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We verify the consistency of the prescription of alternative minimum coupling (connection) 
proposed by the Teleparallel Equivalent to General Relativity (TEGR) for the Dirac equation. 
With this aim, we study the problem of neutrino oscillations in the Schwarzschild metric in 
radial motion. The relationship between the neutrino spin and space-time torsion is clarified 
through the determination of the phase differences between the spin eigenstates of neutrinos. In 
particular, if both mass eigenstates of neutrinos have opposite spin directions there is a 
contribution to the oscillation of neutrinos that comes from torsion. 
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1. Introduction 

The description of the gravitational field in the Teleparallel Equivalent to General 
Relativity (TEGR) introduced by Maluf led to tensorial expressions for the energy, momentum 
and angular momentum of the gravitational field [1], [2]. This theory can be considered as a 
reformulation of Einstein’s general relativity in terms of tetrad fields μ

ae , which is known as 

tetrad gravity. 
We examine the consistency of the Dirac equation in the TEGR through a new 

prescription of minimal coupling with the Dirac spinor fields .ψ  This alternative prescription 

involves the Levi-Civita connection abμω
0  rather than the spin connection abμω  (field variable 

independent of the tetrad field μ
ae ). With respect to this connection, Maluf showed in 1994 [3] 

that it is possible to rule out abμω  both in Lagrangian and Hamiltonian formulation of the 

TEGR. 
One motivation for this work, is the fact that, in the context of metric affine theories of 

gravitation (MAG), Obkuhov and Pereira [4] found an inconsistency in the coupling of the 
Dirac spinor with the gravitational field when the spin connection abμω  was used in the 

covariant derivative. They found that the Dirac spinor fields couple to the gravitational field in a 
manner consistent only with a spinless matter or a matter with a conserved spin tensor. The 
TEGR was studied by Obkuhov and Pereira and can be considered to be a special case of the 
general theory of MAG. In 2003, Maluf showed that it is possible to bypass this problem with 
the use of a new type of coupling to the Dirac spinor fields [5]. To check the coupling explicitly, 
we apply the Dirac equation of the TEGR with the connection abμω

0  (totally dependent on 

tetrad field) to the problem of oscillations of solar neutrinos or mixing in vacuum. In particular, 
we calculate the phase dynamics of neutrinos in space-time with torsion in radial motion. The 
contributions of torsion and their relationship with the directions of spin in mass eigenstates 
were determined. These effects are compared with the structure of Minkowski and Riemann-
Cartan geometry. In the Riemann geometry, there is no coupling between the spin of the particle 
and the gravitational field. 

The article is organized as follows: Section 2 presents a summary of the Hamiltonian 
formulation of the TEGR and the problem of using the spin connection abμω . In Section 3 we 

present the new minimum coupling to the Dirac equation in the TEGR and apply this equation 
to model neutrino oscillations in vacuum. The conclusions are presented in Section 4. 

Notation: Space-time indices μ , ν , ... and local Lorentz SO(3, 1) indices a,b  ,... run from 
0 to 3. Time and space indices are indicated according to ,0µ =  i ; ),(0=a )(i . The flat space-

time is fixed by )( +++−== μν
νμη gee baab . The tetrad field μ

ae  and the arbitrary spin 

affine connection abμω  yield the usual definitions of the torsion and curvature tensors: 
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...,−∂−∂= abababR μννμμυ ωω  b
aaa eT μνμμν ω+∂= ...−ν

be . The determinant of the tetrad 

field is represented by )det( μ
aee = . c  is the speed of light, h  is Planck’s constant and G  is 

the Newtonian gravitational constant 

2. The Hamiltonian formulation of the TEGR 

In 1994, Maluf [3] implemented a Hamiltonian formulation of the TEGR with local 
symmetry by imposing Schwinger´s time gauge [6] and found the following Hamiltonian 
density: 
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where: ,abikλ  ,kN  ( )( )nmC , abJ , ijλ  and N  are Lagrange multipliers; ,kC  ,))(( nmΣ  ,C  [ ],ijΠ  

,abJ  abikR  are constraints defined in [3]; kabP  and ( )ijΠ  are components of the momentum 
canonically conjugate to kabω  and ( )ije , respectively. 

Maluf showed that the constraints in Eq. (2.1) are first class by fixing .00 =abω  Then we 

can eliminate the momentum kabP  from the Hamiltonian density. The evolution equation for 
kabω  leads to: 

                                                        { } ,,H
.

0== kabkab ωω                                                  (2.2) 
and, for the equation to be consistent, it is necessary that 0=kabω  and then abμω  is ruled out of 

the theory. Then, the Lagrangian density and the field equations are invariant under global 
Lorentz transformations. 

