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1. Introduction

The first-order Duffin-Kemmer-Petiau (DKP) formalism [1]-[2] describes spin-0 and spin-1
particles and has been used to analyze relativistic interactions of spin-0 and spin-1 hadrons with nu-
clei as an alternative to their conventional second-order Klein-Gordon and Proca counterparts. The
onus of equivalence between the formalisms represented an objection to the DKP theory for a long
time and only recently it was shown that they yield the same results in the case of minimally cou-
pled vector interactions, on the condition that one correctly interprets the components of the DKP
spinor [3]. The DKP formalism furnishes different second-order equations if scalar interactions are
considered and enjoys a richness of couplings not capable of being expressed in the Klein-Gordon
and Proca theories. A number of different couplings in the DKP formalism, with scalar and vec-
tor couplings in analogy with the Dirac phenomenology for proton-nucleus scattering, has been
employed in the phenomenological treatment of the elastic meson-nucleus scattering at medium
energies with a better agreement to the experimental data when compared to the Klein-Gordon and
Proca based formalisms [4]-[9].

The purpose of the present Letter is to investigate some properties of the DKP theory in the
scalar sector with the nonminimal vector coupling. Three-dimensional nonminimal vector poten-
tials, added by other kinds of Lorentz structures, have already been used successfully in a phe-
nomenological context for describing the scattering of mesons by nuclei [4]-[5], [7], [9]; by using
one-dimensional potentials, it is shown that the nonminimal vector coupling has been improperly
used in the phenomenology. It is pointed out that nonminimal vector potentials have some special
features not displayed by minimal vector potentials. Scattering in a square step potential is used to
show that Klein´s paradox does not show its face in the case of a nonminimal potential, contrary
to what occurs for a minimally coupled potential [10]. Furthermore, it is also shown that if the
space component of the nonminimal potential exceeds its time component there will be a critical
value for the potential strength which segregates two different possibilities for the waves beyond
the potential interface, either a progressive wave or an evanescent wave, a circumstance that resem-
bles the nonrelativistic result. If the space component of the nonminimal potential does not exceed
its time component, though, the transmission coefficient will never vanish, in sharp contrast to the
nonrelativistic quantum mechanics.
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2. The DKP equation and the nonminimal vector coupling

The DKP equation for a boson with interaction is given by [2] (with units in which h̄ = c = 1)(
iβ µ

∂µ −m−V
)

ψ = 0 (2.1)

where the matrices β µ satisfy the algebra

β
µ

β
ν
β

λ +β
λ

β
ν
β

µ = gµν
β

λ +gλν
β

µ (2.2)

and the metric tensor is gµν =diag(1,−1,−1,−1). The algebra expressed by (2.2) generates a set
of 126 independent matrices whose irreducible representations are a trivial representation, a five-
dimensional representation describing the spin-0 particles and a ten-dimensional representation
associated to spin-1 particles. The DKP spinor has an excess of components and the theory has
to be supplemented by an equation which allows to eliminate the redundant components. That
constraint equation is obtained by multiplying the DKP equation by 1−β 0β 0, namely

iβ k
β

0
β

0
∂kψ = m

(
1−β

0
β

0)
ψ, k runs from 1 to 3 (2.3)

The four-current Jµ = ψ̄β µψsatisfies the equation

∂µJµ − iψ̄
(
V−η

0V†
η

0)
ψ = 0 (2.4)

The time component of that current is not positive definite but it may be interpreted as a charge
density. The adjoint spinor ψ̄ = ψ†η0, with η0 = 2β 0β 0−1 in such a way that

(
η0β µ

)† = η0β µ

(the matrices β µ are Hermitian with respect to η0). We can see from (2.4) that, if V is Hermitian
with respect to η0 then the four-current will be conserved. For the spin-0 sector there are two
scalar, two vector and two tensor terms [11]. By considering only the nonminimal vector terms, V
is in the form

V = i[P,β µ ]Aµ (2.5)

where P is a projection operator (P2 = P and P† = P) in such a way that ψ̄Pψ behaves as a scalar
and ψ̄[P,β µ ]ψ behaves like a vector. At this point it is also worthwhile to note that this matrix
potential leads to a conserved four-current but the same does not happen if, instead of i[P,β µ ], one
uses either Pβ µ or β µP, as in [4]-[5], [7], [9]. For the case of spin 0, we use the representation for
the β µ matrices given by [12]. Here the projection operator can be written as [11]

P =
1
3

(
β

µ
βµ −1

)
= diag(1,0,0,0,0) (2.6)

In this case P picks out the first component of the DKP spinor. If the terms in the potential V are
time-independent, one can write ψ(x, t) = ϕ(x)exp(−iEt), where ϕT = (ϕ1, ...,ϕ5), in such a way
that the time-independent DKP equation for a scalar boson constrained to move along the X-axis
decomposes into (

d2

dx2 +κ
2
)

ϕ1 = 0 (2.7)

ϕ2 =
E + iA0

m
ϕ1, ϕ3 =

i
m

(
d
dx

+A1

)
ϕ1, ϕ4 = ϕ5 = 0 (2.8)
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where

κ
2 = E2−m2 +A2

0−A2
1 +

dA1

dx
(2.9)

For this time-independent problem, Jµ has the components

J 0 = 2
E
m
|ϕ1| 2, J 1 = 2

Im
(

dϕ1
dx ϕ∗1

)
m

, J 2 = J 3 = 0 (2.10)

Since Jµ is not time dependent, ϕ1 describes a stationary state. Note that only the first component
of the spinor satisfies a Klein-Gordon-like equation, so that ϕ1 and its first derivative are continuous
even the potential suffers finite discontinuities. In this case of a discontinuous potential, ϕ2 and ϕ3

are discontinuous, but the discontinuity does not matter, because J0 and J1 only depend of ϕ1 and
its first derivative.

