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We analyze the properties that manifest hamiltonian nabfirdhe Schrodinger equation and
show that it can be considered as originating from singukgrangian action (with two sec-
ond class constraints presented in the Hamiltonian fortiamp It is used to show that any
solution of the Schrédinger equation with time independmotential can be presented in the
form ¥ = (—%A +V)@+iRd @, where the real fieldp(t,x) is some solution of nonsingular
Lagrangian theory being specified below. Preservation atbgloility turns out to be the energy
conservation law for the fielgh. After introduction the field into the formalism, its mathatical
structure becomes analogous to those of electrodynamics.
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Introduction. Hamiltonian character of the Schrédinger equation is wi@siplored in var-
ious quantum mechanical applications [1]. In classicalmeaics, Hamiltonian equations for the
phase space variablgsp normally originate from a Lagrangian formulation for thenfiguration
variablesq: there exists an action that implies the second order empsagquivalent to the Hamil-
tonian ones. It is the aim of this work to show that the Schr§dr equation with time independent
potential admits a similar treatment.

In fact, the problem has been raised already by SchrodijeEf. (5) below has been tested
by Schrédinger as a candidate for the wave function equatidrthen abandoned. So, the real field
@ appeared in this equation will be called the Schrddinged figVe establish the simple formula
(4) that generates solutions of the Schrodoinger equatam folutions of the Schrédinger field
equation. Then we present the singular Lagrangian theatyirtiplies unified description for both
the Schrodinger equation and the Schrédinger field equalibe unified formulation is used, in
particular, to prove that any solution of the Schrédingemagipn can be presented according to
the formula (4). It implies, that after introduction the &atlinger field into the formalism, its
mathematical structure becomes analogous to those ofalgoamics. In particular, as well as
AH represents a potential for magnetic and electric fieldsSitteddinger field turns out to be a
potential for the wave function, giving its real and imagin@arts according to Eq. (4). Other
similarities are summarized in the table at the end of thiskwo
Nonsingular Lagrangian associated with the Schrodinger egation. We restrict ourselves to
the one-particle Schrédinger equation with time indepahgetentialV (x')

i =—AW+VY. 1)
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We use the notatiorh =5 >, T 9= "ot It is equivalent to the system of two equa-

tions for two real functions (real and imaginary parts ofwave function(t,x), Y=¢+ip)

hp =—(A-V)p, hp=(A-V)¢. (2)

Consideringp(t,x') as conjugate momenta for the figjdt,x ), the system has the Hamiltonian
form ¢={¢ ,H}, p={p,H}, where{,} stands for the Poisson bracket adds the Hamiltonian

H = &£ [d*[0¢0¢ + Oplp+V (9% + p?)]. Hence the equations (2) arise from the variation
problem with Hamiltonian action obtained according to thewn rule

Sy :/dtd3x[p¢—H]:/dtd3x[g(w*¢—¢*W)—ﬁklf*ﬁLP—VlP*LIJ . @3)

Following the classical mechanics prescription, to carcstthe Lagrangian formulation (if any)
one needs to resolve the first equation from 2) with respeptdad then to substitute the result
either in the second one or into the Hamiltonian action (8)edds immediately to rather formal
nonlocal expressiop=—h(A —V)~1¢. So, the Schrédinger system can not be obtained starting
from some (nonsingular) Lagrangian. Nevertheless, thdstsenonsingular Lagrangian field the-
ory with the property that any solution of the Schrédingemaggpn can be constructed from some
solution of this theory. To find it let us look for solutionsthie form

W=—(A-V)g-+ifp, (4)
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whereq(t,x) is some real function¥ will be solution of the Schrédinger equationgfobeys the
equation

Ro+(A-V)?p=0, (5)

the latter follows from the Lagrangian action

ol = [ dtePx| 500 (6 -V)el? ©)

It is considered here as the classical theory of fietsh the given external backgrouhtx'). The
action involves the Planck’s constant as a parameter. &feerescalingt,x', ¢)— (ht, X, v/he) it
appears in the potential ony,(hx), and thus play the role of coupling constant of the fighdith
the background.

According to the formula (4), both probability density arfibpe of the wave function can be
presented through the Schrodinger field. Takitg/PexpLSone obtaind® = R?(¢)? +[(—A +

V)@]? = 2RE, S= —ﬁarctan\/g, whereE=T +U is energy density of the Schrodinger field. The
first equation states that the probability density is thegyndensity of the Schrodinger field. Invari-
ance of the action under the time translations implies tmeeotiequation} E + C(2h2E0IS) = 0.
Thus preservation of probability is just the energy corstonm law of the theory (6).

