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Noncommutative Thirring

The massive Thirring (MT) model and its dual the sine-Gordon model are known to be in-
tegrable. Some versions of their multi-field extensions have appeared in the literature (see e.g.
[1]). On the other hand, the noncommutative (NC) version of the MT model has been proposed
recently [2]. Here we discuss some properties of the affine Kac-Moody algebraic formulation of a
noncommutative version of the so-called generalized massive Thirring model.

1. A version of the noncommutative generalized massive Thirring model (NCGMT)

The ref. [2] presents a version of the so-called NC massive Thirring model. Here we address
the non-commutative version of the generalized model presented in [1]. It is a two-dimensional
spinor model in which the usual Thirring self-interaction term for each species is extended with
similar interactions among different massive spinor field species. The action for the NCGMT
model in terms of the massive Thirring field components becomes

SNCMT =
∫

dx2
i=3

∑
i=1
{[2iψ̃ i

L ?∂+ψ
i
L +2iψ̃ i

R ?∂−ψ
i
R + imi(ψ̃ i

L ?ψ
i
R−ψ

i
L ? ψ̃

i
R)]

− 2(Ai
L ?Ai

R)}, (1.1)

the star ? represents the Moyal product and

A1
R = 4

√
α1β1

4
ψ

1
R ? ψ̃

1
R + 4

√
β3α3

4
ψ

3
R ? ψ̃

3
R (1.2)

A2
R = 4

√
α2β2

4
ψ

2
R ? ψ̃

2
R−

4

√
α1β1

4
ψ̃

1
R ?ψ

1
R (1.3)

A3
R = 4

√
β3α3

4
ψ̃

3
R ?ψ

3
R + 4

√
α2β2

4
ψ̃

2
R ?ψ

2
R. (1.4)

A1
L = 4

√
δ1λ1

4
ψ

1
L ? ψ̃

1
L + 4

√
δ3λ3

4
ψ

3
L ? ψ̃

3
L (1.5)

A2
L = 4

√
δ2λ2

4
ψ

2
L ? ψ̃

2
L−

4

√
δ1λ1

4
ψ̃

1
L ?ψ

1
L (1.6)

A3
L = 4

√
δ3λ3

4
ψ̃

3
L ?ψ

3
L + 4

√
δ2λ2

4
ψ̃

2
L ?ψ

2
L . (1.7)

Now we write the equations of motion

∂+ψ
3
L = −1

2
m3ψ

3
R− i 4

√
δ3λ3

4
{ψ3

L ?A3
R +A1

R ?ψ
3
L} (1.8)

∂+ψ̃
1
L = −1

2
m1ψ̃

1
R + i 4

√
δ1λ1

4
{ψ̃1

L ?A1
R−A2

R ? ψ̃
1
L} (1.9)

∂+ψ̃
2
L = −1

2
m2ψ̃

2
R + i 4

√
δ2λ2

4
{ψ̃2

L ?A2
R +A3

R ? ψ̃
2
L}. (1.10)

∂+ψ̃
3
L = −1

2
m3ψ̃

3
R + i 4

√
δ3λ3

4
{A3

R ? ψ̃
3
L + ψ̃

3
L ?A1

R} (1.11)

∂+ψ
1
L = −1

2
m1ψ

1
R− i 4

√
δ1λ1

4
{A1

R ?ψ
1
L−ψ

1
L ?A2

R} (1.12)
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Noncommutative Thirring

∂+ψ
2
L = −1

2
m2ψ

2
R− i 4

√
δ2λ2

4
{A2

R ?ψ
2
L +ψ

2
L ?A3

R}. (1.13)

∂−ψ
3
R =

1
2

m3ψ
3
L− i 4

√
α3β3

4
{ψ3

R ?A3
L +A1

L ?ψ
3
R} (1.14)

∂−ψ̃
1
R =

1
2

m1ψ̃
1
L + i 4

√
α1β1

4
{ψ̃1

R ?A1
L−A2

L ? ψ̃
1
R} (1.15)

∂−ψ̃
2
R =

1
2

m2ψ̃
2
L + i 4

√
α2β2

4
{ψ̃2

R ?A2
L +A3

L ? ψ̃
2
R}. (1.16)

