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The structure of charged d-dimensional stars.

1. Introduction

Static solutions of Einstein-Maxwell equations have baadied by many authors. In particu-
lar, static solutions of charged dust fluids where the gatieihal force is balanced by the repulsive
electric forces are easy to find (see, e.g., refs. [1]-[3liciza kind of systems have physical pro-
perties that make them important in the context of theokedundamental interactions. Hence it
is interesting to investigate also the generalizationsigher dimensions, like was done by [4, 5].
In this work we study some of the effects of the electric chagd extra dimensions in the struc-
ture of a static star. We begin by writing the equilibrium atjons as a generalized version of the
Tolman-Oppenheimer-Volkoff (TOV) equations for a chardledd, in ad-dimensional spacetime
with cosmological constant. The system of equations isedbyschoosing the charge density to be
proportional to the energy density, and it is considered different polytropic equations of state
(EOS). Throughout this work we use= 1 and metric signature-2d.

2. D-dimensional TOV equation with charge and cosmological constant

The Einstein-Maxwell equations id-dimensional spacetime with cosmological constant
are

1 d-2
Ruv - EguvR+ /\guv = mSﬂ—ZGdTuv, (2-1)
DVF“V = 3172‘]“7 (22)

with R, andR being the Ricci tensor and scalar, respectively. The coh§a. is the unitary
sphere area in &l — 1)-dimensional spatial section of the spacetirfig,, = 2r9-1/2/r ((d —
1)/2), wherer is the ordinary Gamma function and the factdr— 2)G4S;—2/(d — 3) reduces to
811G in four dimensions. The energy-momentum teriggr is given by

1 1
Tuv = —PYuv + (P+p)UpUy + @(Fu YFyu+ 29 FaﬁFaB)7 (2.3)

wherep and p are respectively the energy density and the pressure ofutigerfl ad-dimensional
spacetimeF, is the electromagnetic field tensor, defined in terms of therg@l A# through
Fuv = OvAL — O4Ay, with 0, is the covariant derivative. In equation (2.2}, is the current
density, withJ# = pUH wherepe is the current density, arld* is the velocity of the fluid in a
d-dimensional spacetime.

In order to describe a static fluid distribution with desisgainmetry the line element is assu-
med to be of the following form:

ds? = H(r)dt> — G(r)dr? — r2d@? — r?f(6)%dzh_,, (2.4)

whereH andG are function ofr only. The explicit form of the functiorf (8) defines the geometry
of the surfaceS (r = constant,t = constant): Ifb =1 then f(8) = sin6 andSiis a (d — 1)-
dimensional sphere; b= —1 thenf(6) = sinh8, the symmetry oBis hyperbolic, and the topo-
logy is toroidal; and ifo = 0 thenf(0) = constant the symmetry oSis planar, and the topology
can be a plane, a cylinder, or a torus. The quarmtitg(f3 stands for

d—4 d—4
dz} 5 =dB+..+ I_L sif6dez 5, drgl;=des+..+ I_L sif6do7 5,  (2.5)
1= 1=
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dz§ ;=d6z+...+d63

respectively, fob=1,b= -1, andb=0.

Due to the symmetry of the spacetime, it does not allow thetence of magnetic fields. With
this we have that the only nonzero components#f is F* = —F™, the other terms are identically
zero. Hence, the nonvanishing component in equation (nv =r, gives

. perd—2dr
_g P A 2.6
q=%-2 ) (2.6)

whereq is the electric charge insider being an arbitrary value of the radial coordinate. The prime
" represent the derivative with respectto
Considering the metric (2.4), the nonzero components d§tEin equations (2.1) are:

(d—2)(d—3)b (d—2)H’(r)_(d—2)(d—3)_ . d-2 g?(r)
2r2 2rH2(r) 2H (r)r2 /\_Gdd—3 S-2p+ 2r2d-2) J~ @D
B (d—2)(d—=3b (d—2)(d—3) (d—2)G'(r) . d-2 B g?(r)
2r2 2H (r)r2 2rG(r)H(r) N= Gdd -3 S-2P 2r2d-2) J - 28)
Moreover, from Bianchi identitiesl, THV = 0, it follows
G 2qq 2p
— = — . 2.9
G S a22(p+p) p+p (9)
To simplify the equations (2.7)-(2.9), we define
_ 2Gqm(r) Gy 2Ar?
1_h_ d d .
HN)™=b (d—3)rd-3 + (d—3)2r2d-3)  (d—1)(d—2)’ (2.10)
wherem(r) is the mass function, which, after equation (2.7) satisfies¢lation:
_ d—2 aq
m =S pr% <+ -3 (2.11)

which represents the conservation of the massdrdamensional spacetime. Finally, substituting
equation (2.8) into (2.9) it follows
/ Sy-2Gqpr Gao? Ggm 2N\r qd
P=-P+P) =43 @a@s w2 @-na-z| g e
this is the TOV equation with electric charge and cosmolalgionstant in @-dimensional space-
time. This result is comparable: with [1] for= 1, A =0 andd = 4; with [6, 7] forb=1,q= 0,
A =0andd =4.

Therefore, the final system of equations to be solve are iemqsaf2.6), (2.10), (2.11) and
(2.12). This gives us a set of coupled differential equatihich we need to solve simultaneously
to get some result. The boundary conditions are the follgwét the center of the star (whare- 0)
we put, as usuafy(r) =0, m(r) =0, p(r) = pc, p(r) = pc. The surface of the star is identified with
the surface = R, where the pressumg(R) vanishes. As a matter of fact, we have more unknown
variables than the number of equations in the system. T ¢l system one usually postulate
and equation of state. In the present case, a further inpugasled due to the presence of the
electric charge (see bellow). For the numerical solutiotheke equations it is considered that
b =1 (spherical symmetry) ami = 0. The caseb = 0,—1 do not have equilibrium solutions, and
the effects of the cosmological constant will be investgan future work.

