
P
o
S
(
I
S
F
T
G
)
0
4
1

On the Consistency Conditions to Braneworlds in
Scalar-Tensor Gravity for Arbitrary Dimensions

M. C. B. Abdalla
Instituto de Física Teórica, Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz 271 -
Bl. II - Barra Funda 01140-070 São Paulo, SP, Brazil
E-mail: mabdalla@ift.unesp.br

M. E. X. Guimarães
Instituto de Física, Universidade Federal Fluminense, Brazil
E-mail: emilia@if.uff.br

J. M. Hoff da Silva ∗

Instituto de Física Teórica, Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz 271 -
Bl. II - Barra Funda 01140-070 São Paulo, SP, Brazil
E-mail: hoff@ift.unesp.br

We derive an one-parameter family of consistency conditions to braneworlds in the Brans-Dicke
gravity. The General Relativity case is recovered by taking a correct limit of the Brans-Dicke
parameter. We show that it is possible to build a multiple AdS brane scenario in a six-dimensional
bulk only if the brane tensions are negative. Besides, in the five-dimensional case, it is showed
that no fine tuning is necessary between the bulk cosmological constant and the brane tensions, in
contrast to the Randall-Sundrum model.

5th International School on Field Theory and Gravitation,
April 20 - 24 2009
Cuiabá city, Brazil

∗Poster Section

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mabdalla@ift.unesp.br
mailto:emilia@if.uff.br
mailto:hoff@ift.unesp.br


P
o
S
(
I
S
F
T
G
)
0
4
1

Braneworld Brans-Dicke sum rules

1. Introduction

In the recent years braneworld models are consolidating a new branch of high energy physics.
Among many interesting physical insights [1], they provide an elegant solution to the hierarchy
problem [2, 3, 4]. Such perspectives encourage new developments in braneworld models, even
in cases when there is not an explicit analytical solution. Formal advances of string theory point
into a scalar tensorial theory as the right approach to the gravitational phenomena [5]. Unification
models such as supergravity, superstrings and M-theory [6] effectively predict the existence of a
scalar gravitational field acting as a mediator of the gravitational interaction together with the usual
purely rank-2 tensorial field. In this context, the analysis of braneworld consistency conditions —
or sum rules — in scalar-tensorial theories are indeed necessary. These sum rules were obtained
in ref. [7] for five dimensions in the General Relativity (GR) case and extended to an arbitrary
number of dimensions in the ref. [8], also in the GR frame.

The main purpose of this work is to generalize the braneworld sum rules, already obtained in
the GR set up, to the case of scalar tensorial gravity (Section II). In particular, we work with the
Brans-Dicke (BD) theory [9], since it is the simplest scalar-tensor theory we have in the literature.
By this generalization we have two main results: the possibility of a multiple braneworld scenario
with only negative brane tensions (Section II) and the fact that for a five-dimensional case, it is
not necessary — in the BD gravity framework — any fine tuning between the bulk cosmological
constant and the brane tension (Section III), in contrast with the RS model.

2. Generalized Sum Rules

In this section we obtain the generalized braneworld sum rules within the BD gravity frame-
work. Following the standard notation used in refs. [7, 8], we analyze a D-dimensional bulk
spacetime endowed with a non-factorable geometry, which metric is given by

ds2 = GABdXAdXB = W 2(r)gαβ dxαdxβ +gab(r)dradrb, (2.1)

where W 2(r) is the warp factor, XA denotes the coordinates of the full D-dimensional spacetime,
xα stands for the (p + 1) non-compact coordinates of the spacetime and ra labels the (D− p− 1)
directions in the internal compact space1. Note that this type of metric encodes the possibility
of existing q-branes (q > p) [8]. In this case, the (q− p) extra dimensions are compactified on
the brane and constitute part of the internal space. This possibility is important in the hybrid
compactification models context, but we will not extend this discussion by now.

The D-dimensional spacetime Ricci tensor can be related with the brane Ricci tensor as well
as with the internal space partner by the equations [7]

Rµν = R̄µν −
gµν

(p+1)W p−1 ∇
2W p+1, (2.2)

and
Rab = R̃ab−

p+1
W

∇a∇bW, (2.3)

1As an example, if D = 5, p = 3 and W (r) = e−2k|r| one arrives at the RS model.
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Braneworld Brans-Dicke sum rules

where R̃ab, ∇a and ∇2 are respectively the Ricci tensor, the covariant derivative and the Laplacian
operator constructed by the internal space metric gab. R̄µν is the Ricci tensor derived from gµν . Let
us denote the three curvature scalars by R = GABRAB, R̄ = gµν R̄µν and R̃ = gabR̃ab. Therefore, the
traces of equations (2.2) and (2.3) give

