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We analyze the properties that manifest hamiltonian natureof the Schrödinger equation and

show that it can be considered as originating from singular Lagrangian action (with two sec-

ond class constraints presented in the Hamiltonian formulation). It is used to show that any

solution of the Schrödinger equation with time independentpotential can be presented in the

form Ψ = (− h̄2

2m4+V)φ + ih̄∂tφ , where the real fieldφ(t,xi) is some solution of nonsingular

Lagrangian theory being specified below. Preservation of probability turns out to be the energy

conservation law for the fieldφ . After introduction the field into the formalism, its mathematical

structure becomes analogous to those of electrodynamics.
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On singular lagrangian underlying the Schrodinger equation

Introduction. Hamiltonian character of the Schrödinger equation is widely explored in var-
ious quantum mechanical applications [1]. In classical mechanics, Hamiltonian equations for the
phase space variablesq, p normally originate from a Lagrangian formulation for the configuration
variablesq: there exists an action that implies the second order equations equivalent to the Hamil-
tonian ones. It is the aim of this work to show that the Schrödinger equation with time independent
potential admits a similar treatment.

In fact, the problem has been raised already by Schrödinger [2]. Eq. (5) below has been tested
by Schrödinger as a candidate for the wave function equationand then abandoned. So, the real field
φ appeared in this equation will be called the Schrödinger field. We establish the simple formula
(4) that generates solutions of the Schrödoinger equation from solutions of the Schrödinger field
equation. Then we present the singular Lagrangian theory that implies unified description for both
the Schrödinger equation and the Schrödinger field equation. The unified formulation is used, in
particular, to prove that any solution of the Schrödinger equation can be presented according to
the formula (4). It implies, that after introduction the Schrödinger field into the formalism, its
mathematical structure becomes analogous to those of electrodynamics. In particular, as well as
Aµ represents a potential for magnetic and electric fields, theSchrödinger field turns out to be a
potential for the wave function, giving its real and imaginary parts according to Eq. (4). Other
similarities are summarized in the table at the end of this work.
Nonsingular Lagrangian associated with the Schrödinger equation. We restrict ourselves to
the one-particle Schrödinger equation with time independent potentialV(xi)

ih̄Ψ̇ = −4Ψ+VΨ. (1)

We use the notation4= h̄2

2m
∂ 2

∂xi2 , ~∇= h̄√
2m

∂
∂xi , ϕ̇= ∂ϕ (t,xi )

∂ t . It is equivalent to the system of two equa-

tions for two real functions (real and imaginary parts of thewave functionΨ(t,xi), Ψ=ϕ+ip)

h̄ϕ̇ = −(4−V) p, h̄ṗ = (4−V)ϕ . (2)

Consideringp(t,xi) as conjugate momenta for the fieldϕ(t,xi), the system has the Hamiltonian
form ϕ̇={ϕ ,H}, ṗ={p,H}, where{,} stands for the Poisson bracket andH is the Hamiltonian
H = 1

2h̄

∫

d3x[~∇ϕ~∇ϕ +~∇p~∇p+V(ϕ2 + p2)]. Hence the equations (2) arise from the variation
problem with Hamiltonian action obtained according to the known rule

SH =

∫

dtd3x[pϕ̇ −H] =

∫

dtd3x

[

ih̄
2

(Ψ∗Ψ̇− Ψ̇∗Ψ)−~∇Ψ∗~∇Ψ−VΨ∗Ψ
]

. (3)

Following the classical mechanics prescription, to construct the Lagrangian formulation (if any)
one needs to resolve the first equation from 2) with respect top and then to substitute the result
either in the second one or into the Hamiltonian action (3). It leads immediately to rather formal
nonlocal expressionp=−h̄(4−V)−1ϕ̇ . So, the Schrödinger system can not be obtained starting
from some (nonsingular) Lagrangian. Nevertheless, there exists nonsingular Lagrangian field the-
ory with the property that any solution of the Schrödinger equation can be constructed from some
solution of this theory. To find it let us look for solutions ofthe form