3. The nonminimal vector step potential

The one-dimensional square step potential is expressed as

Aµ = θ (x)cµV (3.1)

where cµ are dimensionless and positive coupling constants constrained by c0 + c1 = 1, θ (x) de-
notes the Heaviside step function and V > 0 is the height of the step. For x < 0 the DKP equation
has the solution

ϕ (x) = ϕ+e+ikx +ϕ−e−ikx (3.2)

where

ϕ
T
± =

a±√
2

(
1,

E
m

,∓ k
m

,0,0
)

(3.3)

and k =
√

E2−m2. For |E| > m, the solution expressed by (3.2) and (3.3) describes plane waves
propagating on both directions of the x-axis with the group velocity vg = dE/dk equal to the clas-
sical velocity. If we choose particles inciding on the potential barrier (E > m), ϕ+ exp(+ikx) will
describe incident particles (vg = +k/E > 0), whereas ϕ− exp(−ikx) will describe reflected parti-
cles (vg = −k/E < 0). The flux related to the current Jµ , corresponding to ϕ given by (3.2), is
expressed as

J1 =
k
m

(
|a+|2−|a−|2

)
(3.4)

Note that the relation J1 = J0vg maintains for the incident and reflected waves, since

J0
± =

E
m
|a±|2 (3.5)

On the other hand, for x > 0 one should have vg ≥ 0 in such a way that the solution in this region
of space describes an evanescent wave or a progressive wave running away from the potential
interface. The general solution has the form

ϕt (x) = (ϕt)+ e+iqx +(ϕt)− e−iqx (3.6)
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where

(ϕt)
T
± =

b±√
2

(
1,

E + ic0V
m

,
∓q+ ic1V

m
,0,0

)
(3.7)

and
q =

√
k2 +(c0− c1)V 2 (3.8)

Due to the twofold possibility of signs for the energy of a stationary state, the solution involving b−
can not be ruled out a priori. As a matter of fact, this term may describe a progressive wave with
negative energy and phase velocity vph = |E|/q > 0 (see, e.g. [10]). In other words, the solution
(ϕt)− exp(−iqx) with q ∈ R reveals a signature of Klein´s paradox. One can readily envisage that
two different classes of solutions can be segregated:

• Class A. With c1 > c0 for V < V c, where

V c =

√
E2−m2

c1− c0
(3.9)

or with c1 ≤ c0 for all V , one has q∈R, and the solution describing a plane wave propagating
in the positive direction of the x-axis with the group velocity vg = q/E is possible only if
b− = 0. In this case the components of the current are given by

J0 =
E
m
|b+|2 , J1 =

q
m
|b+|2 (3.10)

• Class B. With c1 > c0 for V > V c one has that q = ±i |q|, and (3.6) with b∓ = 0 describes
an evanescent wave. The solution satisfying the requirement of finiteness at infinity requires
b∓ = 0. In this case

J0 =
E
m

e−2|q|x |b±|2 , J1 = 0 (3.11)

Incidentally, the solution involving b− is identical to the solution involving b+, so we con-
sider b− = 0.

The demand for continuity of ϕ1 and dϕ1/dx at x = 0 fixes the wave amplitudes in terms of the
amplitude of the incident wave and thus the reflection (R) and transmission (T ) coefficients become

R =


(

k−q
k+q

)2

1

for the class A

for the class B
, T =


4kq

(k+q)2

0

for the class A

for the class B
(3.12)

For all the classes one has R+T = 1 as should be expected for a conserved quantity. Note that the
charge density in (3.10) and (3.11) is always a positive quantity and so is J1 in (3.10). This means
that the scattered waves describe particles and not antiparticles, then Klein´s paradox never comes
to scenario.

For c1 > c0 the transmission coefficient vanishes for a potential strength V greater than the
cutoff potential V c. In fact, the mixed step potential behaves effectively as a ascending step and a
similar situation occurs in nonrelativistic quantum mechanics.
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As for c1 ≤ c0, however, there is no cutoff potential. This is a result that runs counter our
conceptions drawn from the nonrelativistic quantum mechanics. For c1 = c0 the half-and-half
mixed step potential is transparent (T = 1 for all V ), and for c1 < c0 the mixed step presents a
transmission coefficient that vanishes asymptotically as V → ∞. Those strange facts occur because
the space component of the step potential behaves as an ascending step whereas its time component
behaves as a descending step. For c1 = c0 effects due to the time and the space components cancel
each other and the mixed step potential effectively behaves as a null potential. For c1 < c0 the
tendency to a descending step dominates so that the mixed step potential effectively behaves as
a descending step. Note that the reflection and transmission coefficients are the same for a wave
incident from the right as for a wave incident from the left.

4. Conclusions

We have shown minimal and nonminimal vector interactions in the scalar sector of the Duffin-
Kemmer-Petiau theory behave quite diversely. In particular, the nonminimal vector interaction has
no counterpart in the Klein-Gordon theory. The nonminimal vector interaction has the very same
effect on both particles and antiparticles and so it might be useful for boson-confining models.
Scattering in a square step potential clearly shows that Klein´s paradox, present in the case of a
minimal coupling [10], is absent in the case of a nonminimal coupling. When the space component
of the nonminimal potential does not exceed its time component, the transmission coefficient is
different from zero even if the height of the step potential is extremely high. That odd result has
been endorsed by observing the behaviour of the effective potential.
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