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Torsion on Braneworld Scenarios

1. Braneworld Scenarios

Hereon {eµ},µ = 0,1,2,3 [{eA}, A = 0,1,2,3,4] denotes a basis for the tangent space TxM at
a point x in M, where M denotes the manifold modelling a brane embedded in a bulk. Naturally the
cotangent space at x has an orthonormal basis {θ µ} [{θ A}] such that θ µ(eν) = δ

µ

ν . If we choose a
local coordinate chart, it is possible to represent eA = ∂/∂xA≡ ∂A and θ A = dxA. Given the extrinsic
curvature Ξ = ΞABθ A∧θ B, it is possible to project the bulk curvature on the brane. Take n = nAeA a
vector orthogonal to TxM and let y be the Gaussian coordinate orthogonal to the TxM, on the brane
at x, indicating how much an observer upheave out the brane into the bulk. In particular we have
nAdXA = dy. A vector v = vAeA in the bulk is split in components in the brane and orthogonal
to the brane, respectively as v = vµeµ + ye4 = (vµ ,y). Since the bulk is endowed with a metric g
that can be written in a coordinate basis, where eA := dxA, eA = ∂/∂xA, as g = gABdxA⊗dxB, the
components of the metric on the brane and on the bulk are hereon denoted respectively by gAB and
(5)gAB, and related by

(5)gAB = gAB +nAnB , (5) ds2 = gµν(xα ,y)dxµdxν +dy2. (1.1)

The extrinsic curvature of {y = const} surfaces describes the embedding of these surfaces. It can
be defined via the Lie derivative or via the covariant derivative:

ΞAB =
1
2

£n gAB = gA
C (5)

∇CnB , (1.2)

so that Ξ[AB] = 0 = ΞABnB. Using Einstein equations, it is possible to write the field equations in
the bulk

(5)GAB =−1
2

Λ5
(5)gAB +κ

2
5

(5)TAB, (1.3)

where Λ5 denotes the cosmological constant in the bulk, which prevents gravity from leaking into
the extra dimension at low energies. The field equations on the brane can be written as [9]

Gµν = −1
2

Λ5gµν +κ
2
5

(5)Tµν + (5)RBDnBnDgµν +
1
2

(5)R A
C nAnCgµν −

1
2

gµν((Tr Ξ)2− (Tr Ξ
2)).

−(5)RA
BCDnAnCgB

µgD
ν −

1
2

(5)RA
BCDnBnCnDnAgµν +(Tr Ξ)Ξµν −Ξ

C
ν ΞµC (1.4)

where κ5 = 8πG5. The Riemann tensor can be expressed as a combination of the Weyl tensor, the
Ricci tensor and the Ricci scalar, as (5)RA

BCD = (5)CA
BCD + (5)DA

BCD, where (5)CA
BCD denotes the

Weyl tensor and (5)DA
BCD can be written as [1]

(5)DA
BCD =

2
3

(
(5)gA

C
(5)RDB− (5)gA

D
(5)RCB− (5)gBC

(5)RA
D + (5)gBD

(5)RA
C

)
−1

6

(
(5)gA

C
(5)gBD− (5)gA

D
(5)gBC

)
(5)R. (1.5)

From eqs.(1.3) and (1.5) it follows that

Gµν = −1
2

Λ5gµν +
2
3

κ
2
5

[
(5)TABgA

µgB
ν +
(

(5)TABnAnB− 1
4
(Tr (5)T )

)
gµν

]
+(Tr Ξ)Ξµν −Ξ

C
ν ΞµC +

1
2

gµν [(Tr Ξ)2− (Tr Ξ
2)]−Eµν . (1.6)
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Torsion on Braneworld Scenarios

The term Eµν is the projection of the bulk Weyl tensor on the brane Eµν = (5)CACBDnCnDgA
µgB

