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In this work we review some of the general properties of static charged fluid in the context of

the Einstein-Maxwell theory with cosmological term in fourand higher dimensions. The metric

is assumed to have a general form such that the geometry of thespatial section of the spacetime

can be spherical, planar or hyperbolic. As first study we obtain the Tolman-Oppenheimer-Volkoff

(TOV) equation, which describe the hydrostatic equilibrium, for a charged fluid in d-dimensional

spacetime with cosmological constant for different geometries. In order to solve the resulting

TOV equations, we need to provide an equation of state and an additional constraint for the charge

density. For simplicity, the charge density is assumed to beproportional to the energy density,

and we test such a set up for different charge fractions. We present and analyze numerical results

showing the dependence of the star structure on the particular equation of state for two particular

choices of equations of polytropic type.
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The structure of charged d-dimensional stars.

1. Introduction

Static solutions of Einstein-Maxwell equations have been studied by many authors. In particu-
lar, static solutions of charged dust fluids where the gravitational force is balanced by the repulsive
electric forces are easy to find (see, e.g., refs. [1]-[3]). Such a kind of systems have physical pro-
perties that make them important in the context of theories for fundamental interactions. Hence it
is interesting to investigate also the generalizations forhigher dimensions, like was done by [4, 5].
In this work we study some of the effects of the electric charge and extra dimensions in the struc-
ture of a static star. We begin by writing the equilibrium equations as a generalized version of the
Tolman-Oppenheimer-Volkoff (TOV) equations for a chargedfluid, in a d-dimensional spacetime
with cosmological constant. The system of equations is close by choosing the charge density to be
proportional to the energy density, and it is considered twodifferent polytropic equations of state
(EOS). Throughout this work we usec = 1 and metric signature 2−d.

2. D-dimensional TOV equation with charge and cosmological constant

The Einstein-Maxwell equations ind-dimensional spacetime with cosmological constantΛ
are

Rµν −
1
2

gµνR+ Λgµν =
d−2
d−3

Sd−2GdTµν , (2.1)

∇νFµν = Sd−2Jµ , (2.2)

with Rµν andR being the Ricci tensor and scalar, respectively. The constant Sd−2 is the unitary
sphere area in a(d− 1)-dimensional spatial section of the spacetime,Sd−2 = 2π(d−1)/2/Γ((d−
1)/2), whereΓ is the ordinary Gamma function and the factor(d−2)GdSd−2/(d−3) reduces to
8πG in four dimensions. The energy-momentum tensorTµν is given by

Tµν = −pgµν +(p+ ρ)UµUν +
1

Sd−2
(Fµ

γFγµ +
1
4

gµνFαβ Fαβ ), (2.3)

whereρ andp are respectively the energy density and the pressure of the fluid in ad-dimensional
spacetime,Fµν is the electromagnetic field tensor, defined in terms of the potential Aµ through
Fµν = ∇νAµ − ∇µAν , with ∇ν is the covariant derivative. In equation (2.2),Jµ is the current
density, withJµ = ρeU µ whereρe is the current density, andU µ is the velocity of the fluid in a
d-dimensional spacetime.

In order to describe a static fluid distribution with desiredsymmetry the line element is assu-
med to be of the following form:

ds2 = H(r)dt2−G(r)dr2− r2dθ2− r2 f (θ)2dΣb
d−3, (2.4)

whereH andG are function ofr only. The explicit form of the functionf (θ) defines the geometry
of the surfaceS (r = constant,t = constant): Ifb = 1 then f (θ) = sinθ and S is a (d− 1)-
dimensional sphere; ifb = −1 then f (θ) = sinhθ , the symmetry ofS is hyperbolic, and the topo-
logy is toroidal; and ifb = 0 then f (θ) = constant, the symmetry ofS is planar, and the topology
can be a plane, a cylinder, or a torus. The quantitydΣb

d−3 stands for

dΣ1
d−3 = dθ2

2 + ...+
d−4

∏
i=2

sin2θidθ2
d−3, dΣ−1

d−3 = dθ2
2 + ...+

d−4

∏
i=2

sin2θidθ2
d−3, (2.5)
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dΣ0
d−3 = dθ2

2 + ...+dθ2
d−3,

respectively, forb = 1, b = −1, andb = 0.
Due to the symmetry of the spacetime, it does not allow the existence of magnetic fields. With

this we have that the only nonzero components ofF µν is Ftr =−Frt , the other terms are identically
zero. Hence, the nonvanishing component in equation (2.2),whenν = r, gives

q′ = Sd−2
ρerd−2dr
√

H(r)
, (2.6)

whereq is the electric charge insider, r being an arbitrary value of the radial coordinate. The prime
′ represent the derivative with respect tor.

