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Vacuum polarization effects on quasinormal modes
in electrically charged black hole spacetimes.
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We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector
of quasinormal modes in spherically symmetric black holes. We consider the evolution of a mass-
less scalar field on the spacetime corresponding to a charged semiclassical black hole, consisting
of the quantum corrected geometry of a Reissner-Nordström black hole dressed by a quantum
massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in
the quasinormal mode frequencies due to vacuum polarization .
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1. Introduction

The evolution of a small perturbation in a black hole background geometry gives rise, un-
der appropriate boundary conditions to a discrete set of complex frequencies called quasinormal
frequencies. Studying the quasinormal spectrum of black holes we can gain some valuable infor-
mation about these objects, since quasinormal evolution depends only upon the parameters of black
hole itself. Thus these frequencies represents the caracteristic resonance spectrum of a black hole
response [1]. In addition, we can investigate the black holes stability against small perturbations.
Further contexts include astrophysical black holes [1] [2] and the AdS/CFT correspondence, where
the inverse of imaginary part of quasinormal frequencies of AdS black holes can be interpreted as
the dual CFT relaxation time [3].

An interesting problem consists in determining what changes appears in the quasinormal mode
spectrum of a black hole if we consider such a system surrounded by a quantum field with a
semiclassical gravity, leading to a quantum corrected line element for the dressed black hole. A
similar work was done by Konoplya [4], for the BTZ black hole dressed by a massless scalar field,
in which the particle creation around the event horizon dominates over the vacuum polarization
effect. This paper is devoted to find this vacuum polarization effects upon quasinormal modes of
quantum corrected Reissner-Nordström black holes in four dimensions. In the following we use for
the Riemann tensor, its contractions, and the covariant derivatives the sign conventions of Misner,
Thorne and Wheeler [5]. Our units are such that h̄ = c = G = 1.

2. Renormalized stress energy tensor for quantum scalar massive field

Consider a single quantum scalar field φ(x) with mass m interacting with gravity with non
minimal coupling constant ξ in four dimensions. In the large mass limit the one loop effective
action for the quantized scalar field [6, 7, 8, 9] is given by

W (1−loop)
ren =

1
6(4π)2m2

∫
d4x
√
−g str a3(x,x), (2.1)

where strF denotes the functional supertrace of F , and a3(x,x) is the coincidence limit of fourth
Hadamard-Minakshisundaram-DeWitt-Seeley coefficient (HMDS). Upon inserting the expression
for the HMDS coefficient in the above formula for the effective action we obtain a renormalized
effective lagrangian [7, 8, 9, 10] given by Lren = L

con f ormal
ren + L̃ren, where the conformal part of the

effective lagrangian is

Lcon f ormal
ren =

1
192π2m2

[
1

7560
ΘR�R +

1
140

Rµν�Rµν − 8
945

Rµ

ν Rν
γ Rγ

µ +
2

315
RµνRγρRγ ρ

µ ν

+
1

1260
RµνRµ

σγρRνσγρ +
17

7560
Rγρ

µνRµν
στRστ

γρ − 1
270

Rγ ρ

µ νRµ ν

σ τRσ τ
γ ρ

]
, (2.2)

and the mass dependent contribution takes the form

L̃ren =
1

192π2m2

[
1
30

η
(
RRµνRµν −RRµνγρRµνγρ

)
+

1
2

η
2R�R − η

3R3
]
, (2.3)
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where we use Θ = 30−252ξ and η = ξ − 1
6 . By standard functional differentiation of the effective

action with respect to the metric, the renormalized Stress-Energy tensor is obtained being given
by 〈Tµν〉ren = 2√

−g
δWren
δgµν = C ν

µ + D ν
µ , where the C ν

µ and D ν
µ tensors take cumbersome forms

that the reader can find in [9, 10]. For the present work we deal with the Reissner-Nordström
spacetime. This results can be found in the paper by Matyjasek [8] and is amazingly simple,
〈T µ

ν 〉= Cµ

ν +
(
ξ − 1

6

)
Dµ

ν .