ν ..
The Israel-Darmois conditions [3, 4, 7] are obtained assuming that in the bulk field equa-

tions (1.3) the momentum-energy tensor (5)TAB is a sum of a bulk intrinsic momentum-energy
tensor and a brane momentum-energy tensor integrated in a brane neighbour region (from y =
−ε to y = +ε). The Israel-Darmois conditions are given by g+

µν − g−µν = 0 and Ξ+
µν −Ξ−µν =

−κ2
5

(
T brane

µν − 1
3 T branegµν

)
, where T brane = (Tr T brane

µν ). In order to write T brane
µν using entities real-

ized in the brane, we use T brane
µν = Tµν −λgµν , where λ is defined as the tension on the brane. The

second assumption is the Z2-symmetry, resulting in the conditions Ξ+
µν =−Ξ−µν = Ξµν . Substitut-

ing these expressions in the Israel-Darmois conditions it follows that Ξµν =−1
2 κ2

5

(
Tµν + 1

3(λ −T )gµν

)
.

and

Gµν = −1
2

Λ5gµν +
2
3

κ
2
5

[
(5)TABgA

µgB
ν +
(

(5)TABnAnB− 1
4
(Tr (5)T )

)
gµν

]
+

1
4

κ
4
5

[
T Tµν −TC

ν TµC +
1
2

gµν((Tr T )2− (Tr T 2))
]
−Eµν . (1.7)

This equation can be further simplified if the momentum-energy conservation law T ;ν
µν = 0 is valid

on the brane.
An expression for T ;ν

µν in terms of (5)TAB can be found by combining the following equations,
respectively describing the Israel-Darmois junction conditions and the Gauss-Codazzi equations:

Ξµν = −1
2

κ
2
5

[
Tµν +

1
3
(λ −T )gµν

]
, (1.8)

Ξ
B

A ;B−Ξ;A = (5)RBCgB
AnC. (1.9)

Performing the covariant derivative of the curvatures and using Eq.(1.8) it follows that

Ξ
;ν

µν −Ξ
;ν =−1

2
κ

2
5 T ;ν

µν , (1.10)

and using Eq.(1.9) it follows that (5)RABgA
νnB = Ξ A

ν ;A−Ξ;ν . But from Eq.(1.8), the expression
(5)RAB =−Λ

(5)
5 gAB +κ2

5
(5)TAB + 1

2
(5)gAB

(5)R holds, which implies that

Ξ
A
ν ;A−Ξ;ν =

(
−Λ

(5)
5 gAB +κ

2 (5)
5 TAB +

1
2

(5)gAB
(5)R

)
gAνnB. (1.11)

Now, introducing Eq.(1.1) in Eq.(1.11) and attempting to the fact that the projections of the Ricci
tensors in the nA direction are zero, we get from Eq.(1.10) that T A

µ ;A =−2 (5)TABg A
µ nB, and assum-

ing that T A
µ ;A = 0 in the brane, it is immediate that (5)TAB = 0. This means the bulk is in complete

vacuum and the particles are in fact on the brane. Now, the field equations reduce to

Gµν = −1
2

Λ5gµν +
1
4

κ
4
5

[
T Tµν −TC

ν TµC +
1
2

gµν((Tr T )2− (Tr T 2))
]
−Eµν , (1.12)

showing the contribution of the bulk on the brane is only due to the Weyl tensor.
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2. Torsion corrections in the bulk metric Taylor expansion

In a previous paper [5] we proved that although the presence of torsion terms in the connection
does not modify the Israel-Darmois matching conditions, despite of the modification in the extrinsic
curvature and in the connection, the Einstein equation obtained using the Gauss-Codazzi formalism
is extended. The factors involving contorsion change drastically the effective Einstein equation on
the brane, as well as the effective cosmological constant.

