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In this work we study the quasinormal spectra of gravitational perturbations ofd-dimensional

plane-symmetric AdS black holes in the context of the AdS/CFT correspondence. The perturba-

tion equations are written for two different gauge-invariant variables: in the first the variables are

chosen in such a way to put the radial part of the fundamental equations into a Schrödinger-like

form; in the second we have a new set of fundamental variableswhere the imposition of Dirichlet

boundary conditions at infinity leads exactly to the quasinormal frequencies associated to black

hole here studied. The AdS/CFT correspondence helps one to find an appropriate condition to

be applied to each set of variables at the AdS space boundary in order to produce identical QNM

spectra for a given sector of perturbations, and more, that the quasinormal modes will correspond

to the poles of the stress-energy tensor correlators in the dual field theory. We investigate analyt-

ically the quasinormal spectrum for small wavenumbers, large frequencies, and large number of

spacetime dimensions. Using series solutions, we obtain numerically the dispersion relations of

the first few modes in the low-, intermediate- and high-wavenumber regimes, and we analyzed

the eikonal limit.
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1. Introduction

Theoretical studies on black holes in asymptotically anti-de Sitter spacetimes have attracted
substantial attention since the advent of the anti-de Sitter/conformal field theory (AdS/CFT) cor-
respondence [1]. Such a correspondence has established a mappingbetween quantities in the bulk
AdS black-hole physics and observables in a boundary finite-temperature field theory, and appears
to be valid for an arbitrary number of spacetime dimensions, extrapolating theiroriginal formula-
tions. According to the AdS/CFT correspondence, an asymptotically AdS black hole is, in the CFT
side, associated to a system in thermal equilibrium whose temperature is the Hawking temperature
of the black hole. In such a context, black hole perturbations correspond to small deviations from
equilibrium of the CFT thermal system, and the characteristic damping time of perturbations, which
is given by the inverse of the imaginary part of the fundamental QNM frequency, is a measure of
the dynamical timescale of approach to thermal equilibrium of the corresponding conformal field
theory [2].

There are important issues in the study of the vibrational modes of AdS blackbranes to be
analyzed in a fullyd-dimensional context. We can mention the arbitrariness in the choice of
gauge-invariant combinations of metric variations as fundamental variablesof the gravitational
perturbations, and the ambiguity in defining an appropriate condition for the quasinormal modes at
AdS spacetime boundary. In some of the works on this subject [3, 4], according to the AdS/CFT
duality, the ambiguities characteristic of classical-field dynamics at AdS spacetimes were elimi-
nated by defining the quasinormal (QN) frequencies as the poles, in the space of frequency and
momentum, of retarded Green functions in the dual field theory. These and other related subjects
are investigated here considering AdS black holes in spacetimes of arbitrary number of dimensions.

2. The background spacetime

The background spacetime considered here represents ad-dimensional plane-symmetric as-
ymptotically anti-de Sitter (AdS) black hole [5, 6]. The spacetime can be locally written as a
product of a two-dimensional spacetimeN 2, spanned by a timelike coordinatet and a radial
spacelike coordinateu = rh/r, and a(d− 2)-dimensional spaceK d−2 with constant sectional
curvatureK = 0 [7, 8]. With such a decomposition, the background metric in Schwarzschild-like
coordinates takes the form

ds2 =
r2
h

u2R2

[

− f (u) dt2 +
d−1

∑
i=2

dxidxi

]

+
R2

u2 f (u)
du2, (2.1)

for which f (u) = 1−ud−1 with rh being the event horizon radius. The Hawking temperature of the
black brane isT = (d−1)rh/4πR2, whereR is the AdS radius. The coordinatesxi , i = 2,3, ...,d−1,

span theK d−2 space.

The radial coordinateu covers, without singularities, the whole region of interest for the anal-
ysis of the QNM of the AdS black hole of metric (2.1), namely, the rangeu ∈ (1,0). The event
horizon is located atu = 1, and the AdS spatial infinity (r → ∞) is atu = 0.
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3. Fundamental equations for the gravitational perturbations

Following the procedure presented in Ref. [7], the gravitational perturbations are grouped into
three distinct classes (sectors) that can be tensorial, vectorial, or scalar perturbations, corresponding
respectively to the scalar, shear and sound symmetry channels for the gravitational fluctuations
considered in Ref. [3]. Here we present the fundamental equations for two kinds of variables ind
spacetime dimensions, the Kovtun-Starinets (KS) and Regge-Wheeler-Zerilli (RWZ) variables.