Ψ = −(4−V)φ + ih̄φ̇ , (4)
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On singular lagrangian underlying the Schrodinger equation

whereφ(t,xi) is some real function.Ψ will be solution of the Schrödinger equation ifφ obeys the
equation

h̄2φ̈ +(4−V)2φ = 0, (5)

the latter follows from the Lagrangian action

S[φ ] =
∫

dtd3x

[

h̄
2

φ̇ φ̇ − 1
2h̄

[(4−V)φ ]2
]

. (6)

It is considered here as the classical theory of fieldφ on the given external backgroundV(xi). The
action involves the Planck’s constant as a parameter. Afterthe rescaling(t,xi ,φ)→(h̄t, h̄xi ,

√
h̄φ) it

appears in the potential only,V(h̄xi), and thus play the role of coupling constant of the fieldφ with
the background.

According to the formula (4), both probability density and phase of the wave function can be
presented through the Schrödinger field. TakingΨ=

√
Pexp i

h̄Sone obtainsP = h̄2(φ̇ )2 +[(−4+

V)φ ]2 = 2h̄E, S=−h̄arctan
√

T
U , whereE=T +U is energy density of the Schrödinger field. The

first equation states that the probability density is the energy density of the Schrödinger field. Invari-
ance of the action under the time translations implies the current equation∂tE+~∇(2h̄−2E~∇S) = 0.
Thus preservation of probability is just the energy conservation law of the theory (6).

It is instructive to compare also the Hamiltonian equationsof the theory (6)

h̄φ̇ = p, h̄ṗ = −(4−V)2φ , (7)

with the Schrödinger system. One notes the following correspondence among solutions of these
systems: a) If the functionsϕ , p obey Eq. (2), then the functionsφ ≡ ϕ , −(4−V)p obey (7).
b) If the functionsφ , p obey Eq. (7), thenϕ ≡ −(4−V)φ , p obey (2). Kernel of the map
(ϕ , p)→(φ , p) is composed by pure imaginary time independent wave functionsΨ=iΠ(xi), where
Π is any solution of the stationary Schrödinger equation(4−V)Π = 0.

Any solution of the field theory (6) determines some solutionof the Schrödinger equation
according to Eq. (4). Then one should ask whether an arbitrary solution of the Schrödinger equa-
tion can be presented in the form (4)? An affirmative answer will be obtained in the next section
using the Dirac approach to description the constrained systems [3]. Besides, in this setting one
obtains more systematic treatment of the observations madeabove: there exists the singular La-
grangian theory subject to second class constraints underlying both the Schrödinger equation and
the classical theory (6).

Our appeal to the constrained theories can be motivated as follows. Treatment of the Schrödinger
system (2) as the Hamiltonian one does not allow one to construct the corresponding Lagrangian
formulation owing to presence the spatial derivatives of momenta in the Hamiltonian. To avoid the
problem, let us try to treat the Schrödinger system as a generalized Hamiltonian system. Namely,
one rewrites (2) in the forṁϕ = {ϕ ,H ′}′, ṗ = {p,H ′}′, whereH ′ is the "free field" generalized
HamiltonianH ′ =

∫

d3x 1
2h̄(p2 + ϕ2) =

∫

d3x 1
2h̄Ψ∗Ψ, and the non canonical Poisson bracket is1

{ϕ ,ϕ}′ = {p, p}′ = 0, {ϕ(t,x), p(t,y)}′ = −(4−V)δ 3(x−y). (8)
1In classical mechanics, inclusion of an interaction into a symplectic structure of the phase manifold has been

investigated by Souriau [4]. It is discussed also in the framework of non commutative theories [5]. Similar construction
is known for the Maxwell equations. They have been recognized as the generalized Hamiltonian equations in [6].
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On singular lagrangian underlying the Schrodinger equation