These results were obtained using the expression for the stress energy tensor presented in
[9] and coincides with that previously obtained by Matyjasek in [8] using also the Schwinger-
DeWitt approximation. In our chosen system of units the general condition for the validity of
the Schwinger-DeWitt approximation can be put as mM ≥ 1, where m and M are respectively the
quantum scalar field and black hole masses.

3. Semiclassical solution

In this section we show how to solve the general backreaction problem for spherically charged
symmetric spacetimes . We will follow the lines of reference [11].

Consider the line element for a general spherically symmetric spacetime

ds2 =−A(r)dt2 +B(r)dr2 + r2 (dθ
2 + sin2

θdφ
2) . (3.1)

We intend to solve the general semiclassical Einstein equations with the source Tµν = T class
µν +〈

Tµν

〉
including two contributions: the first, denoted by T class

µν , comes from a classical source,
and the second, denoted by

〈
Tµν

〉
, is the quantum field contribution. It is possible to show, using

appropiate combinations of the components of the Ricci tensor for the line element (3.1), that the
general form for the metric components grr = B(r) and −gtt = A(r) that solves the backreaction
problem are given by 1

B(r) = 1− 2M
r + Q2

r2 + 8π

r

∫ r
∞

ζ 2 〈 T t
t 〉dζ , and A(r) = 1

B(r) exp{λ (r)} ,where
λ (r) = 8π

∫ r
∞

ζ B(ζ )(〈 T r
r 〉−〈 T t

t 〉)dζ . In this equations Q and M denotes the charge and the bare
mass of the black hole, i.e, of the classical Reissner-Nördström solution. Note that the general
solutions above are obtained using the same boundary conditions of reference [11]. Usually, the
integrals in 1/B(r) and λ (r) are performed introducing some perturbation approximation due to
the fact that the quantum stress tensor

〈
Tµν

〉
is linear in the Dirac constant h̄ ( that in our chosen

units is h̄ = 1 ). We use as a perturbation parameter the ratio ε = 1/M2, where M is the mass of
the black hole ( in conventional units we have ε = M2

P/M2, where MP is the Planck’s mass). After
some algebra we obtain 1

B(r) = 1− 2M
r + Q2

r2 + ε

πm2 (F(r)+ξ H(r)) ,where, the explicit form of the
functions F(r), H(r) and λ (r) can be found in [12]

With these analytical results for the semiclassical line element representing a quantum cor-
rected charged black hole, we can determine the changes in some of the properties of the solution,
with respect to its classical counterpart. In particular, we can determine the change in the position
of the event horizon due to quantum effects. Let be rh = M +

√
M2−Q2 the position of the event

horizon for the classical charged black hole. The exact horizon position r+ for the semiclassi-
cal charged black hole is given by r+ = rh

(
1− ε

(
4π

(M−Q2/rh)

∫ rh
∞

ζ 2 〈T t
t (ζ )〉

)
dζ

)
. Now using the

expressions for the temporal component of the stress-energy tensor of the quantum field, and per-
forming the above integral, we obtain the result for the position of event horizon. It is interesting
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to note that the effect of the quantum field over the bare black hole spacetime is to reduce the posi-
tion of the event horizon. This reduction is a consequence of the typical fact that the weak energy
condition for the quantum field is violated on the event horizon.

4. Looking for scalar quasinormal frequencies

In this section, we consider the evolution of a test massless scalar field Φ(xµ), where xµ =
(t,r,θ ,φ), in the background of the semiclassical spherically charged black hole studied above.
The dynamics of for this test field is governed by the Klein-Gordon equation �Φ = 0. Changing
the wave function Φ = Ψ/r, and the radial coordinate dr/dr∗ =

√
B(r)/A(r), and separating the

time, radial and angular dependence of the field as Ψ = eiωtZ(r)LYLm(θ ,φ), the Klein-Gordon
equation is written as d2

dr2
∗
ZL−

[
ω2−V

]
ZL = 0, where ω is the quasinormal frequency and V is the

effective potential. The potential V is a function of the metric components gµν and the multipolar
number L. For the specific case discussed in this paper, we have for the effective potential the
general result V (r) =V c(r)+ ε

π m2 U(r)+O
(
ε2
)
, where V c(r) is the scalar effective potential of the

bare Reissner-Nordstrom black hole given by V c(r) =
(
r2−2Mr +Q2

)(
−2Q2 +β r2 +2Mr

)
r−6,

and U(r) is proportional to the first order contribution of the vacuum polarization effect to the total
effective potential. Again, the explicit expressions can be found in the full version of the present
work [12].