Considering the metric (2.4), the nonzero components of Einstein equations (2.1) are:

(d−2)(d−3)b
2r2 +

(d−2)H ′(r)
2rH 2(r)

−
(d−2)(d−3)

2H(r)r2 −Λ = Gd
d−2
d−3

(

Sd−2ρ +
q2(r)

2r2(d−2)

)

, (2.7)

−
(d−2)(d−3)b

2r2 +
(d−2)(d−3)

2H(r)r2 +
(d−2)G′(r)
2rG(r)H(r)

+ Λ = Gd
d−2
d−3

(

Sd−2p−
q2(r)

2r2(d−2)

)

. (2.8)

Moreover, from Bianchi identities∇µTµν = 0, it follows

G′

G
=

2qq′

Sd−2r2(d−2)(p+ ρ)
−

2p′

p+ ρ
. (2.9)

To simplify the equations (2.7)-(2.9), we define

H(r)−1 = b−
2Gdm(r)

(d−3)rd−3 +
Gdq2

(d−3)2r2(d−3)
−

2Λr2

(d−1)(d−2)
, (2.10)

wherem(r) is the mass function, which, after equation (2.7) satisfies the relation:

m′ = Sd−2ρrd−2 +
qq′

(d−3)rd−3 , (2.11)

which represents the conservation of the mass in ad-dimensional spacetime. Finally, substituting
equation (2.8) into (2.9) it follows

p′ = −(p+ ρ)

[

Sd−2Gd pr
(d−3)

−
Gdq2

(d−3)r2d−5 +
Gdm
rd−2 −

2Λr
(d−1)(d−2)

]

H(r)+
qq′

Sd−2r2(d−2)
, (2.12)

this is the TOV equation with electric charge and cosmological constant in ad-dimensional space-
time. This result is comparable: with [1] forb = 1, Λ = 0 andd = 4; with [6, 7] for b = 1, q = 0,
Λ = 0 andd = 4.

Therefore, the final system of equations to be solve are equations (2.6), (2.10), (2.11) and
(2.12). This gives us a set of coupled differential equations which we need to solve simultaneously
to get some result. The boundary conditions are the following: at the center of the star (wherer = 0)
we put, as usual,q(r) = 0, m(r) = 0, ρ(r) = ρc, p(r) = pc. The surface of the star is identified with
the surfacer = R, where the pressurep(R) vanishes. As a matter of fact, we have more unknown
variables than the number of equations in the system. To close the system one usually postulate
and equation of state. In the present case, a further input isneeded due to the presence of the
electric charge (see bellow). For the numerical solution ofthese equations it is considered that
b = 1 (spherical symmetry) andΛ = 0. The casesb= 0,−1 do not have equilibrium solutions, and
the effects of the cosmological constant will be investigated in future work.
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(a) The mass of the star as a function of the central density
for different values ofα4, and with the EOSp4 = ω4ρ5/3
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(b) Values of the ratioQ/M∞ against central density for dif-

ferent values ofα4, and for the EOSp4 = ω4ρ5/3
4 .

3. Numerical solution of the TOV equation

In this section we study the effect of the electric charge in the structure of the charged cold
stars by assuming that the charge density is proportional tomass-energy density (following [2]):

ρe = αd

√

Gd ρ . (3.1)

whereαd is a constant. In the CGS system of unit system,αd is a non-dimensional constant in a
d-dimensional spacetime.

3.1 Charged star: polytropic equation of state

The numerical calculations in this subsection is done ind = 4, that is, in a four-dimensional
spacetime. For comparison with other works, we use the following units: The mass densityρ4 is
given in

[

MeV/ f m3
]

, so that the Newton constant of gravitationG is such that
√

G≡
√

G4 bears the

dimensions 1
[km]

[

f m3/MeV
]1/2

. So, the charge densityρe4 has the dimensions1
[km]

[

MeV/ f m3
]1/2

.
The first polytropic EOS to be used here is of the form

p4 = ω4ρ5/3
4 , (3.2)

where the pressure has units of[MeV/ f m3]. Hence the units of the constantω4 are[ f m3/MeV]2/3

and the value considered for it isω4 = 1.41979× 10−3. The values for the central density in SI
units are chosen in the interval 1.5×1016kg/m3 ≤ ρc4 ≤ 1.5×1019kg/m3.

