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Based on product representation a new performance forsa®flimmetry is developed. It yields a new gauge
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for propagators and vertices of this lagrangian on the monmespace.
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A gauge field model for abelian symmetryl) U (1)

A gauge field theory for abelian symmetryU (1) U (1)

An abelian model for composite leptons is presented as asirte of the quantum electrodynamics sym-
metry. It yields the possibility to explore &h(1) symmetry enlargement, as a particular case of those extende
Yang-Mills symmetrySU(N) ® SU(N) [1]. As a first consequence, it yields a possible insertiomass terms
into the lagrangian without requiring the Stueckelbergrfalism or breaking gauge symmetry [2, 3].

Based on mathematics formalism involving direct produgbgtween fields we construct an abelian gauge
symmetryU (1) @ U (1) for matter composite fields [1]. It appears an extended symmyngauge for quantum
electrodynamics and seems to introduce a massive vediosah beside the usual massless photon.

The description of the interactions by means of compositdsfiglready was considered by J. Schwinger
[5]. A model of leptons also was developed, notably by S. Weig, S. Glashow and A. Salam as a description
of the weak interactions by the composite symm&(2) xU (1) [6]. For a review of electroweak theory and
applicationssee[7].

In our approach, firstly we consider the direct product betwgpinor and scalar fieldg, @)

X=vo0o, (1)
respectively, in which it transforms independently in adowith
Y'=Ui(xX)¢y and ¢ =Ux(X)@. 2)
The groupsJ; andU; are given by local phase transformation for the abeliangsbl(1)
Ui(x) =™ and  Uy(x) = 2™ (3)

in which w; andw, are real functions.Thus we define gauge fidgsandC,, independents and associated to
gauge transformation (2)

1 1
B&:Bu+édywl and Cﬁ:CquaauwZv (4)

wheree andg; are coupling constants. Using the direct products praggerthe compose matter field has the
following transformation

X' =UX)x with U(X)=U;®U,. (5)
The associated composite covariant derivative is
Du(B,C)=aD,(B)®1+B1e®D,(C), (6)

whereD,(B) andD,(C) are defined as usual, afd, 3) are real parameters. Now we making the variables
changing

(Buvcu)'—’(AuaZu)v (7)
where

eA,=eB,+g1Cy, and g1Z,=eB,-0:Cy, (8)
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and we will implement the composite abelian gauge theori wie new field{A,,Z,). Moreover using (4),
we obtain the transformation for the physical fie{ds,,Z,)

1 1
A‘Q:A“+édu(wl+w2) and lezzu+ad“(wl—w2), 9)
respectively. The corresponding covariant derivativé bdlredefined as

in which we have redefined the constants coupling. Thus tle pnaperty of such gauge composite fields.is the
expansion of the symmetry benefits. This means that it allonaw distribution of a given symmetry for mare
fields, coupling constants, conservation laws and son onthisone has to takey = w, = w, consequently the
transformation (9) takes the form

which yields a new abelian lagrangian given by
1 v 1
£=-7GuG +5mzzﬂz,1, (12)
in which G,y is invariant by (11) and split antisymmetric and symmetactp
respectively, where
FIJV = dIJAV - dvA“ 5 (14)

with a,b andc real parameters. The constant coupl@grom (13) sets the self-interaction between massive
vectorial bosons. Adding to the lagrangian a covariant §ixgauge, one gets

1 1 1 1
L= —ZG[W]G[‘“’] - 3G G+ SnPZVZ, - E(@Aﬂ +00,Z")?, (15)
then
1
L= R PR - L (0,A2-aF, 042" - C0,M0,7" - (@2 +17)(3,2,)?
4 2¢ & 2

2
1
+%mZZuZ“ + % ( 2_p?- %) (0uZ")?-bc @ 0,2,2H2" - 21c2 05 (Z2,2%)?, (16)
in which & ando are real parameters. The equation (16) is showing a diffeqgproach from Stueckelberg for
introducing a mass term in an abelian group.
For inserting the composite leptonic sector in this model define the spinor and scalar fields from (1) as
associated to two independents abelian gralifs), where they can be written as column matrixes

wz(ﬁ) and (pz(g), a7
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and performing the direct product from (1), one gets

