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1. Introduction

More than one decade ago, the celebrated Korteweg-de Vries (KdV) equation,

ut +
[

u2 +uxx
]

x = 0, (1.1)

was generalized to a class of nonlinear equations, named asK(m,n) equations [1], given by

ut +[um+(un)xx]x = 0 , m> 0 , 1 < n≤ 3 . (1.2)

For some values ofmandn, solutions ofK(m,n) equations have compact support and independent
wave amplitude width [1]. This kind of solution is calledcompactonand, in nature, is different
from a KdV soliton, that narrows as the amplitude increases.

In the classical soliton theory, integrability and elastic collisions are closely connected but,
in the realm of theK(m,n) equations, albeit some conservation laws have been derived, it is not
known whether these equations are integrable [2]. A lot of effort has been carried out in order to
understand the nonlinear mechanism that underlies processes described byK(m,n) equations [3, 4,
5], including an analogous generalization of the Sine-Gordon equation [6]. Lie symmetry methods
have also been used for this purpose, and a partial symmetry classificationof K(m,n) equations has
been achieved [7, 8, 9].

In order to derive generalizations of a partial differential equation, a standard procedure is to
choose a starting symmetry, that usually is considered as the symmetry of a morerestrictive set
of equations. This approach has been adopted to obtain, for instance, generalized Fokker-Planck
equations which admits the Lie symmetry of a specific diffusion equation [10]. Our goal here
is to follow along this line and study and classify someK(m,n) equations. Considering the Lie
symmetry algebra of the classical KdV equation, sayℓKdV, then we proceed to find all equations in
a given class ofK(m,n) equations that are invariant underℓKdV. The class we have studied is the
nonlinearK(m,n) equations with space- and time-dependent coefficients.

2. Determining equations

Let us start by noting that, associated with Eq. (1.1), there is a set of generators of Lie symme-
tries given by

X1 = ∂x ,

X2 = ∂t ,

X3 = 2t∂x +∂u ,

X4 = x∂x +3t∂t −2u∂u .

These generators fulfill the following commutation relations

[X1,X4] = X1 ,

[X2,X3] = 2X1 ,

[X2,X4] = 3X2 ,

[X3,X4] = −2X3 ,

[X1,X2] = [X1,X3] = 0 . (2.1)
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We use this KdV equation Lie algebra, denoted here byℓKdV, to deriveK(m,n) equations. Let us
consider a nonlinear generalization of Eq. (1.2) with space- and time-dependent coefficients, that
is,

ut +[ f um+g(un)xx]x = 0 , (2.2)

where f = f (x, t) andg = g(x, t). This equation is written as

ut +a0um+a1um−1ux+a2un−2u2
x +a3un−1uxx+a4un−3u3

x +a5un−2uxuxx+a6un−1uxxx= 0 , (2.3)

where

a0 = fx ,

a1 = m f ,

a2 = n(n−1)gx ,

a3 = ngx ,

a4 = n(n−1)(n−2)g ,

a5 = 3n(n−1)g ,

a6 = ng . (2.4)

A vector field of the form

X = η(u,x, t)∂u +θ1(u,x, t)∂x +θ2(u,x, t)∂t (2.5)

is a symmetry generator of Eq. (1.1) if Eq. (2.3) is form invariant under theinfinitesimal transfor-
mationx′ = x+ εθ1, t ′ = t + εθ2, andu′ = u+ εη . This leads to the following set of determining
equations:

eq1 :
(

a6un−1∂uuu+a5un−2∂uu+2a4un−3∂u
)

θ2(u,x, t) = 0 ,

eq2 :
(

6a6un−1∂ux+2a5un−2∂x +2a3un−1∂u
)

θ2(u,x, t) = 0 ,

eq3 :
(

a6un−1∂uuu+a5un−2∂uu−a4un−3∂u
)

θ1(u,x, t) = 0 ,

eq4 :
(

3a6un−1∂u
)