In contrast toH, the HamiltonianH ′ does not involve the spatial derivatives of momentum.
Non canonical bracket turns out to be a characteristic property of the theories with second

class constraints. In this case the constraints can be takeninto account by transition from the
Poisson to the Dirac bracket, the latter represents an example of non canonical bracket. Hamiltonian
equations for dynamical variables, being written in terms of the Dirac bracket, form a generalized
Hamiltonian system. So, the equations (8) represent a hint to search for associated constrained
Lagrangian.
Singular Lagrangian underlying the Schrödinger equation.Here we obtain (2) as the Hamilto-
nian equations that follow from the Lagrangian action

S[φ ,ϕ ] =

∫

dtd3x

[

h̄
2

φ̇ φ̇ +
1
2h̄

ϕ2+
1
h̄

ϕ(4−V)φ
]

, (9)

written for two real fieldsφ(t,xi), ϕ(t,xi) on the given external backgroundV(xi). It implies the
Lagrangian equations̄h2φ̈ − (4−V)ϕ = 0, ϕ = −(4−V)φ . As a consequence, bothφ andϕ
obey the second order equation (5). After the shiftϕ̃ ≡ ϕ +(4−V)φ , the action acquires the form
S[φ ,ϕ ]=S[φ ]+ 1

2h̄

∫

ϕ̃2. Hence in this parametrization the fieldsφ and ϕ̃ decouple, and the only
dynamical variable isφ . Its evolution is governed by Eq. (5). Being rather natural,it is not unique
possible parametrization of dynamical sector. To find another relevant parametrization, we would
like to construct Hamiltonian formulation of the theory. One introduces the conjugate momenta
p, π for the fieldsφ , ϕ and defines their evolution according top = ∂L

∂ φ̇ = h̄φ̇ , π = ∂L
∂ ϕ̇ = 0. The

second equation does not contain time derivative of the fields, hence it represents primary constraint
of the theory. Then the Hamiltonian is

H =
∫

d3x

[

1
2h̄

(p2−ϕ2)− 1
h̄

ϕ(4−V)φ +vπ
]

, (10)

wherev stands for the Lagrangian multiplier of the constraint. Preservation in time of the primary
constraint,π̇={π,H}=0, implies the secondary oneϕ+(4−V)φ=0. In turn, its preservation in
time determines the Lagrangian multiplierv=−1

h̄(4−V)p. Hence the Dirac procedure stops on
this stage. Evolution of the phase space variables is governed by the Hamiltonian equations

φ̇ =
1
h̄

p, ṗ =
1
h̄
(4−V)ϕ , ϕ̇ = v≈−1

h̄
(4−V)p, π̇ ≈ 0, (11)

and by the constraints

π = 0, ϕ +(4−V)φ = 0. (12)

The system implies that bothφ andϕ obey Eq. (5). Computing the Poisson bracket of the con-
straints, one obtains on-shell non vanishing result{ϕ+(4−V)φ ,π}=δ 3(x−y). According to the
Dirac terminology, the constraints form a second class system.

We reminded the Dirac prescription for dealing with the second class constraints. They are
used to determine a part of variables in terms of others. The variables that have been thus deter-
mined are conventionally called the non dynamical variables. Evolution of the remaining dynam-
ical variables is governed by equations of first order with respect to time. They are obtained from
the initial equations (11) taking into account the constraints as well as equations for the Lagrangian
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multipliers. There is an equivalent way to obtain the equations of motion for dynamical variables.
One can write the Hamiltonian (10) in terms of dynamical variables, and to construct the Dirac
bracket corresponding to the constraints (12)

{A,B}D = {A,B}−{A,π}{ϕ +(4−V)φ ,B}+{A,ϕ +(4−V)φ}{π,B}. (13)

It implies{π,A}=0, {φ ,ϕ}=0, as well as

{φ , p}D = δ 3(x−y), {φ ,φ}D = {p, p}D = 0; (14)

{ϕ , p}D = −(4−V)δ 3(x−y), {ϕ ,ϕ}D = {p, p}D = 0. (15)

Then equation of motion for any dynamical variablezdyn can be written as follows:

żdyn = {zdyn,H(zdyn)}D. (16)

It should be noticed that for the pairφ , p the Dirac brackets coincide with the Poisson ones. For
the pairϕ , p the Dirac brackets coincide exactly with the non canonical ones (8).