∂−ψ̃
3
R =

1
2

m3ψ̃
3
L + i 4

√
α3β3

4
{A3

L ? ψ̃
3
R + ψ̃

3
R ?A1

L} (1.17)

∂−ψ
1
R =

1
2

m1ψ
1
L− i 4

√
α1β1

4
{A1

L ?ψ
1
R−ψ

1
R ?A2

L} (1.18)

∂−ψ
2
R =

1
2

m2ψ
2
L− i 4

√
α2β2

4
{A2

L ?ψ
2
R +ψ

2
R ?A3

L}. (1.19)

The set of equations of motion above are the gl(3) extension of the equations of motion given
before for the case gl(2) NCMT1 ( see eqs. (5.11)-(5.14) of ref. [2]). In fact, the later system is
contained in the gl(3) extended model. For example, if one considers ψ1

L = ψ2
L = ψ̃1

L = ψ̃1
L = 0

in the eq. (1.11) then it is reproduced the equation (5.13) of reference [2] describing the single

Thirring field ψ3 provided that the parameters expression 4
√

δ3λ3β3α3
16 corresponds to the coupling

constant λ

2 of NCMT model as defined in that reference.
The four field interaction terms in the action (1.1) can be re-written as a sum of Dirac type

current-current terms for the various flavors ( j = 1,2,3). In the constructions of the relevant cur-
rents the double-gauging of a U(1) symmetry in the star-localized Noether procedure deserve a
careful treatment [2]. So, one has two types of currents for each flavor [2]

j(1)µ

k = ψ̄kγ
µ ?ψk, (1.20)

j(2)µ

k = −ψ
T
k γ

0
γ

µ ? ψ̃k, k = 1,2,3.. (1.21)

In order to write as a sum of current-current interaction terms it is necessary to impose the
next constraints on the coupling parameters δ jλ j

α jβ j
= κ = const.; j = 1,2,3. with κ3 = 1. Then the

current-current terms can be written as

−2
3

∑
i=1

Ai
L ?Ai

R = −g11 ( j(1)
1 µ

? j(1)µ

1 + j(2)
1 µ

? j(2)µ

1 )−g22 ( j(1)
2 µ

? j(1)µ

2 + j(2)
2 µ

? j(2)µ

2 )−

g33 ( j(13 µ
? j(1)µ

3 + j(2)
3 µ

? j(2)µ

3 )+g12 ( j(1)
1 µ

? j(2)µ

2 )−

g23 ( j(1)
2 µ

? j(1)µ

3 )−g13( j(2)
1 µ

? j(2)µ

3 ), (1.22)

where

g j j =
1
4

4
√

α jβ jδ jλ j, g jk =
1
2

4
√

α jβ jδkλk, ( j 6= k); j,k = 1,2,3. (1.23)

The two type of U(1) currents j(1)
k µ

, j(2)
k µ

(k=1,2,3), respectively, satisfy the equations

∂+(ψ̃k
L ?ψ

k
L)+∂−(ψ̃k

R ?ψ
k
R) = 0, ∂+(ψk

L ? ψ̃
k
L)+∂−(ψk

R ? ψ̃
k
R) = 0, k = 1,2,3. (1.24)
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Noncommutative Thirring

2. Matrix valued fields in the action and the zero curvature condition

We propose the NCGMT action related to the fields W±m as

S[W±m ] =
2

∑
m=1

∫
dx2{1

2
< [E−3,W+

3−m]?∂+W+
m >−1

2
< [E3,W−3−m]?∂−W−m >−

< [E−3,W+
m ]? [E3,W−m ] >}− 1

2

2

∑
m,n=1

< Ĵ+
m ? Ĵ−n > . (2.1)

The action above possesses some global symmetries and the associated matrix-valued currents

J±m = ±1
4
[[E∓3,W±m ],W±3−m]?. (2.2)

Notice that the currents J±m , despite the indices in their notation, has zero gradation. The fields
W±m (m = 1,2) and the matrix element E±3 are given in the appendix A, and they have gradation±m
and±3, respectively. The hatted fields mean that the spinor fields have been re-scaled conveniently
by Ŵ±m = L±mW±m (L±m)−1, where L±m are some constant matrices.