With the EOS (3.2) and the values of the central density considered, we can analyze the system
for different values ofα4. In figure 1a we plot the mass as a function of the central density ρc4 for
different values of the charge fractionα4. The stars with large central density and low mass, are
unstable becausedM

dρc4
< 0 (see [8]). As we can see from figure 1a, the effect of the charge in the

structure of the star forα4 = 0.1 is very small, and the curve is comparable with the star thatdoes
not have a net electric charge. When the value ofα4 grows, until a critic value, the effect in the
structure become important. To verify this let us consider an increment of about 300% in constant
α4, from 0.1 to 0.4. In this case, the maximum mass grows in approximately 15%.However, an
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increment inα4 of just 30%, fromα4 = 0.75 toα4 = 0.9, causes a change in the maximum mass of
almost 120%. The changes in the structure in all cases is non-linear with the increase of the charge
fraction as we can see in figure 1a.

The values of the charge to mass ratio (Q/M∞) in geometric units for different values ofα4 in
function of the mass central densities are shown in figure 1b.Such a ratio indicates how close the
electric charge and the ADM mass (the mass of the star as seen by an observer at infinity). One then
may look for a central energy density that leads to the extreme case, whereρe4 = ρ4 andQ = M∞.
Such a central density was not found in the present case.

3.2 Charged star: polytropic equation of state depending on the charge density

The studies made it in recently works of charged fluids in equilibrium indicate that the electric
charge density play the role of pressure gradient [5, 9]. In this sense, the electric charge den-
sity acts favorable to the pressure gradient, to counterbalance the gravitational attraction. Hence,
it is reasonable to propose that the effective polytropic EOS of a charged fluid take the form
p4 = p4(ρ4,ρe4). A simple form of such a relationship keeps the polytropic state equation in the
form p4 = ω4ρ5/3

4 −βρ5/3
e4 , whereβ is a non-negative parameter. Moreover, it is expected that an

increase in the charge density implies a decrease in the pressure. According to this, and considering
a relationship betweenρe4 andρ4 of the form (3.1), we may chose a polytropic EOS of the form

p4 = (1−α4)ω4ρ5/3
4 . (3.3)

whereα4 is an arbitrary constant.
With the EOS as in equation (3.3) and different values for thecentral density, the system can

be analyzed for different values ofα4. For comparison, the numerical values considered forα4, ω4

andρc4 are the same as in subsection 3.1.
The values of the mass of each star for different central densities are shown in figure 1a. Again

the stars with large central density and low mass are unstable (see [8]). As in the case of the
preceding section, the effects of the charge are noticeablejust for sufficiently large values ofα4.
The main difference is that we find equilibrium solutions with larger charge factions. In fact, there
are solutions forα4 as large asα4 = 0.997888.

The quantityQ/M∞, in geometric units, as a function of the central density, isshown in figure
1b for different values ofα4. We see that for the equation of state (3.3), there are equilibrium
solutions for values ofQ/M∞ closer to the case (Q = M∞) than what was reported in the last
subsection.

3.3 Charged star in d > 4 spacetimes, and with other symmetries (b = 0,−1)

We also studied equilibrium solutions for charged star in higher dimension, for the first EOS
(3.2) of subsection 3.1. For a five-dimensional spacetime, the overall behavior of the curves are
very similar to those obtained ford = 4. The main different of these is the amount of the mass and
radius size, that increase with the increment the number of extra dimensions. Ford = 6, we found
only unstable solutions, and it was not possible to perform adetailed the analysis due to numerical
convergence problems. A more careful study ford = 6 and for high dimensions is being performed
and will be reported elsewhere.
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(a) Total mass of the star as a function of the central den-
sity for different values ofα4 with the EOSp4 = (1−
α4)ω4ρ5/3

4 .
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(b) Q/M∞ against the central density for different values of

α4 with the polytropic EOSp4 = (1−α4)ω4ρ5/3
4 .

With the initial conditions used here to solve the TOV equation, it was not possible to find
numerical solutions of equilibrium for the casesb = 0 andb = −1. This means that, does not exist
stars with planar and hyperbolic symmetry. In fact, it is possible to show that, forb = 0 the right
hand side of equation (2.12) assumes arbitrarily large positive values in the central region of the
star, and forb = −1 the right hand side of (2.12) is also positive. Then, the pressurep(r) increases
monotonically (indefinitely) with the radial coordinate and cannot satisfy the conditionp(r) = 0
for a finite value of the coordinater.
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