It is instructive to compare also the Hamiltonian equatiofithe theory (6)

hp=p,  Ap=—(A-V)’p, (7)

with the Schrddinger system. One notes the following cpoedence among solutions of these
systems: a) If the functiong, p obey Eq. (2), then the functiong= ¢, —(A —V)p obey (7).

b) If the functionsg, p obey Eq. (7), thenp = —(A —V)e@, p obey (2). Kernel of the map
(¢, p)— (@, p) is composed by pure imaginary time independent wave funetié=i(x'), where

M is any solution of the stationary Schrédinger equation-V)M = 0.

Any solution of the field theory (6) determines some solutidrthe Schrodinger equation
according to Eq. (4). Then one should ask whether an arpis@ution of the Schrddinger equa-
tion can be presented in the form (4)? An affirmative answdirbgiobtained in the next section
using the Dirac approach to description the constrainetesys([3]. Besides, in this setting one
obtains more systematic treatment of the observations rabdee: there exists the singular La-
grangian theory subject to second class constraints winigiboth the Schrodinger equation and
the classical theory (6).

Our appeal to the constrained theories can be motivatedlas o Treatment of the Schrodinger
system (2) as the Hamiltonian one does not allow one to asrisine corresponding Lagrangian
formulation owing to presence the spatial derivatives ofrranta in the Hamiltonian. To avoid the
problem, let us try to treat the Schroédinger system as a gkred Hamiltonian system. Namely,
one rewrites (2) in the formp = {¢,H’}, p={p,H’}, whereH’ is the "free field" generalized
HamiltonianH’ = [ d3x(p?+ ¢2) = [ d*xzW¥*W, and the non canonical Poisson brackét is

{¢7¢} :{p> p}/:07 {(p(t,x),p(t,y)}’:—(A—V)53(x—y). (8)
1in classical mechanics, inclusion of an interaction intoymplectic structure of the phase manifold has been

investigated by Souriau [4]. It is discussed also in the faork of non commutative theories [5]. Similar constructio
is known for the Maxwell equations. They have been recoghizethe generalized Hamiltonian equations in [6].
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In contrast taH, the HamiltoniarH’ does not involve the spatial derivatives of momentum.

Non canonical bracket turns out to be a characteristic ptppd the theories with second
class constraints. In this case the constraints can be iakeraccount by transition from the
Poisson to the Dirac bracket, the latter represents an dgayfipon canonical bracket. Hamiltonian
equations for dynamical variables, being written in terrhthe Dirac bracket, form a generalized
Hamiltonian system. So, the equations (8) represent a diisearch for associated constrained
Lagrangian.

Singular Lagrangian underlying the Schroédinger equation.Here we obtain (2) as the Hamilto-
nian equations that follow from the Lagrangian action

R..
S(0.0] = x| 30+ 507+ £6(2 Vg, ©

written for two real fieldsp(t,x'), ¢ (t,x) on the given external backgroud{x'). It implies the
Lagrangian equations’g — (A —V)¢ =0, ¢ = —(A —V). As a consequence, bothand ¢
obey the second order equation (5). After the ghift ¢ + (A — V)¢, the action acquires the form
S, 9]=S¢]+4 [ $2. Hence in this parametrization the fielgsand ¢ decouple, and the only
dynamical variable ig. Its evolution is governed by Eqg. (5). Being rather natutag not unique
possible parametrization of dynamical sector. To find agotblevant parametrization, we would
like to construct Hamiltonian formulation of the theory. ©mtroduces the conjugate momenta
p, mt for the fieldsg, ¢ and defines their evolution according fie= g—; —hp, m= % =0. The
second equation does not contain time derivative of thesfiélence it represents primary constraint
of the theory. Then the Hamiltonian is

H :/d?’x[z—lﬁ(pz—cpz)—%¢(A—V)<p+vn , (10)

wherev stands for the Lagrangian multiplier of the constraint.sereation in time of the primary
constraint,;=={,H }=0, implies the secondary oet+(A —V)@=0. In turn, its preservation in
time determines the Lagrangian multiplie&—%(A —V)p. Hence the Dirac procedure stops on
this stage. Evolution of the phase space variables is geddmy the Hamiltonian equations

-1 .1 1 .
9=zp, P==(B-V)$. d=vx-Z(A-V)p, @Ix0, (12)
and by the constraints
m=0, ¢+ (A—-V)p=0. (12)