3.1 Master equations for the RWZ variables

Kodama and Ishibashi [8] showed that for a black brane in four or morespacetime dimen-
sions, the Einstein equations for the gravitational perturbations can be reduced to three independent
second-order wave equations in a two-dimensional static spacetime, one equation corresponding to
each one of the perturbation modes. After Fourier decomposition of such perturbation functions,
Φp(t,u) =

∫

Φp(u)eiωtdω, the perturbation equations take a Schrödinger-like form,

d2Φp

dr2
∗

+(w2−Vp)Φp = 0, (3.1)

wherer∗ is the normalized tortoise radial coordinate, defined bydu/dr∗ = − f (u). The labelp
can beT, V or S depending of the perturbation sector: tensorial, vectorial and scalar, respectively.
Vp is the effective potential, and the parameterw is the normalized frequency defined byw =

[(d−1)ω ]/4πT = (R2ω)/rh , whereT stands for the Hawking temperature of the black brane. For
example the tensorial effective potential is given by

VT(u) = f (u)

[

q
2 +

d(d−2)

4u2 +
(d−2)2ud−3

4

]

; (3.2)

where the parameterq is the normalized wavenumber defined byq = [(d−1)k]/4πT = (R2 k)/rh.
The explicit form ofVV andVS can be found in Ref. [9].

3.2 Master equations for the KS variables

Another choice of fundamental variables for the gravitational perturbations was suggest by
Kovtun and Starinets [3]. Here the fundamental equation for the tensorialsector for the KS vari-
ables ind spacetime dimensions is given by

Z′′
T −
[

d−1− f
u f

]

Z′
T +

[

w2−q2 f
f 2

]

ZT = 0, (3.3)

where the primes indicate derivatives with respect to the coordinateu, and f = f (u) is the horizon
function. The fundamental equations for the vectorial and scalar sectors can be see in [9].

An important characteristic of classical field evolutions on asymptotically AdS spacetimes is
the variety of choices for the boundary conditions at spatial infinity. In general, these can be Dirich-
let, Neumann or Robin boundary conditions. So we need to establish an objective criterion before
to choose a specific condition. In the AdS/CFT context, a natural criterion issuch that the QNM
frequencies of a certain field correspond to poles of two-point correlation functions of the dual
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operator in the boundary field theory [3, 4]. When we consider a variable Φ such that the master
equation for the gravitational perturbations is of the form (3.1), in general the Dirichlet condition
at spatial infinity is the ‘correct’ boundary condition. There is onlyoneexception: for scalar-type
perturbations in four spacetime dimensions, the boundary condition that leads to QNM frequen-
cies corresponding to poles of retarded correlation functions is of Robintype. However, when
we consider the variableZp the Dirichlet condition at spatial infinity leads to QNM frequencies
corresponding to poles of retarded correlation functions for all cases[9, 10].

4. The spectra quasinormal

4.1 Small wavenumbers, large frequencies

There is an alternative analysis for large frequencies with finite wavenumbers, namelyw ≫ q.
To first order approximation such a condition is equivalent to the asymptotic limitq → 0, as far as
all the other parameters of the model are kept fixed. For all of the perturbation equations with KS
variables we have

Z′′
p−
[

d−1− f
u f

]

Z′
p +

w2

f 2 Zp = 0, (4.1)

wherep denotes the perturbative sector, as already indicated. It is obvious thatEq. (4.1) necessarily
imply in identical non-hydrodynamic quasinormal frequencies atq = 0 for all of the perturbation
types. With this result we conclude that the dispersion relations for large frequencies are the same
for all the three perturbation sectors of a black brane. It is worth noticinghere the very good
agreement between the analytical and the numerical results as we can see inTable 1.