Y1
X:(W1)®(fp1): 1Y% ’ (18)
) ® oY1)
QY2
which suggests to define the left-handed leptonic doublet
Wy )
Wr=x=( "1 |, 19
(=X ( L»U\I;g ( )
Consequently these doublet transformdtyl) symmetry as
(Wk)}_}(lﬂk):eiw(x)(w{%) (20)
W\b wb{ wa

independently we define the right-handed sector in accatutwdnsformations
WR— gl =dOgR R — =yl (21)

Here the index indicates all the known leptors= (e, 1, T) and v, their neutrinos, respectively. It gives that
the leptonic sector lagrangian is

o m e eq
Lo=Wiy'Du(AZ)W,-mWW, +W,,iv'Dy(Z)Wy, - EwwV“Au(l_ y5)‘PW , (22)

whereW¥, and¥,, is the composition of left-handed plus right-handed leptand neutrinos, respectively.
Notice that the constant couplirg is associated to interaction between leptonic matter fiatdtk massive
boson field.

Now the complete lagrangidt(1) @ U (1) can be split into the form

L=Loa+Loz+Lopz+ Lo+ Lint (23)
with free terms

2
Loz =2" %[gw ((a2+b?) o+n?) - (az—bz—%)dudv]z" ,

and the interaction terms

— — — e— 1
Lint = — €W AW - g1 W Z, W - a Wy, VW Zu Wy, — ELle,y“A“(l— V)W, -be gzduZVZ“ZV—Zczgg(Z“Z“)Z.
(25)
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From (24) one gets the propagators on momentum space

i koky  a%k? kuky o kuky
(AuAv>=—@ Quv +(£-1) i2 +b2k2_mz(g“"_ k2 )—a 2022 e |’

i 2 kukv
(2uzy) *m(gw_b —zbzkz_mz) ’
i Kuky b2k? - kyky

which show renormalizable massive propagators. Diffeferh Proca this model is able to obtain a.health
power counting. The free propagators of leptons and neg@me

(26)

and (¥, W,,)= ll_b . 27)

(W W) = p—lmg

The vertex on the momentum space are

~q Wz, W, i - = —igyy*

for the interactions of leptons with photons and massivéored boson, and in the neutrinos case

(1) (1)

y z°

= _%y“(l_ y5) _glq_JwyuZ[lLPW : = _Igly“
Vo Vy Vy

_gq_',w VHAI—[(J‘_ VS)LPW VZ

The self-interaction of the massive vectorial bosons arergby
(k)
kg

—bC @dHZVZ“ZV : k = —ngz [guv(k]_ + k2)p + ng(kZ + kS)IJ + gup(k]_ + kS)V]

2 ks
(v) (p)
(1) ki ko (v)

~3¢°95(Z,24) = -2ic?g5 (gHV QPP +gHPgYT +gHIgYP)

ka Kg
(P) (o)
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We still can add charged massive field under th{g) ® U (1) context by adding a complex fieWd,, under
the local transformation

W, — W, = W, d90 (28)
It interacts with photon field\, and the massive neutral bosap by substituting covariant derivative
W“v = auWV - dvW“ > WIJV = DIJ(A7Z)WV - Dv(A,Z)W[J 5 (29)
in whichD (A, Z) is (10), so the charged massive field has the lagrangian
1
Low = =W, WH + MG W, WH (30)

Therefore the interaction lagrangian (31) is modified for
p— J— p— e J—
Lint = €W VHAW - n W Z, W - an Wy, YW Z, Wy, - E‘PW VAL(L-V)W,,
1 1
—bcgzduZVZ“Z"—Zczgg(zuz“)z—zg\%,(ij“)z
—ied, W, (A*WY -WHAY) —ig; 8,W,(ZHW" ~WHZ") —ied"W" (WA, - AW,
—ig10"WY (W,[Z, - Z,W,") - WIWHA A + W] AHW, AY - g?WIWHZ, 2"
+PWIZHW, 2 - 2eq1 AL ZHW, W, + e ALWHW,TZY + et W, AW, ¥ — ieGHYWIW, . (31)
Thus based on symmetty(1) ® U (1) one gets a model including photon, weak bosons and the-lepton
sector. In a further work we will study on its renormalizélyiland unitary. As first aspect, one notices the
photon-neutrino interactions, also found in Stueckelbermalism [2], which although is not included‘in-the
standard model it can be assumed through the meaningpigfious lux which says that being an Lorentz
invariant the photon should cover an universal interacti®econdly, one can calculate the influence-of the

bosonZ in electron gyromagnetic factor, as well as the gyromagrfatitor calculus o as a possible test of
the model.
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