. The constant couplingg2 from (13) sets the self-interaction between massive
vectorial bosons. Adding to the lagrangian a covariant fixing gauge, one gets

L = −1
4

G[µν]G
[µν]− 1

4
G(µν)G

(µν)+ 1
2

m2ZµZµ − 1
2ξ
(∂µAµ +σ∂µZµ)2 , (15)

then

L = −1
4

FµνF µν − 1
2ξ
(∂µAµ)2−aFµν∂ µZν − σ

ξ
∂µAµ∂νZν − 1

2
(a2+b2)(∂µZν)2

+1
2

m2ZµZµ + 1
2
(a2−b2− σ2

ξ
)(∂µZµ)2−bc g2 ∂µZνZµZν − 1

4
c2 g2

2 (ZµZµ)2 , (16)

in which ξ andσ are real parameters. The equation (16) is showing a different approach from Stueckelberg for
introducing a mass term in an abelian group.

For inserting the composite leptonic sector in this model, we define the spinor and scalar fields from (1) as
associated to two independents abelian groupsU(1), where they can be written as column matrixes

ψ = (ψ1

ψ2
) and φ = ( φ1

φ2
) , (17)
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and performing the direct product from (1), one gets

χ = (ψ1

ψ2
)⊗( φ1

φ2
) =
⎛⎜⎜⎜⎜⎝

ψ1φ1

ψ1φ2

φ1ψ2

φ2ψ2

⎞⎟⎟⎟⎟⎠
, (18)

which suggests to define the left-handed leptonic doublet

ΨL
ℓ ∶= χ = ( ψL

ℓ

ψL
νℓ

) . (19)

Consequently these doublet transforms byU(1) symmetry as

( ψL
ℓ

ψL
νℓ

) z→ ( ψL
ℓ

ψL
νℓ

)
′

= eiω(x)( ψL
ℓ

ψL
νℓ

) , (20)

independently we define the right-handed sector in accord with transformations

ψR
ℓ z→ψR′

ℓ = eiω(x)ψR
ℓ , ψR

νℓ
z→ψR′

νℓ
=ψR

νℓ
. (21)

Here the indexℓ indicates all the known leptonsℓ = (e,µ ,τ) andνℓ their neutrinos, respectively. It gives that
the leptonic sector lagrangian is

Lℓ = Ψ̄ℓiγµDµ(A,Z)Ψℓ−mℓΨ̄ℓΨℓ+ Ψ̄νℓ
iγµDµ(Z)Ψνℓ

− e

2
Ψ̄νℓ

γµAµ(1−γ5)Ψνℓ
, (22)

whereΨℓ and Ψνℓ
is the composition of left-handed plus right-handed leptons and neutrinos, respectively.

Notice that the constant couplingg1 is associated to interaction between leptonic matter fieldsand massive
boson field.

Now the complete lagrangianU(1)⊗U(1) can be split into the form

L =L0A+L0Z+L0AZ+L0ℓ+Lint , (23)

with free terms

L0A = Aµ 1
2
[gµν ◻−(1− 1

ξ
)∂µ∂ν]Aν ,

L0Z = Zµ 1
2
[gµν ((a2+b2)◻+m2)−(a2−b2− σ2

ξ
)∂µ∂ν]Zν ,

L0AZ = Aµ [agµν ◻−(a− σ
ξ
)∂µ∂ν]Zν ,

L0ℓ = Ψ̄ℓ (iγµ∂µ −mℓ)Ψℓ+ Ψ̄νℓ
iγµ∂µΨνℓ

, (24)

and the interaction terms

Lint =−eΨ̄ℓγµAµΨℓ−g1Ψ̄ℓγµZµΨℓ−g1Ψ̄νℓ
γµZµΨνℓ

− e

2
Ψ̄νℓ

γµAµ(1−γ5)Ψνℓ
−bc g2∂µZνZµZν− 1

4
c2g2

2(ZµZµ)2 .