θ1(u,x, t) = 0 ,

eq5 :
(

3a6un−1∂uu+a5un−2∂u
)

θ2(u,x, t) = 0 ,

eq6 :
(

3a6un−1∂xx+2a3un−1∂x
)

θ2(u,x, t) = 0 ,

eq7 :
(

3a6un−1∂ux+a5un−2∂x
)

θ2(u,x, t) = 0 ,

eq8 :
(

3a6un−1∂uu+2a5un−2∂u
)

θ2(u,x, t) = 0 ,

eq9 :
(

3a6un−1∂u
)

θ2(u,x, t) = 0 ,

eq10 :
(

6a6un−1∂uu
)

θ1(u,x, t) = 0 ,

eq11 : 3a6un−1∂xθ2(u,x, t) = 0 ,

eq12 : (3∂u)θ1(u,x, t)−
(

3a6un−1∂uxx+a5un−2∂xx+2a3un−1∂ux+2a2un−2∂x
)

θ2(u,x, t) = 0 ,

eq13 :
(

3a6un−1∂uux+2a5un−2∂ux+3a4un−3∂x +a3un−1∂uu+a2un−2∂u
)

θ2(u,x, t) = 0 ,
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eq14 :
(

nu−1−u
)

η(u,x, t)+

(

(∂xa6)

a6
−3∂x

)

θ1(u,x, t)

+

(

a6un−1∂xxx+
(∂ta6)

a6
+a3un−1∂xx+a1um−1∂x−∂u +∂t

)

θ2(u,x, t) = 0 ,

eq15 :
(

3a6un−1∂uxx+a5un−2∂xx+2a3un−1∂ux+a1um−2m
)

η(u,x, t)

−

(

a6un−1∂xxx+a3un−1∂xx+a1
(∂xa6)

a6
um−1−4a0um∂u +∂t

)

θ1(u,x, t)

−

(

a1

(

(∂ta6)

a6
−

(∂ta1)

a1

)

um−1
)

θ2(u,x, t) = 0 ,

eq16 :
(

3a6un−1∂uux+2a5un−2∂ux+3a4un−3∂x−a3un−1∂uu+a2
(

un−2∂u−un−3))η(u,x, t)

−

(

3a6un−1∂uxx+a5un−2∂xx+2a3un−1∂ux+a2un−2
(

(∂xa6)

a6
−∂x

))

θ1(u,x, t)

−
(

(∂xa2)u
n−2−3a1um−1∂u

)

θ1(u,x, t)−

(

a2

(

(∂ta6)

a6
−

(∂ta2)

a2

)

un−2
)

θ2(u,x, t) = 0 ,

eq17 :
(

a6un−1∂uuu+a5un−2∂uu+2a4
(

un−3∂u−un−4))η(u,x, t)

−

(

3a6un−1∂uux+2a5un−2∂ux+a4
(∂xa6)

a6
un−3− (∂xa4)u

n−3 +a3un−1∂uu

)

θ1(u,x, t)

−
(

2a2un−2∂u
)

θ1(u,x, t)−

(

a4

(

(∂ta6)

a6
−

(∂ta4)

a4

)

un−3
)

θ2(u,x, t) = 0 ,

eq18 :
(

3a6un−1∂uu+a5
(

un−2∂u−un−3))η(u,x, t)

−

(

9a6un−1∂ux+a5
(∂xa6)

a6
un−2− (∂xa5)u

n−2−a3un−1∂u

)

θ1(u,x, t)

−

(

a5

(

(∂ta6)

a6
−

(∂ta5)

a5

)

un−2
)

θ2(u,x, t) = 0 ,

eq19 :
(

a6un−1∂xxx+a3un−1∂xx+a1um−1∂x +a0
(

um∂u +um−1(m−n+1)
)

+∂t
)

η(u,x, t)

−

(

a0um
(

(∂xa6)

a6
−

(∂xa0)

a0
−3∂x

))

θ1(u,x, t)

