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We consider non-vanishing boundary conditions (NVBC) for the NLS model [1, 2, 3] in the

context of the hybrid dressing transformation andτ-function approach. In order to write the

NLS model in a suitable form to deal with non-vanishing boundary conditions it is introduced

a new spectral parameter in such a way that the usual NLS parameter will depend on the affine

parameter through the so-called Zukowsky function. In the context of the dressing transformation

the introduction of the affine parameter avoids the construction of certain Riemann sheets for the

usual NLS spectral parameter. In this way one introduces a Lax pair defined for the new spectral

parameter and the relevant NVBC NLSτ functions are obtained by the dressing transformation

method. We construct the one and two dark-soliton solutionsexplicitly.
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Nonvanishing boundary conditions and dark solitons in the NLS model

The nonlinear Schrodinger model (NLS) with vanishing or non-vanishingboundary conditions
is physically significant since it appears in many applications ranging from condensed matter to
string theory (see e.g. [4]). The NLS model and its multifield extensions is an integrable system
(see e.g. [5] and references therein). Here we provide the affine Kac-Moody algebraic formulation
of the NLS model suitably written for nonvanishing boundary conditions andthe hybrid of the
dressing and Hirota methods is used to obtain dark soliton solutions of the model.

The convenient form of the NLS for dealing with non-vanishing boundaryconditions, which
support dark-soliton like solutions [6], can be written as

∂tψ +∂xxψ −2(|ψ |2−ρ2)ψ = 0. (1)

This form of NLS model is supplied with the non-vanishing boundary conditions given by [1, 2, 3]

ψ =

{
ρ, x→−∞,

ρε2, x→ +∞
ρ = real const., ε = eiθ . (2)

In order to give a group theoretical construction of the system above, let us consider the Lax
pairA andB

A = H1 +Ψ+E0
+ +Ψ−E0

− +Φ1C, (3)

B = H2 +Ψ+E1
+ +Ψ−E1

− +∂xΨ+E0
+−∂xΨ−E0

−−2(Ψ+Ψ−−ρ2)H0 +ϕ2C, (4)

whereΨ±, ϕ1 andϕ2 are the fields of thêsl(2) NLS model and the potentialA andB lie in theŝl(2)

affine Kac-Moody Lie algebra. The Lax pair in (3)-(4) provided with thezero-curvature condition

∂xB−∂tA− [A, B] = 0, (5)

furnishes the model (1) provided that the following transformationt → it ,x→ ix,Ψ± → Ψ±ε∓2,

and the identificationψ ≡ Ψ+ = (Ψ−)∗, are made. The factorε∓2 is introduced for later conve-
nience and∗ means complex conjugation. It was consideredΨ+

0 Ψ−
0 = −ρ2.

The vacuum solutions to be considered are the ones of constant configuration,Ψ±
0 = ρε∓2, ϕ1 =

ϕ2 = 0; so, the vacuum fieldsAV andBV from (3)-(4) are

AV = H1 +ρε−2E0
+ +ρε2E0

−, BV = H2 + ε−2ρE1
+ + ε2ρE1

−. (6)

The vacuum connections can be written in the form

ÂV = ∂xΨΨ−1, B̂V = ∂tΨΨ−1, (7)

whereΨ is the group element

Ψ = (I+k+E+−k−E−)exζ σ3etκσ3, (8)

with k± being constants,I the identity matrix andE±, σ3 Pauli matrices. The connections in (7)
are called pure gauge solutions and are solutions of the zero-curvaturecondition (5).

Considering a 2×2 matrix representation for (8) in̂sl(2) algebra, it is possible to write certain
relationships between the parametersk+, k−, ζ , κ and λ

κ = λζ , k± = −2ρε∓2 1
λ +2ζ

, 4ζ 2 = 4ρ2 +λ 2. (9)
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Nonvanishing boundary conditions and dark solitons in the NLS model

The relationships in (9) show thatζ andκ assume two possible values in terms ofλ , this requires
the construction of Riemann sheets.

Here it is introduced an affine parameterξ such that the functions

ζ =
1
2

(
ξ +

ρ2

ξ

)
, λ = ξ −

ρ2

ξ
,

κ =
1
2

(
ξ 2−

ρ4

ξ 2

)
, k± = −ρ

ξ ε∓2.