(2.12)
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3. Numerical solution of the TOV equation

In this section we study the effect of the electric chargenm gtructure of the charged cold
stars by assuming that the charge density is proportionakiss-energy density (following [2]):

Pe = 04/ Gq p. (3.1)

whereay is a constant. In the CGS system of unit systemnjs a non-dimensional constant in a
d-dimensional spacetime.

3.1 Charged star: polytropic equation of state

The numerical calculations in this subsection is dond # 4, that is, in a four-dimensional
spacetime. For comparison with other works, we use theviilip units: The mass densify, is
givenin [MeV/fm3] , so that the Newton constant of gravitati@ris such that/G = /G, bears the
dimensionsg [fm®/MeV] Y2 30, the charge densify has the dimensiong; [MeV/ fnr] 2

The first polytropic EOS to be used here is of the form

Pa = cwnpy >, (3.2)

where the pressure has units[kfeV/ fm?®]. Hence the units of the constamj are[fm®/MeV]%/3
and the value considered for it égy = 1.41979x 10-3. The values for the central density in SI
units are chosen in the intervablx 10*%kg/m® < pe < 1.5 x 10%g/m?.

With the EOS (3.2) and the values of the central density demsd, we can analyze the system
for different values ofi4. In figure 1a we plot the mass as a function of the central tepsj for
different values of the charge fractiary. The stars with large central density and low mass, are
unstable becaus@% < 0 (see [8]). As we can see from figure 1a, the effect of the eharghe
structure of the star fasr, = 0.1 is very small, and the curve is comparable with the stardhat
not have a net electric charge. When the valuerpfrows, until a critic value, the effect in the
structure become important. To verify this let us considemarement of about 300% in constant
ag, from 0.1 to 04. In this case, the maximum mass grows in approximately 18%wever, an
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increment inay of just 30%, froma, = 0.75 toa, = 0.9, causes a change in the maximum mass of
almost 120%. The changes in the structure in all cases isimear with the increase of the charge
fraction as we can see in figure la.

The values of the charge to mass ra@ A..) in geometric units for different values af, in
function of the mass central densities are shown in figureSligh a ratio indicates how close the
electric charge and the ADM mass (the mass of the star as geandserver at infinity). One then
may look for a central energy density that leads to the exdrease, wherge, = p4 andQ = M.
Such a central density was not found in the present case.

3.2 Charged star: polytropic equation of state depending on the charge density

The studies made it in recently works of charged fluids inldaquim indicate that the electric
charge density play the role of pressure gradient [5, 9]. hla $ense, the electric charge den-
sity acts favorable to the pressure gradient, to countanioal the gravitational attraction. Hence,
it is reasonable to propose that the effective polytropicSE@ a charged fluid take the form
P4 = pa(pPa, Pesa). A simple form of such a relationship keeps the polytropatesequation in the
form ps = w4pf/ 3_ Bp5/ 3, wheref3 is a non-negative parameter. Moreover, it is expected that a
increase in the charge density implies a decrease in theyseesAccording to this, and considering
a relationship betweeps, andp, of the form (3.1), we may chose a polytropic EOS of the form

5/3

Ps= (11— as)aup, (3.3)

whereay is an arbitrary constant.

With the EOS as in equation (3.3) and different values forcdatral density, the system can
be analyzed for different values af. For comparison, the numerical values consideredrfory
andpg are the same as in subsection 3.1.

The values of the mass of each star for different centraliiensre shown in figure 1a. Again
the stars with large central density and low mass are umsi@ele [8]). As in the case of the
preceding section, the effects of the charge are noticgabidor sufficiently large values af,.
The main difference is that we find equilibrium solutionshwidrger charge factions. In fact, there
are solutions for, as large asr, = 0.997888.

The quantityQ/M.., in geometric units, as a function of the central densitghiswn in figure
1b for different values ofr;. We see that for the equation of state (3.3), there are bquih
solutions for values of)/M. closer to the caseQ( = M.,) than what was reported in the last
subsection.

3.3 Charged star in d > 4 spacetimes, and with other symmetries (b =0,—1)

We also studied equilibrium solutions for charged star ghkr dimension, for the first EOS
(3.2) of subsection 3.1. For a five-dimensional spacetiime otverall behavior of the curves are
very similar to those obtained fofr= 4. The main different of these is the amount of the mass and
radius size, that increase with the increment the numbextcd dimensions. Fad = 6, we found
only unstable solutions, and it was not possible to perfodetailed the analysis due to numerical
convergence problems. A more careful studydet 6 and for high dimensions is being performed
and will be reported elsewhere.
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sity for different values ofay with the EOSps = (1— a4 with the polytropic EOSps = (1— ag)wypy>.
5/3

ag)mp, .

With the initial conditions used here to solve the TOV equatiit was not possible to find
numerical solutions of equilibrium for the cades- 0 andb = —1. This means that, does not exist
stars with planar and hyperbolic symmetry. In fact, it isgibke to show that, fob = 0 the right
hand side of equation (2.12) assumes arbitrarily largetigesialues in the central region of the
star, and fob = —1 the right hand side of (2.12) is also positive. Then, thequeep(r) increases
monotonically (indefinitely) with the radial coordinatedacannot satisfy the conditiop(r) = 0
for a finite value of the coordinate
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