−

(

a0

(

(∂ta6)

a6
−

(∂ta0)

a0

)

um
)

θ2(u,x, t) = 0 ,

eq20 :
(

3a6un−1∂ux+a5un−2∂x
)

η(u,x, t)

−

(

3a6un−1∂xx+a3un−1
(

(∂xa6)

a6
−

(∂xa3)

a3
−∂x

))

θ1(u,x, t)

−

(

a5

(

(∂ta6)

a6
−

(∂ta3)

a3

)

un−1
)

θ2(u,x, t) = 0 . (2.6)

The substitution of the dominant derivative from Eq. (1.1) into the determiningsystem of in-
finitesimal symmetry transformations results in a set of equations in the coefficientsai , i = 0, . . . ,6.

3. TheK(m,n) equations with variable coefficients

In order to find theK(m,n) generalized equations, we impose that Eq. (2.3) admits subalgebras
of ℓKdV as symmetry Lie algebras. Recalling thatℓKdV is spanned by the generatorsXi , i = 1,2,3,4,
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we have the following cases.

Symmetry {X4} : By imposing this symmetry generator to Eq. (2.3), the resulting system of equa-
tions in the coefficientsai , i = 0, . . . ,6, is

eq1 :
1
2

um
(

a0

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t +2

(

m−n−
3
2

))

− (∂xa0)x−3(∂ta0)t

)

= 0 ,

eq2 :
1
2

um−1
(

a1

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t +2(m−n−1)

)

− (∂xa1)x−3(∂ta1)t

)

= 0 ,

eq3 :
1
2

un−2
(

a2

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t −1

)

− (∂xa2)x−3(∂ta2)t

)

= 0 ,

eq4 :
1
2

un−1
(

a3

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t −1

)

− (∂xa3)x−3(∂ta3)t

)

= 0 ,

eq5 :
1
2

un−3
(

a4

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t

)

− (∂xa4)x−3(∂ta4)t

)

= 0 ,

eq6 :
1
2

un−2
(

a5

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t

)

− (∂xa5)x−3(∂ta5)t

)

= 0 ,

eq7 : 2

(

(∂xa6)

a6
x+3

(∂ta6)

a6
t

)

−n+1 = 0 . (3.1)

Taking the general solution of the system given by Eqs. (3.1) into Eqs. (2.4) implies that

ut +[ f um+g(un)xx]x = 0 , (3.2)

with
f (x, t) = c1tx2m−7

m and g(x, t) = c2tx2n−5

n , (3.3)

beingc1 andc2 arbitrary constants. The choice of symmetries{X1,X4}, {X2,X4} and{X3,X4}

leads to the same result as{X4}.

Symmetry{X3} : Following the prescription described, we have another class ofK(m,n) equations
with variable coefficients

f (u,x, t) = c1t
m e(1−m)x/2tu + 2u2−m

m(m−1) and g(u,x, t) = c2t
n e(1−n)x/2tu , (3.4)

with c1 andc2 as arbitrary constants.

Symmetries{X1,X2,X3,X4} : Finally, replacing separately the coefficients of each generatorXi ,
i = 1,2,3,4, into the system of determining Eqs. (2.6), we have obtained

f (u,x, t) = c1xt
m e(1−m)x/2tu and g(u,x, t) = c2t

n e(1−n)x/2tu , (3.5)

with arbitrary constantsc1 andc2.

4. General Remarks

In this work we have used the known symmetry algebra of the classical KdV equation,ℓKdV, to
find and classifyK(m,n) equations with space- and time-dependent coefficients. This programme
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required an intensive use of computer algebra, and we have used the package SADE (Symmetry
Analysis of Differential Equations) [11] for solving the determining equations. These equations
with variable coefficients are particularly useful to understand the nonlinear mechanism that under-
lies processes described by theK(m,n) equations. For this class of nonlinear KdV-type equations,
a study of symmetry invariant solutions is in progress.
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