Tensorial Vectorial Scalar

d wR wI wR wI wR wI

4 — — 1.84942 2.66385 1.84942 2.66385
5 3.11945 2.74668 3.11945 2.74667 3.11945 2.74668
6 4.13591 2.69339 4.13591 2.69339 4.13591 2.69339
7 5.00747 2.61247 5.00760 2.61266 5.00758 2.61249

Table 1: The frequencies of the first non-hydrodynamic QNM for all perturbation types, calculated with
q = 0.

4.1.1 Large number of spacetime dimensions

In this section we analyze the perturbation equations when the number of spacetime dimen-
sions is large, namelyd → ∞ with finite w andq. For simplicity, in this analysis we consider
the master equations for the RWZ gauge-invariant variables (Eq. (3.1)),in which case the analysis
reduces to investigate the asymptotic form of the effective potentials in the limitd ≫ 4. We thus
find

VT →
d2

4u2 f
(

1+ud−1
)

, VV →
d2

4u2 f
(

1−3ud−1
)

, VS →
d2

4u2 f
(

1+ud−1
)

. (4.2)

It is seen that in such a limit the tensorial and scalar potentials are the same. Moreover, in the
intervening region between the AdS boundary and the horizon (0< u < 1), the second term of the
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above expressions within the parentheses tend to zero in the limitd → ∞, so that the potentials are
identical in this region. Moreover, the tensorial, scalar and vectorial potentials approach the same
values at the boundaries. These results suggest that the QNM spectra of the three perturbation
sectors for larged are identical. This is an important result because it shows the isospectrality of
the gravitational QNM of higher-dimensional AdS black holes.

4.2 Eikonal limit

In asymptotically AdS spacetimes the eikonal limit is especially interesting, since large-q
modes can be very long-lived [11, 12]. A WKB analysis suggests that for the tensor-type grav-
itational perturbations (and therefore also scalar fields) andr+/R≫ 1, the following asymptotic
behavior holds

RωFL = q+Πn

( r+

R

)
2d−2
d+1

q−
d−3
d+1 , (4.3)

Πn ≡
1
2

(

√
π(d−1)

[

d+1
2

+2n

] Γ
(

3d−1
2d−2

)

Γ
(

1
d−1

)

)
2d−2
d+1

e−
2iπ
d+1 ,

asq→ ∞ [10, 12]. So large-q modes are very long-lived, and they could play a prominent role in
the BH’s response to generic perturbations.

Our numerical results are consistent with theq−(d−3)/(d+1) dependence of the characteristic
frequencies, ford = 4, 5, and 6. Our results are also highly consistent with the functional depen-
dence onr+,q as given by equation (4.3). Then, weassumethe power-law behavior (4.3) inq and
r+, and fit the numerical results to the following function

RωNum = q+(aRRe[Πn]+ iaI Im[Πn])
( r+

R

)
2d−2
d+1

q−
d−3
d+1 , (4.4)

thereby testing the prefactor in (4.3). Our results in this analysis are strongindicators that Eq.(4.3)
is consistent with all our numerical results for scalar fields or tensor-typegravitational, but does
not account for the correct quantitative behavior of these weakly-dampedmodes for the vectorial
and scalar sectors. Though the equation (4.3) captures the essential qualitative behavior withr+,
q for vector-type (see Fig. 1) and scalar-type gravitational perturbations it only can describe quan-
titatively the numerical results if multiplied by a real constant, which depends onthe overtonen.
This clearly suggests a new form forΠn.

5. Conclusions

Our analytical results provide that the dispersion relations for large frequencies are the same
for all the three perturbation sectors and suggest that the QNM spectra for larged are identical.
Our numerical results confirm the eikonal limit for tensor-type gravitationalperturbation. They
are strong indicators that Eq. (4.3) can describe qualitatively but does not account for the correct
quantitative behavior for vectorial-type and scalar-type gravitational perturbations.
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Figure 1: Numerical results for the fundamental vectorial QNM frequencies of ar+/R = 1 black hole.
Left panel: real componentωR (top to bottom ared = 6,5,4). Right panel: imaginary componentωI (top
to bottom forq > 20 corresponds tod = 4,5,6). Dotted lines are the analytical prediction, corrected by a
prefactora.
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