Let us apply the prescription to the model under consideration. The constraints (12) imply that
eitherφ , p or ϕ , p can be chosen to parameterize the dynamical sector of the theory.

Parameterizing it by the pairϕ , p, the equations (11) reduce to the Schrödinger system (2),
while the Hamiltonian (10) acquires the form of "free field" Hamiltonian. Note thatp is the conju-
gate momenta forφ but not forϕ . Using this Hamiltonian and the Dirac bracket (15), the equations
(2) can be obtained also according to the rule (16).

Parameterizing the dynamical sector by the pairφ , p, the equations (11) reduce to the system
(7), while the Hamiltonian (10) acquires the form

H(φ , p) =
∫

d3x
1
2h̄

[

p2 +[(4−V)φ ]2
]

. (17)

It is just the Hamiltonian of the theory (6).
Hence the classical field theory (6) and the Schrödinger equation can be identified with two

possible parameterizations of dynamical sector of the singular Lagrangian theory (9). Specifying
parametrization one arrives at either classical or quantumdescription.

Let us return to the proof of the formula (4). LetΨ=ϕ+ip be a solution of the Schrödinger
equation (1). Then there exists the functionφ(t,xi) such thatϕ , p, φ , π = 0 is a solution of the
system (11), (12). Actually, except the first and the last equation, all other equations of the system
are already satisfied. The remaining equations with known right hand sideṡφ = 1

h̄ p, (4−V)φ =

−ϕ , specify the functionφ . Take the second equation att= 0, (4−V)φ=−ϕ(0,xi). The elliptic
equation can be solved (at least for the analytic functionϕ(xi)), let us denote the solution asC(xi).
Then the functionφ(t,xi) = 1

h̄

∫ t
0 dτ p(τ ,xi) +C(xi), obeys both these equations. They imply the

desired result: the wave function can be presented through the fieldφ and its momenta according
to (4).
ConclusionIn this work we have associated the classical field theory (6)with quantum mechanics
of a particle in time independent potential. It has been shown that the Schrödinger equation is
mathematically equivalent to the Schrödinger field equation (5). Solving the classical theory, one
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Electrodynamics Quantum mechanics

There is the Lagrangian formulation in terms
of Aµ

The same in terms ofφ

Aµ represents the potential for magnetic and
electric fields, in the gaugeA0 = 0 one has
~B = ∇×~A, ~E = ∂t~A

Ψ = ϕ + ip = −(4−V)φ + ih̄∂tφ

While the Maxwell equations are written in
terms of~B, ~E, the field~E is the conjugate mo-
menta for~A but not for~B

While the Schrödinger equation is written in
terms ofϕ , p, the fieldp is the conjugate mo-
menta forφ but not forϕ

Maxwell equations form the generalized
Hamiltonian system [6] with the Hamiltonian
∼ ~E2+~B2

Schrödinger equation forms the generalized
Hamiltonian system with the Hamiltonian∼
p2 + ϕ2

Figure 1: Schrödinger fieldφ as the wave function potential.

is able to construct the quantum mechanical object,Ψ, according to the formula (4). The later
may be considered as a kind of quantization ruleφclass−→ ΨQM = Dφ + ip, wherep is conjugate
momenta forφ andD stands for some differential operator specified by the theory. Origin of the
rule has been explained in the Section 3: either the classical field or quantum mechanical equations
result from two possible parameterizations of dynamical sector of the singular theory (9).

While we have started with quantum mechanics and arrived at afield theory, the procedure can
be inverted. It would be interesting to apply it to other (relativistic) field theories.

To conclude with, it should be noticed that the presented formulation implies certain analogy
among mathematical structure of the Schrödinger equation and the free electrodynamics, see the
Fig. 1 above. Roughly speaking, the Schrödinger field turns out to be the wave function potential.
Acknowledgments. Author would like to thank A. Nersessian for encouraging discussions. The
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