The zero-curvature condition encodes integrability even in the NC extension of integrable
models (see e.g. [2] and references therein), as this condition allows, for example, the construction
of infinite conserved charges for them. The gl(3) NCGMT model equations of motion (1.8)-(1.19)
can be formulated as a zero curvature condition by considering the following Lax pair

A− = E−3 +a[E−3,W+
1 ]? +b[E−3,W+

2 ]? +g1[[E−3,Ŵ+
1 ],Ŵ+

2 ]? +g2[[E−3,Ŵ+
2 ],Ŵ+

1 ]?.

A+ =−E+3 +b[E+3,W−1 ]? +a[E+3,W−2 ]? ++g̃1[[E+3,Ŵ−1 ],Ŵ−2 ]? + g̃2[[E+3,Ŵ−2 ],Ŵ−1 ]?,

where a,b,g1,g2, g̃1, g̃2 are some parameters to be determined below. These matrix valued fields
must be replaced into the zero-curvature equation

[∂+ +A+ , ∂−+A−]? = 0, (2.3)

In order to get the relevant equations of motion it is useful to take into consideration the gradation
structure of the various terms. So, we can expand explicitly the terms of gradation (−1) obtaining

[E−3,∂+W+
2 ]? = +[E−3, [E3,W−1 ]]?− (4g1 +4g2)(L+

2 )−1[Ĵ−1 , [E−3,Ŵ+
2 ]]?L+

2 (2.4)

plus the constraint [
F+

1 ,F−2
]
?
= 0. (2.5)

Next, looking for the gradation +1 terms we arrive at the equation[
E3,∂−W−2

]
?

= −[E3, [E−3,W+
1 ]]?− (4g1+4g2)(L−2 )−1[Ĵ+

1 , [E3,Ŵ−2 ]]?L−2 , (2.6)

plus the constraint [
F+

2 ,F−1
]
?
= 0. (2.7)
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Following the process we can write similar eqs. for the±2 gradations. We conclude that in order to
obtain the equations of motion (1.8)-(1.19) it is required the conditions L±2 = L±1 and g1 = g2 =−1

4 ,
provided that the constraints (2.5) and (2.7) are imposed.

Finally, for the zero gradation term there appears the following equation

∂+Ĵ+
1 +∂+Ĵ+

2 −∂−Ĵ−1 +∂−Ĵ−2 −ab[F+
2 ,F−2 ]−ab[F+

1 ,F−1 ]+ [Ĵ−1 , Ĵ+
1 ]+ [Ĵ−1 , Ĵ+

2 ] +[
Ĵ−2 , Ĵ+

1

]
+[Ĵ−2 , Ĵ+

2 ] = 0. (2.8)

Taking into account the conditions Ĵ+
1 = Ĵ+

2 and Ĵ−1 = Ĵ−2 in the above equation we may write it as

∂+Ĵ+
1 −∂−Ĵ−1 −

ab
2

[F+
2 ,F−2 ]− ab

2
[F+

1 ,F−1 ]+2[Ĵ−1 , Ĵ+
1 ] = 0. (2.9)

The zero gradation equation must be consistent with the equations of motion described above.
In order to see the form of these three equations let us write one of the them in terms of the
fundamental fields

i(∂+A3
L−∂−A3

R)? = (A3
R ?A3

L−A3
L ?A3

R)−ab{im3(
4

√
β3λ3

4
ψ̃

3
R ?ψ

3
L + 4

√
δ3α3

4
ψ̃

3
L ?ψ

3
R)+

im2(
4

√
δ2α2

4
ψ̃

2
R ?ψ

2
L + 4

√
β2λ2

4
ψ̃

2
L ?ψ

2
R)} (2.10)

In particular, if we reduce the eq. (2.10) to get an equation for just one field, say ψ3, one has

− 4

√
δ3λ3

4
∂+(ψ̃3

L ?ψ
3
L)+ 4

√
β3α3

4
∂−(ψ̃3

R ?ψ
3
R) = abm3(

4

√
β3λ3

4
ψ̃

3
R ?ψ

3
L + 4

√
δ3α3

4
ψ̃

3
L ?ψ

3
R)+

i 4

√
δ3α3β3λ3

16
(ψ̃3

R ?ψ
3
R ? ψ̃

3
L ?ψ

3
L− ψ̃

3
L ?ψ

3
L ? ψ̃

3
R ?ψ

3
R)

. (2.11)

Now, taking into account the relationships δ jλ j
α jβ j

= 1; j = 1,2,3 with the condition λ3β3 = δ3α3 and

the identifications 4
√

λ3δ3
4 →−λ , abm3→ mψ we arrive at the equation (5.18) of the ref. [2] .