We shall use such results to extend the Taylor expansion of the bulk metric in terms of the brane
metric, in a direction orthogonal to the brane. Besides a curvature associated with the connection
that endows the bulk, in a Riemann-Cartan manifold the torsion associated with the connection is
in general non zero. Its components can be written in terms of the connection components Γρ

βα as

T ρ
αβ = Γ

ρ
βα −Γ

ρ
αβ . (2.1)

The general connection components are related to the Levi-Civita connection components Γ̊ρ
αβ

— associated with the spacetime metric gαβ components — through Γρ
αβ = Γ̊ρ

αβ +Kρ
αβ , where

Kρ
αβ = 1

2

(
Tα

ρ
β +Tβ

ρ
α −T ρ

αβ

)
denotes the contorsion tensor components.

We have investigated the matching conditions in the presence of torsion terms, and under the
assumptions of discontinuity across the brane, showing that both junctions conditions are shown
to be the same as the usual case, and by the fact that the covariant derivative is modified by the
(con)torsion, the extrinsic curvature is also modified, and then the conventional arguments point
in the direction of some modification in the matching conditions. However, it seems that the role
of torsion terms in the braneworld picture is restricted to the geometric part of effective Einstein
equation on the brane [5]. More explicitly, looking at the equation that relates the Einstein equation
in four dimensions with bulk quantities [1] it follows that

(4)Gρσ =
2k2

5
3

(
Tαβ g α

ρ g β

σ +(Tαβ nαnβ − 1
4

T )gρσ

)
+ΞΞρσ −Ξ

α
ρ Ξασ (2.2)

−1
2

gρσ (Ξ2−Ξ
αβ

Ξαβ )− (5)Cα

βγε
nαnγg β

ρ g ε
σ , (2.3)

where Ξρσ = g α
ρ g β

σ ∇αnβ is the extrinsic curvature. By restricting to quantities evaluated on the
brane, or tending to the brane, we see that the only way to get some contribution from torsion terms
is via the term (4)Gρσ , and also via the Weyl tensor.

Supposing Z2-symmetry, the extrinsic curvature reads

Ξ
+
αβ

=−Ξ
−
αβ

=−2GN

(
παβ −

gαβ π
γ

γ

4

)
, (2.4)

and consequently 2GNπab =−[Ξab]+ [Ξ]gab reads Ξαβ =−GN(παβ −gαβ π
γ

γ /4).
Decomposing the stress-tensor associated with the bulk in Tαβ =−Λ(5)gαβ +δSαβ and Sαβ =

−λgαβ +παβ , where Λ is the bulk cosmological constant, and substituting into Eq.(2.3) it follows
that

(4)Gµν =−Λ4qµν +8πGNπµν + k4
5Yµν −Eµν , (2.5)
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Torsion on Braneworld Scenarios

where Eµν =(5) Cα

βγσ
nαnγqβ

µqσ
ν encodes the Weyl tensor contribution, GN = λk4

5
48π

is the analogous
of the Newton gravitational constant, the tensor Yµν is quadratic in the brane stress-tensor and

given by Yµν = −1
4 πµαπα

ν + 1
12 π

γ

γ πµν + 1
8 gµνπαβ παβ − 1

2 gµν(πγ

γ )2, and Λ4 = k2
5
2

(
Λ + 1

6 k2
5λ 2
)

is
the effective brane cosmological constant.

Using the Einstein tensor on the brane encoding torsion terms, the Eµν tensor can be expressed
in terms of the bulk contorsion terms by

Eκδ = E̊κδ +
(

∇[νKµ

αβ ] +Kµ

γ[νKγ

αβ ]

)
nµnνgα

κ gβ

δ
− 2

3
(gα

κ gβ

δ
+nαnβ gκδ )

(
∇[λ Kλ

βα] +Kλ

γλ
Kγ

βα
−Kσ

βγ
Kγ

σα

)
+

1
6

gκδ

(
2∇

λ Kτ

λτ
−K λ

τλ
Kτγ

γ +Kτγλ Kτλγ

)
(2.6)

where ∇µ is the bulk covariant derivative. Now, the explicit influence of the contorsion terms in
the Einstein brane equation can be appreciated. From Eqs.(2.5) and (2.6), it reads