(10)

become single valued in terms ofξ . The functionζ (ξ ) above is known as the Zukowsky function.
The appearance of an affine parameter motivates us to introduce a new spectral parameter

associated with the potentialsÂ andB̂

Â = H1−ρ2H−1 +Ψ+E0
+ +Ψ−E0

− +ϕ1C, (11)

B̂ = H2 +ρ4H−2 +Ψ+(E1
+−ρ2E−1

+ )+Ψ−(E1
−−ρ2E−1

− )

+ ∂xΨ+E0
+−∂xΨ+E0

−−2Ψ+Ψ−H0 +ϕ2C. (12)

The potentials (11) and (12) written in terms of the new spectral parameterξ describe the NLS
model (1) when the zero-curvature condition (5) is used. So, the vacuum connections correspond-
ing to (11) and (12) are given by

ÂV = H1−ρ2H−1 +ρε−2E0
+ +ρε2E0

−, (13)

B̂V = H2 +ρ4H−2 +ρε−2(E1
+−ρ2E−1

− )+ρε2(E1
−−ρ2E−1

− )−2ρ2H0. (14)

Notice that these potentials are deformations of the ones in (6).
In terms of the new spectral parameterξ , (8) takes the form

Ψ = Pex(H1+ρ2H−1)et(H2−ρ4H−2), (15)

where

P = I−ρε−2E−1
+ +ρε2E−1

− , P−1 =
1

1+ ρ2

ξ 2

(
I+ ε−2ρE−1

+ − ε2ρE−1
−

)
. (16)

Whenρ → 0 one hasξ → λ , which implies thatP→ I.

1. The dressing transformation

The dressing transformations are non-local gauge transformations thatact on the fields of the
model preserving their gradation structure; they are made with the aid of two group elementsΘ+

andΘ−, such that

Â → Âh ≡Θ±ÂΘ−1
± +∂xΘ±Θ−1

± ,

B̂ → B̂h ≡Θ±B̂Θ−1
± +∂tΘ±Θ−1

± . (1.1)

It is assumed the generalized Gauss decomposition

ΨhΨ−1 =
(
ΨhΨ−1)

−

(
ΨhΨ−1)

0

(
ΨhΨ−1)

+
≡Θ−1

− M̂−1N̂. (1.2)
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Nonvanishing boundary conditions and dark solitons in the NLS model

The vector tau function~τ(x, t) is defined by [7]

~τ(x, t) =
(
ΨhΨ−1) |λ̂0〉 = Θ−1

− M̂−1|λ̂0〉. (1.3)

Once the highest weight state|λ̂0〉 is an eigenstate of̂g0 subalgebra, it is possible to define

~τ0(x, t) = M̂−1|λ̂0〉 = |λ̂0〉τ̂0(x, t), (1.4)

whereτ̂0(x, t) is a function described by

τ̂0(x, t) = 〈λ̂0|
(
ΨhΨ−1)

0 |λ̂0〉. (1.5)

Using (1.3) and (1.5) one finds

Θ−1
− |λ̂0〉 =

~τ(x, t)
τ̂0(x, t)

. (1.6)

Replacing the fieldsAV andBV , in the form given in (6), into the dressing transformation (1.1),
one gets

Âh = Θ−

(
H1−ρ2H−1 +ρε−2E0

+ +ρε2E0
−

)
Θ−1

− +∂xΘ−Θ−1
− (1.7)

B̂h = Θ−

(
H2 +ρ4H−2 +ρε−2(E1

+−ρ2E−1
− )

+ ρε2(E1
−−ρ2E−1

− )−2ρ2H0)Θ− +∂tΘ−Θ−1
− (1.8)

whereΘ− = exp(∑n>0 σ̂−n) , M̂ = exp(σ̂0) andN̂ = exp(∑n>0 σ̂n) . It is possible to find some of
the components, saŷσ−1, σ̂−2, in terms of the fieldsΨ±, ϕ1 andϕ2

σ̂−1 = −(Ψ+−ρε−2)E−1
+ +(Ψ−−ρε2)E−1

− +σ0
−1H−1, (1.9)

σ̂−2 = −σ+
−2E−1

+ +(Ψ−−ρε2)E−1
− +σ0

−1H−1, (1.10)

one finds∂xσ0
−1 = 2(Ψ+Ψ−−ρ2), σ±

−2 =−∂xΨ±+
1
2

σ0
−1Ψ±, ϕ1 =−

1
2

σ0
−1 andϕ2 =−σ0

−2. So,
with the aid of (1.6) the solutions in the orbit of the vacuum are given by

Ψ+ = ρε−2 +
τ̂+

τ̂0 , Ψ− = ρε2−
τ̂−

τ̂0 , (1.11)

where theτ± functions are defined by

τ̂+ ≡ 〈λ̂0|E
1
−

(
ΨhΨ−1)

−1 |λ̂0〉, (1.12)

τ̂− ≡ 〈λ̂0|E
1
+

(
ΨhΨ−1)

−1 |λ̂0〉. (1.13)

According to the dressing method, the soliton solutions are determined by choosing convenient
constant group elementsh.
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Nonvanishing boundary conditions and dark solitons in the NLS model

1.1 The 1-dark soliton solution

Let us choose the group elementh = eF , F = ∑∞
n=−∞ νn

1E−n
− ; the relevantτ functions are

τ0 = 1+e−ϕ1〈λ̂0|PFP−1|λ̂0〉, (1.14)

τ+ = e−ϕ1〈λ̂0|E
1
−(PFP−1)|λ̂0〉, (1.15)