(25)
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From (24) one gets the propagators on momentum space

⟨AµAν⟩ = − i

k2
[gµν +(ξ −1)kµ kν

k2
+ a2k2

b2k2−m2
(gµν − kµkν

k2
)−σ2 kµkν

2b2k2−m2
] ,

⟨ZµZν⟩ = − i

b2k2−m2
(gµν −b2 kµkν

2b2k2−m2
) ,

⟨AµZν⟩ = ⟨ZµAν⟩ = i

b2k2−m2
[a(gµν − kµkν

k2
)+σ

b2k2−m2

2b2k2−m2

kµkν

k2
] , (26)

which show renormalizable massive propagators. Differentfrom Proca this model is able to obtain a health
power counting. The free propagators of leptons and neutrinos are

⟨Ψ̄ℓ Ψℓ⟩ = i
/p−mℓ

and ⟨Ψ̄νℓ
Ψνℓ
⟩ = i
/p . (27)

The vertex on the momentum space are

−eΨ̄ℓγµAµΨℓ ∶

(µ)
γ

ℓ+ ℓ−
= −ieγµ −g1Ψ̄ℓγµZµΨℓ ∶

(µ)
Z0

ℓ+ ℓ−
= −ig1γµ

for the interactions of leptons with photons and massive vectorial boson, and in the neutrinos case

− e
2Ψ̄νℓ

γµAµ(1−γ5)Ψνℓ
∶

(µ)
γ

νℓ νℓ

= − ie
2 γµ(1−γ5) −g1Ψ̄νℓ

γµZµΨνℓ
∶

(µ)
Z0

νℓ νℓ

= −ig1γµ

The self-interaction of the massive vectorial bosons are given by

−bc g2∂µZνZµZν ∶

(µ)

(ν) (ρ)

k1

k2 k3
= −bcg2[gµν(k1+k2)ρ +gνρ(k2+k3)µ +gµρ(k1+k3)ν]

−1
4c2g2

2(ZµZµ)2 ∶
(µ) (ν)

(ρ) (σ)

k1

k3

k2

k4
= −2ic2g2

2 (g
µνgρσ +gµρgνσ +gµσ gνρ)
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We still can add charged massive field under thisU(1)⊗U(1) context by adding a complex fieldWµ under
the local transformation

Wµ z→ W ′
µ = Wµ eiω(x) . (28)

It interacts with photon fieldAµ and the massive neutral bosonZµ by substituting covariant derivative

Wµν = ∂µWν −∂νWµ z→ Wµν =Dµ(A,Z)Wν −Dν(A,Z)Wµ , (29)

in which Dµ(A,Z) is (10), so the charged massive field has the lagrangian

L0W = −1
2
W †

µνWµν +m2
WW †

µ Wµ . (30)

Therefore the interaction lagrangian (31) is modified for

Lint = −eΨ̄ℓγµAµΨℓ−g1Ψ̄ℓγµZµΨℓ−g1Ψ̄νℓ
γµZµΨνℓ

− e

2
Ψ̄νℓ

γµAµ(1−γ5)Ψνℓ

−bcg2∂µZνZµZν − 1
4

c2g2
2(ZµZµ)2− 1

4
g2

W(W†
µWµ)2

−ie∂µW †
ν (AµWν −WµAν)− ig1∂µW †

ν (ZµWν −WµZν)− ie∂ µWν(W †
µ Aν −AµW †

ν )
−ig1∂ µWν(W †

µ Zν −ZµW †
ν )−e2W†

µWµAνAν +e2W†
µ AµWνAν −g2

1W
†
µWµZνZν

+g2
1W

†
µ ZµWνZν −2eg1AµZµW †

ν Wν +eg1AµWµW †
ν Zν +eg1W

†
µ AµWνZν − ieGµνW†

µWν . (31)

Thus based on symmetryU(1)⊗U(1) one gets a model including photon, weak bosons and the leptonic
sector. In a further work we will study on its renormalizability and unitary. As first aspect, one notices the
photon-neutrino interactions, also found in Stueckelbergformalism [2], which although is not included in the
standard model it can be assumed through the meaning ofubiquous lux, which says that being an Lorentz
invariant the photon should cover an universal interaction. Secondly, one can calculate the influence of the
bosonZ in electron gyromagnetic factor, as well as the gyromagnetic factor calculus ofZ as a possible test of
the model.
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