3. Neutrino oscillations in the TEGR 

The tetrad field associated with the Schwarzschild metric was determined using 
Schwinger’s time gauge [6] ( ) 00 =ie , ( ) 00=ke  and the condition for spatial symmetry [2]: 

ijji ee )()( =  
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where 2
1

2
21 )(

rc
GMf −= and M  is the mass of the sun. The determinant of the tetrad field is given 

by .sinθ2re =  
The equation proposed by Maluf [5] for minimum coupling is described by a covariant 

derivative: 
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                                         .ψωψψ μμμ
ab

ab
iD Σ−∂= 0 
4

                                               (3.2) 

By substituting (3.2) in the Dirac equation 00 =− ψψγ μ
μ cmDih  and using 

abab K μμω −=0  where abKμ  is the contortion tensor μνλνλμλμν
νλ

μ TTTeeK baab −+= (2
1  ), we 

have: 

                                         .)( 0
4 0 =−Σ+∂ ψψψγ μμ

μ cmKii ab
abh                                      (3.3) 

By using the identity ,! d
f

abcd
abcf δεε 3−=  and by considering only the axial part of the 

contortion tensor represented by the vector ),( )( AAAa r0= , we obtain: 
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f
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abc AAAK δεεεεε 3−===                       (3.4) 

By using identities involving the Dirac matrices ),( )()( iaa e γγγγ μ
μ

0== : 
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and by defining the components of the momentum as: 
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we can write the Dirac Hamiltonian matrix with the help of Eq. (3.4): 
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   (3.10) 

where ( )iσ  are the Pauli matrices, and I  is the identity matrix. 
We analyze here the radial motion which was considered in Ref. [7] and [8] in a different 

formalism. 

3.1 Radial motion 

Zhang and Pereira in Ref. [9] was one of the first to calculate the mass neutrino oscillation 
induced by torsion in the context of the weak gravitational expansion method. For the 
calculation of the phase difference in radial motion in the presence of the torsion of space-time, 
we proceed in the same way as in Ref. [10]. Substituting )0,0,(),,( ppppp r == ϕθ

r
 in the 
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expression (3.10) and using the ultra-relativistic approximation Epc ≅ , we obtain the 
following phase differences for the neutrino mass eigenstates: 
1. For eigenstates with the same spin: 

                                                 ,r
E

cm
Δ

Δ
=Φ−Φ=ΔΦ ↑↑

h2

32

12                                          (3.1.1) 

where 2
1

2
2

2 mmm −=Δ  and .AB rrr −=Δ  Here Ar  is the radius of the sun where the 
neutrino was produced and Br  is the distance from the center of the sun to the earth's surface 
where the neutrino was measured. 
2. For the first eigenstate with spin down and the second eigenstate with spin up: 
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                        (3.1.2) 

3. For the first eigenstate with spin up and the second eigenstate with spin down: 
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where .)()()( )()()()( 2322210 AAAAA ++−=  Here, we used drcdt ≅ and 

.)( 2
2
1

2 11 2
rc
MG

rc
MGf −≈−=  Note that the magnitude of the contribution from torsion is very small 

compared with the mass differences between neutrinos [10]. 
If electron neutrinos are produced at time 0=t , the time evolution of the flavor eigenstate 

eν  is given by: 

                                         ,sincos)( )()(
21 21 ννν titi

e eet Φ−Φ− Θ+Θ=                                (3.1.4) 

where 1ν  and 2ν  are called mass eigenstates at 0=t  and Θ  is called the mixing angle. The 
probability of measuring a muon or tau neutrino is given by: 

                                              
2

2 22 ΔΦ
Θ=→ sinsin)( ,τμνν eP .                                    (3.1.5) 

4. Conclusions 

In radial motion, the torsion makes a contribution to the phase dynamics of neutrinos 
that depends on the directions of spin in the mass eigenstates. If both mass eigenstates have the 
same direction of spin, there is no contribution to oscillation from torsion, but if the mass 
eigenstates have opposite spin directions there is a contribution to the oscillation of neutrinos 
that comes from torsion. 

Without torsion or curvature (with 1=f ), our results coincide with results for neutrino 
oscillations in vacuum in flat space-time [7]. 

Our result formally coincides with a result obtained by Adak et al. [10] from the Dirac 
equation in a Riemann-Cartan geometry with the connection of spin abμω . 

The prescription of minimum coupling adopted by Maluf does not lead to 
inconsistencies of the type that Obukhov and Pereira found and are qualitatively consistent with 
the literature, at least for the problem of neutrino oscillation. The formal inconsistency in the 
Dirac equation is removed if we adopt the Levi-Civita connection of the theory as 
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abab K μμω −=0  leaving the total Lagrangian density in the TEGR in the presence of Dirac 
spinor fields invariant under global Lorentz transformations. 
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