In terms of the fundamental fields the constraints (2.5) and (2.7) have the following form

ψ
1
R ∗ψ

2
L = ψ

1
L ∗ψ

2
R, ψ

2
R ∗ ψ̃

3
L =−ψ

2
L ∗ ψ̃

3
R, ψ̃

3
L ∗ψ

1
R =−ψ̃

3
R ∗ψ

1
L (2.12)

and

ψ
3
R ∗ ψ̃

2
L =−ψ

3
L ∗ ψ̃

2
R, ψ̃

1
L ∗ψ

3
R =−ψ̃

1
R ∗ψ

3
L , ψ̃

2
R ∗ ψ̃

1
L = ψ̃

2
L ∗ ψ̃

1
R, (2.13)

respectively.
The action (1.1) (or its matrix form (2.1)) defines a three species NC generalized massive

Thirring model since one has six complex fields, i.e. ψ
j

R,L and its complex conjugates ψ̃
j

R,L, ( j =
1,2,3). The zero-curvature formulation requires the above six constraints (2.12) and (2.13). This
fact suggests that the NCGMT model defined by the action (1.1) becomes integrable only for a
submodel defined by the eqs. of motion (1.8)-(1.19) provided the constraints (2.5) and (2.7) are
satisfied. So, one expects that a careful introduction of the constraints trough relevant Lagrange
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multipliers into the action will provide the lagrangian formulation of an integrable submodel of the
NCGMT theory.

Regarding the action related to the zero curvature equations without constraints it is interesting
to notice that the quadratic terms in the equations of motion make it difficult to believe that one
can find a local lagrangian for the theory. Obviously, in that case we could not have a generalized
massive Thirring model with a local lagrangian involving bilinear (kinetic and mass terms) and
current-current terms.

A. The sl(3) affine Kac-Moody algebra and the matrix fields

The matrix fields entering the potentials take the form

F±m = ∓[E±3 , W∓3−m], m = 1,2 (A.1)

E±3 =
1
6
[(2m1 +m2)H±1

1 +(2m2 +m1)H±1
2 ], m3 = m1 +m2 (A.2)

W−1 = −
√

4i
m3

ψ
3
RE−1

α3 +
√

4i
m1

ψ̃
1
RE0
−α1 +

√
4i
m2

ψ̃
2
RE0
−α2 (A.3)

W+
1 =

√
4i
m1

ψ
1
LE0

α1 +
√

4i
m2

ψ
2
LE0

α2−
√

4i
m3

ψ̃
3
LE1
−α3 (A.4)

W−2 = −
√

4i
m1

ψ
1
RE−1

α1 −
√

4i
m2

ψ
2
RE−1

α2 +
√

4i
m3

ψ̃
3
RE0
−α3 (A.5)

W+
2 =

√
4i
m3

ψ
3
LE0

α3−
√

4i
m1

ψ̃
1
LE1
−α1−

√
4i
m2

ψ̃
2
LE1
−α2 (A.6)

En
αi

,Hn
1 ,Hn

2 (i = 1,2,3; n = 0,±1) are some generators of sl(3)(1). The commutation relations
for an affine Lie algebra in the Chevalley basis are

[Hm
a ,Hn

b] = mC
2

α2
a

Kabδm+n,0 (A.7)[
Hm

a ,En
±α

]
=±KαaEm+n

±α (A.8)[
Em

α ,En
−α

]
=

r

∑
a=1

lα
a Hm+n

a +
2

α2 mCδm+n,0 (A.9)[
Em

α ,En
β

]
= ε(α,β )Em+n

α+β
; if α +β is a root (A.10)

[D,En
α ] = nEn

α , [D,Hn
a] = nHn

a. (A.11)
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