The effective potential V has the form of a definite positive potential barrier, i.e, it is a well
behaved function that goes to zero at spatial infinity and gets a maximum value near the event hori-
zon. The quasinormal modes are solutions of the above wave equation with the specific boundary
conditions requiring pure out-going waves at spatial infinity and pure in-coming waves on the event
horizon. In order to evaluate the quasinormal modes for the test scalar field, we use the well known
WKB technique, that can give accurate values of the lowest ( that is longer lived ) quasinormal
frequencies. We use in our numerical calculation of quasinormal modes this sixth order WKB ex-
pansion, for which was shown in [13] that gives a relative error which is about two order less than
the third WKB order. In table (1) we list values for the real and imaginary parts of the quasinormal
frequencies for semiclassical and classical black holes varying the multipolar number L and the
overtone number.

As the obtained numerical results show a shift on the quasinormal spectrum due to semiclassi-
cal corrections on the Reissner-Nordström background appears, an effect that is more pronounced
for the fundamental mode (L = 0). From (1) and (2) we see that the backreaction of the quantized
field upon the classical solution gives rise to a decreasing of the real oscillation frequencies and to
a small decreasing of the damping rate, for physically interesting values of the black hole mass.

We also evaluate the dependence of the quasinormal frequencies for a given black hole bare
mass and different values of the coupling constant between the quantum field of fixed mass m and
the classical background spacetime including the more physically interesting cases of minimal and
conformal coupling . The results appears in figure (3) and (4).

5. Concluding remarks

We have studied the influence of the backreaction due to vacuum polarization on the structure
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Semiclassical solution Classical solution

M = 100
L n Re(ϖ) −Im(ϖ) L n Re(ϖ) −Im(ϖ)
0 0 2.3302 1.2140 0 0 14.233 1.0638
1 0 3.5226 1.1772 1 0 3.8461 1.1606
1 1 3.1836 3.6897 1 1 8.1164 2.4344

M = 110
L n Re(ϖ) −Im(ϖ) L n Re(ϖ) −Im(ϖ)
0 0 1.2090 1.1042 0 0 6.0223 0.9657
1 0 3.2054 1.0698 1 0 3.4741 0.9579
1 1 2.8942 3.3544 1 1 5.1130 1.5760

M = 150
L n Re(ϖ) −Im(ϖ) L n Re(ϖ) −Im(ϖ)
0 0 1.0230 0.9337 0 0 2.1751 0.8333
1 0 2.7123 0.9053 1 0 2.9588 0.8928
1 1 2.4490 2.8383 1 1 6.2429 1.8724

Table 1: Rescaled Scalar quasinormal frequencies ϖ = 103ω for the classical and semiclassical Reissner-
Nordström black hole, with Q/M = 0.75, m = 1/10 and ξ = 0.
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Figure 1: Re(ω) for classical and semiclassical
black holes.
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Figure 2: Im(ω) for classical and semiclassical
black holes.

of scalar quasinormal frequencies for semiclassical charged black holes. Such an influence appears
essentially as an appreciable shift in the quasinormal frequencies that decreases as the bare black
hole mass increases, and that not have a strong dependance upon the quantum field parameters.
This shift shows that the quantum corrected quasinormal modes are less oscillatory with respect to
its classical counterpart.
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Figure 3: Behaviour of the Re(ω) for different val-
ues of couplig constant ξ .
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Figure 4: Behaviour of the Im(ω) for different val-
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