1
p+1

(
W−2R̄−Rµ

µ

)
= pW−2

∇W ·∇W +W−1
∇

2W (2.4)

and
1

p+1

(
R̃−Ra

a

)
= W−1

∇
2W, (2.5)

where Rµ

µ ≡W−2gµνRµν and Ra
a ≡ gabRab (in such a way that R = Rµ

µ + Ra
a). It is not difficult to

see that, if ξ is an arbitrary constant,

∇ · (W ξ
∇W ) = W ξ+1(ξW−2

∇W ·∇W +W−1
∇

2W ). (2.6)

The combination of the equations (2.4), (2.5) and (2.6) leads to

∇ · (W ξ
∇W ) =

W ξ+1

p(p+1)
[ξ
(
W−2R̄−Rµ

µ

)
+(p−ξ )

(
R̃−Ra

a
)
]. (2.7)

Once established the usual notation and conventions, it is time to look at the scalar field —
generically called the “dilaton” from now on — (φ) contributions. The Einstein tensor (GMN) in
the Einstein-Brans-Dicke (EBD) gravity is given by

GMN =
8π

φ
TMN +

w
φ 2

(
∇Mφ∇Nφ − 1

2
∇Aφ∇

A
φGMN

)
+

1
φ

(
∇M∇Nφ − 8π

3+2w
T GMN

)
, (2.8)

where TMN is the bulk stress-tensor, T is its trace and w the BD parameter. We remark that the scalar
part of the BD set of equations was already taken into account in the last term of the right-hand
side of eq. (2.8). From eq. (2.8), calling T µ

µ ≡W−2gµνTµν , it is easy to note that

Rµ

µ =
8π

φ(D−2)(3+2w)

(
(3D+2w(D− p−3)−2(p+1))T µ

µ −2(1+w)(p+1)T m
m

)
+

wW−2

φ 2 ∇
ν
φ∇νφ +

W−2

φ
∇

ν
∇νφ , (2.9)

and

Rm
m =

8π

φ(D−2)(3+2w)

(
(D+2w(p−1)−2(p−2))T m

m −2(1+w)(D− p−1)T µ

µ

)
+

w
φ 2 ∇

m
φ∇mφ +

1
φ

∇
m

∇mφ . (2.10)

An important characteristic about braneworld models in the BD theory is that, generally, the
scalar field depends only on the large extra dimensions [10]. This type of dependence is indeed
useful since the projected EBD equations on the brane leads to important subtle modifications but
still resembles the Einstein’s equations [11]. Therefore, let us consider hereon the ∇µφ = 0 case.
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In an internal compact space the following identity is respected
∮

∇ · (W ξ ∇W ) = 0. Therefore,
inserting the eqs. (2.9) and (2.10) in (2.7), and taking into account the identity above, we have

∮ W ξ+1

φ

(
T µ

µ [ξ (5D+4w(D− p−2)−2(2p+5))−2p(1+w)(D− p−1)]

+ T m
m [ξ (−4wp−D+2(1−2p))+ p(D−2(p−2)+2w(p−1))]−

(8π

φ

)−1
(D−2)(3+2w)

× [ξW−2R̄+(p−ξ )R̃]+
(8π

φ

)−1
(D−2)(3+2w)

( w
φ 2 ∇

m
φ∇mφ +

1
φ

∇
m

∇mφ

))
= 0. (2.11)

The above equation provides an one-parameter family of consistency conditions in arbitrary dimen-
sions in the scope of the BD gravity. It is important to stress that if one reintroduces the (3+2w)−1

factored term and takes w → ∞ (φ → 1/GN), by the usual L’Hopital limit, the case analyzed in
General Relativity is recovered as expected. Equation (2.11) is quite general and self-consistent.
However, in that form it is not very useful. Going forward, we rewrite eq. (2.11) in terms of an
adequate energy-momentum tensor form. We shall use the same stress-tensor Ansatz of ref. [8],
since it is very complete. So, we write the stress-tensor in the form

TMN =−ΛGMN −∑
i

T (i)
q P[GMN ](i)q ∆

(D−q−1)(r− ri)+ τMN , (2.12)

where Λ is the cosmological constant, T (i)
q is the ith q-brane tension, ∆(D−q−1)(r−ri) is the covariant

combination of delta functions which localizes the brane, P[GMN ](i)q is the pull-back of the bulk
metric and any other matter contribution is represented by τMN . From this Ansatz one obtains

T µ

µ =−(p+1)Λ+ τ
µ

µ −∑
i

T i
q∆

(D−q−1)(r− ri)(p+1), (2.13)

and
T m

m =−(D− p−1)Λ+ τ
m
m −∑

i
T i

q∆
(D−q−1)(r− ri)(q− p). (2.14)

Now, substituting these expressions in equation (2.11) we get, after some algebra, the following
form to the consistency conditions

∮ W ξ+1

φ

(
−Λ(c(p+1)+bD)−∑

i
(cp+a+bq)T (i)

q ∆
(D−q−1)(r− ri)+aT µ

µ +bT m
m

−
(8π

φ

)−1
(D−2)(3+2w)[ξW−2R̄+(p−ξ )R̃]+

(8π

φ

)−1
(D−2)(3+2w)

×
( w

φ 2 ∇
m

φ∇mφ +
1
φ

∇
m

∇mφ

))
= 0, (2.15)

where a ≡ ξ [5D+4w(D− p−2)−2(2p+5)]−2p(1+w)(D− p−1), b ≡ ξ [−4wp−D+2(1−
2p)]+ p[D−2(p−2)+2w(p−1)] and c ≡ a−b.