The system implies that both and ¢ obey Eqg. (5). Computing the Poisson bracket of the con-
straints, one obtains on-shell non vanishing re§gilt-(A — V)@, m}=3%(x—y). According to the
Dirac terminology, the constraints form a second classesyst

We reminded the Dirac prescription for dealing with the setolass constraints. They are
used to determine a part of variables in terms of others. Hniales that have been thus deter-
mined are conventionally called the non dynamical vargbevolution of the remaining dynam-
ical variables is governed by equations of first order wipest to time. They are obtained from
the initial equations (11) taking into account the congtsaas well as equations for the Lagrangian
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multipliers. There is an equivalent way to obtain the eguregiof motion for dynamical variables.
One can write the Hamiltonian (10) in terms of dynamical ablés, and to construct the Dirac
bracket corresponding to the constraints (12)

{ABlo={AB} —{ATH¢ + (A -V)p,B} +{A ¢ + (A -V)p}{m,B}. (13)
It implies {rr,A}=0, {¢, ¢ }=0, as well as

{o.p}p =8%(x—Y),  {®,@}o={p.p}p=0; (14)

{#.p}o=—(A-V)&(x~y), {¢,0}o={p.P}o=0. (15)

Then equation of motion for any dynamical variakig, can be written as follows:

Zgyn = {Zdym H (Zdyn)}D- (16)

It should be noticed that for the pajr, p the Dirac brackets coincide with the Poisson ones. For
the pair¢, p the Dirac brackets coincide exactly with the non canonic&so(8).

Let us apply the prescription to the model under considanafl he constraints (12) imply that
eitherg, p or ¢, p can be chosen to parameterize the dynamical sector of theythe

Parameterizing it by the paip, p, the equations (11) reduce to the Schrddinger system (2),
while the Hamiltonian (10) acquires the form of "free fieldatdiltonian. Note thap is the conju-
gate momenta fop but not for¢. Using this Hamiltonian and the Dirac bracket (15), the ¢iqua
(2) can be obtained also according to the rule (16).

Parameterizing the dynamical sector by the jgaip, the equations (11) reduce to the system
(7), while the Hamiltonian (10) acquires the form

H(@.p) = [ % [P+ (5 -V)9P). (17)

It is just the Hamiltonian of the theory (6).

Hence the classical field theory (6) and the Schrédingertaguaan be identified with two
possible parameterizations of dynamical sector of theusdmd_agrangian theory (9). Specifying
parametrization one arrives at either classical or quarmtescription.

Let us return to the proof of the formula (4). L®t=¢-+ip be a solution of the Schrddinger
equation (1). Then there exists the functigft,x) such that, p, ¢, m= 0 is a solution of the
system (11), (12). Actually, except the first and the lastgiqu, all other equations of the system
are already satisfied. The remaining equations with knogimt hand sidez{v = %p, (A=V)p=
—¢, specify the functiorp. Take the second equationtat 0, (A —V)@=—¢(0,x). The elliptic
equation can be solved (at least for the analytic funcfioxi)), let us denote the solution &$x).
Then the functionp(t,x') = % [;dTp(1,X) +C(X), obeys both these equations. They imply the
desired result: the wave function can be presented thrdugfidld ¢ and its momenta according
to (4).

ConclusionIn this work we have associated the classical field theory{B) quantum mechanics
of a particle in time independent potential. It has been shtvat the Schrédinger equation is
mathematically equivalent to the Schrédinger field equagfs). Solving the classical theory, one
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Electrodynamics

Quantum mechanics

There is the Lagrangian formulation in tern
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Figure 1. Schrodinger fieldp as the wave function potential.
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is able to construct the quantum mechanical objdttaccording to the formula (4). The later
may be considered as a kind of quantization iqgss — Yom = D@+ ip, wherep is conjugate
momenta forg andD stands for some differential operator specified by the theOrigin of the
rule has been explained in the Section 3: either the cldgstor quantum mechanical equations

result from two possible parameterizations of

dynamicelseof the singular theory (9).

While we have started with guantum mechanics and arrivedieldetheory, the procedure can

be inverted. It would be interesting to apply it

to other dtafistic) field theories.

To conclude with, it should be noticed that the presentechfidaition implies certain analogy
among mathematical structure of the Schrédinger equatidrttze free electrodynamics, see the
Fig. 1 above. Roughly speaking, the Schrodinger field tutidabe the wave function potential.
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