τ− = e−ϕ1〈λ̂0|E
1
+(PFP−1)|λ̂0〉; (1.16)

so the equations (1.11) provided the matrix elements in (1.14), (1.15) and (1.16), furnishes the
solution

ψ+ = ρε−2 +
a1e−ϕ1

1+a1ν2
1e−ϕ1ρε−2(ν2

1 +ρ2)
(1.17)

ψ− = ρε2 +
a1ν2

1e−ϕ1

ρ2ε−4(1−a1ν2
1e−ϕ1ρε−2(ν2

1 +ρ2))
, (1.18)

wherea1 is a free parameter andϕ1 =
(

x(ν + ρ
ν )+ t(ν2− ρ4

ν2 )
)

. This is just theone dark-soliton
solution. The relevant matrix elements can be obtained with the aid of the one level vertex operator
or the integrable highest weight representations of theŝl(2) Kac-Moody algebra. Similarly, one can
seth = eG, whereG = ∑∞

n=−∞ ρn
1E−n

+ . In this way one can get anotherone dark-soliton solution.
In order to get insight into the ‘dark’-soliton evolution let us plot the function (Ψ+Ψ−) for two
successive times. The figure 1 is plotted fora1 = −2; ν1 = 1.9, ε = 1,ρ = 2, b1 = −1.8, and

Figure 1: 1-dark soliton evolution for two successive times showing the NVBCs.

c1 = 0.5. Notice the nonvanishing boundary condition for the fields atx→±∞ in the figure above.

1.2 The 2-dark soliton solution

In order to obtain 2−soliton solution it is chosenh = eFeG. The relevantτ functions become

τ0 = 1+a1e−ϕ1〈λ̂0|PFP−1|λ0〉+a2eη
1 〈λ̂0|PGP−1|λ0〉+a3eη1−ϕ1〈λ̂0|PFGP−1|λ0〉, (1.19)

τ+ = b1e−ϕ1〈λ̂0|E
1
−(PFP−1)|λ0〉+b2eη1〈λ̂0|E

1
−(PGP−1)|λ0〉+b3eη1−ϕ1〈λ̂0|E

1
−(PFGP−1)|λ0〉, (1.20)

τ− = c1e−ϕ1〈λ̂0|E
1
+(PFP−1)|λ0〉+c2eη1〈λ̂0|E

1
+(PGP−1)|λ0〉+c3eη1−ϕ1〈λ̂0|E

1
+(PFGP−1)|λ0〉. .(1.21)
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Nonvanishing boundary conditions and dark solitons in the NLS model

As usual the matrix elements above can be computed through the relevant highest weight represen-
tation of the affine Lie algebra, however one can avoid those calculations by writing these matrix
elements as certain constant parameters which must be determined by direct replacement of the so-
lutions into the relevant equations of motion. These cumbersome computations can be made with
the aid of a program such as MAPLE. So, one gets the solutionsψ+ andψ− given by

ψ+ = ρε−2 +
a1e−ϕ1 +a2eη1 +a2a1

(m1+ν1)(ρ2+m1ν1)
2

ρε−2(ν1−m1)(ρ4+ν2
1m2

1+ρ2(ν2
1+m2

1))
e−ϕ1eη1

1− ν2
1a1e−ϕ1

ρε−2(ν2
1+ρ2)

− a2r2eη1

ρ2+m2
1
−

(ρ2+ν1m1)2a1a2ν2
1e−ϕ1eη1

(ρ4(ν2
1−m2

1)
2−2ρ2ν1m1(m2

1+ν2
1)+ν2

1m2
1(m1+ν2

1)+ρ2(ν2
1−m2

1)
2)ρ2ε−4

and

ψ− = ρε2 +

a1ν2
1

ρ2ε−4 e−ϕ1 + a2ρ2ε4

m2
1

eη1 +a1a2ν2
1ρε2 (m1+ν1)(ρ2+m1ν1)

2

m2
1ρ2ε−4(m1−ν1)(ρ4+ν2

1m2
1+ρ2(m2

1+ν2
1))

e−ϕ1eη1

1− ν2
1a1e−ϕ1

ρε−2(ν2
1+ρ2)

− a2r2eη1

ρ2+m2
1
−

(ρ2+ν1m1)2a1a2ν2
1e−ϕ1eη1

(ρ4(ν2
1−m2

1)
2−2ρ2ν1m1(m2

1+ν2
1)+ν2

1m2
1(m1+ν2

1)+ρ2(ν2
1−m2

1)
2)ρ2ε−4

whereϕ1 = x(ν1 + ρ2

ν1
)+ (ν2

1 −
ρ4

ν2
1
)t, η1 = x(m1 + ρ2

m1
)+ (m2

1−ρ4/m2
1)t, andr2 = ρε2. The cor-

responding 2-dark soliton evolution can be visualized by plotting the function(ψ+ψ−) for certain
parameter values (see Fig. 2).

Figure 2: 2-dark soliton evolution for three successive times.
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