Let us particularize our analysis to braneworld models inspired in one of those previously
found in this framework. In the models proposed in [10], all the bulk-brane structure was generated
by using local and global cosmic string as sources. The final scenario is composed by 4-branes
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embedded into a bulk of six-dimensions. Therefore, they are models of hybrid compactification.
The on-brane dimension is compactified into a S1 circle and the dilaton field depends only on
the large transverse dimension. With these specifications, we have D = 6, p = 3 and q = 4, and
consequently, a = 2ξ (15 + 2w)− 2(17 + 6w), b = −4ξ (4 + 3w) + 12(1 + w) and c = 2ξ (23 +
8w)−2(23+12w). Then, the equation (2.15) gives

∮ W ξ+1

φ

(
−4Λ[35ξ −w(ξ +3)−14]−2∑

i
[26ξ +w(ξ −9)−31]T (i)

4 ∆
(1)(r− ri)

+ τ
µ

µ [ξ (15+2w)− (17+6w)]+ τ
m
m [−2ξ (4+3w)+6(1+w)]−2(3+2w)

(8π

φ

)−1

×[ξW−2R̄+(3−ξ )R̃]+2(3+2w)(3−ξ )
(8π

φ

)−1( w
φ 2 ∇

m
φ∇mφ +

1
φ

∇
m

∇mφ

))
= 0.(2.16)

The analysis can be simplified if we assume empty bulk models and study the vacuum on the
brane (τµ

µ = 0 = τm
m ). Moreover, let us take (Λ = 0) for simplicity. Note that different choices of ξ

lead to different contributions, so we begin with ξ =−1 since it eliminates the overall warp factor
on the left-hand side of equation (2.16). With these several simplifications, the eq. (2.16) reads

∮ ( w
φ 2 ∇

m
φ∇mφ +

1
φ

∇
m

∇mφ +
W−2

2
R̄

)
= 8πχ − 4π(57+10w)

3+2w ∑
i

T (i)
4 Liφ

−1(ri), (2.17)

where Li is the area of the S1 circle (the extra dimension compactified on the brane) and φ(ri) is
the dilaton field value on the ith-brane at the ri position. Note the appearance of the Euler character
χ = 1

4π

∮
R̃. The internal space of the model can be characterized by χ and, then, for each model

this topological invariant contributes in a specific way for the sum rules. Another interesting choice
for the ξ parameter is ξ = 3. If we reconsider all the simplifications which lead to (2.17) but with
ξ = 3 it results in

3(3+2w)
8π

∮
W 2R̄ = (6w−47)∑

i
T (i)

4 W 4(ri)φ−1(ri)Li. (2.18)

Note that there is no contribution from the scalar field derivatives, as well as, from the Euler invari-
ant. We remark that, for a negative constant curvature scalar it is possible to have a multiple brane
scenario only with negative brane tensions! On the other hand, for a positive constant curvature
scalar, it is possible, at least, one negative brane tension. We stress, however, that in both cases we
took Λ = 0. This situation can be changed if we take into account the contributions coming from
the cosmological constant terms.

3. Concluding Remarks

We generalize the braneworld sum rules to the BD gravity framework. In the interface be-
tween General Relativity and gravity coming from an effective low energy string theory, such a
generalization is quite necessary. The results recover the previous case when the limit w → ∞ is
taken. The main goal of obtaining consistency conditions in braneworlds is the large application to
several models in the BD gravity for arbitrary dimensions.
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On one hand, the constraints imposed by the equation (2.15), for example, must be respected
by any braneworld model in the BD gravity in which the scalar field depends only on the large extra
dimension and should be taken into account in more involved models. It is a strong imposition. On
the other hand, however, as the eq. (2.15) shows, such a constraint is not too much dramatic itself.

Of course, the consistency conditions are much more attractive if one assumes a particular
model. To the particular cases analyzed from eq. (2.17), it is important to emphasize the possibility
of existing only positive or only negative brane tensions. It is in sharp contrast with the RS model
[3], where the tension of the two branes are necessarily equal and opposite. Apart of that, we stress
that it is possible to see, from eq. (2.11), that, in the five-dimensional case, a fine tuning here is
not neccessary to be introduced as in the RS model. Nevertheless, we are unable to classify our
space as being an AdS type or not, since we took, for simplicity, Λ = 0. Therefore, our conclusion
is just partially true but lacks of deepest evaluation if we intend to go further in the analysis of
the extra-dimensions compactification, the hierarchy problems, the Ads/CFT correspondence and
many other issues which will demand a carefully choice of our parameters. For that, we should
return back to the general result expressed by eq. (2.16).
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