(4)G̊µν +D[λ
(4)Kλ

µν ] +
(4)Kδ

γδ

(4)Kλ
µν − (4)Kσ

νγ
(4)Kγ

σ µ =−Λ̃4qµν +8πGNπµν + k4
5Yµν − E̊µν

+gα
µ gβ

ν

[
2
3

(
∇[λ Kλ

βα] +Kσ
γσ Kγ

βα
−Kλ

βγ
Kγ

λα

)
−nρnσ

(
∇[σ Kρ

αβ ] +Kρ

γ[σ Kγ

αβ ]

)]
(2.7)

where the new effective cosmological constant is given by

Λ̃4 ≡ Λ4−Dλ (4)Kτ

λτ
+

1
2

(4)K α
τα

(4)Kτλ

λ
− 1

2
(4)Kτγλ

(4)Kτλγ − 2
3

nαnβ

(
∇λ Kλ

βα
−∇αKλ

βλ

+ Kλ

γλ
Kγ

βα
−Kσ

βγ
Kγ

σα

)
+

1
6

(
2∇

λ Kτ

λτ
−K α

τα Kτλ

λ
+Kτγλ Kτλγ

)
. (2.8)

Eqs. (2.7) and (2.8) shows that the factors involving both contorsion, in four and in five di-
mensions, change drastically the effective Einstein equation on the brane, as well as the effective
cosmological constant. The effective field equations are not a closed system. One needs to supple-
ment them by 5D equations governing Eµν , which are obtained from the 5D Einstein and Bianchi
equations. This leads to the coupled system [8]

£nΞµν = ΞµαΞ
α

ν −Eµν −
1
6

Λ5gµν (2.9)

The above equations have been used to develop a covariant analysis of the weak field [2]. They
can also be used to develop a Taylor expansion of the metric about the brane. In Gaussian normal
coordinates, Eq. (1.1), we have £n = ∂/∂y. Then we find from Eq.(1.2)

gµν(x,y) = gµν(x,0)−κ
2
5

[
Tµν +

1
3
(λ −T )gµν

]
y=0+

|y| +

[
− E̊κδ +

(
∇[νKµ

αβ ] +Kµ

γ[νKγ

αβ ]

)
nµnνqα

κ qβ

δ

− 2
3
(qα

κ qβ

δ
+nαnβ qκδ )

(
∇[λ Kλ

βα] +Kλ

γλ
Kγ

βα
−Kσ

βγ
Kγ

σα

)
+

1
6

qκδ

(
2∇

λ Kτ

λτ
−K λ

τλ
Kτγ

γ +Kτγλ Kτλγ

)
+

1
4

κ
4
5

{
TµαT α

ν +
2
3
(λ −T )Tµν

}
+

1
6

{
1
6

κ
4
5 (λ −T )2−2

(
Λ4−Dλ (4)Kτ

λτ
+

1
2

(4)K α
τα

(4)Kτλ

λ

− 1
2

(4)Kτγλ
(4)Kτλγ − 2

3
nαnβ

(
∇λ Kλ

βα
−∇αKλ

βλ
+Kλ

γλ
Kγ

βα
−Kσ

βγ
Kγ

σα

)
+

1
6

(
2∇

λ Kτ

λτ

− K α
τα Kτλ

λ
+Kτγλ Kτλγ

))
− k2

λ

}
gµν

]
y=0+

y2 + · · · (2.10)
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where ∇µ is the bulk covariant derivative.
Since the term gθθ determines the change in the area of a black string horizon along the extra

dimension [10, 11, 12], it shows how the contorsion and its derivatives affect the horizon. Also, the
change in the black string properties can be extracted. The torsion corrections arise only from the
order of y2 on. When the torsion — and consequently the contorsion — goes to zero, the expression
is the same as the one previously obtained in, e.g., [6, 8]. Eq.(2.10) completely comprises how the
corrections that contorsion terms impinge on braneworld scenarios and and how a Riemann-Cartan
framework can influence corrected braneworld properties.
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