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Among the several ideas being discussed presently in cosmology, one can find the interesting

proposal of unifying dark matter and dark energy with the useof a single component with an

‘exotic’ equation of state. A somewhat popular candidate for playing the role of a unified dark

matter is the Chaplygin gas family. In this work we show several relations between the so-called

modified Chaplygin gas and a cosmological scalar field, indicating another road for the study of

the evolution of perturbations in cosmological models of a single fluid.

5th International School on Field Theory and Gravitation
April 20-24, 2009
Cuiabá city, Brazil

∗Poster Session

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
I
S
F
T
G
)
0
6
9

Scalar fields, density perturbations and the Chaplygin gas

1. Introduction

Among the several ideas being discussed presently in cosmology, one can find the interesting
proposal of unifying dark matter and dark energy with the useof a single component with an
‘exotic’ equation of state. A somewhat popular candidate for playing the role of a unified dark
matter is the so-called Chaplygin gas, an exotic fluid whose main characteristic is to have the
product between its pressurep and its energy densityρ as a negative constant. Many works can be
found in the literature studying the implications of the use, as a cosmological fluid, of the Chaplygin
gas and its generalizations, such as the modified Chaplygin gas, defined by the equation of state [1]

p = (γ −1)ρ −Mρ−µ , (1.1)

whereM, µ andγ are free parameters.
From the condition for conservation of energy, with an adiabatic expansion of the universe

quantified through the scale factora,

dρ
p+ ρ

= −3
da
a

, (1.2)

one obtains, forγ 6= 0 andµ 6= −1, the expression

ρ =
[

A+(B−A)a−3γ(1+µ)
]

1
1+µ

, (1.3)

whereA≡ M/γ andB≡ ρ1+µ
0 . Such result, in conjunction with the Friedmann equation,

H2+
k
a2 =

8π
3

ρ , (1.4)

whereH ≡ ȧ/a, may yield solutions fora = a(t).

2. Scalar fields

Both energy density and pressure of the modified Chaplygin gas can be related to a homoge-
neous scalar fieldϕ [2], through the transformation equations

ρ =
ϕ̇2

2
+V (ϕ) (2.1)

and

p =
ϕ̇2

2
−V (ϕ) , (2.2)

where the first term in the right side of each equality corresponds to the kinetical energy of the
field, while the second one corresponds to its potential energial.

If one assumes that the value of field decreases with the expansion of the universe, one may
write

ϕ̇ = −(p+ ρ)
1
2 . (2.3)

However,

ϕ̇ =
dϕ
dt

=
dϕ
da

da
dt

=
dϕ
da

aH . (2.4)
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Scalar fields, density perturbations and the Chaplygin gas

Figure 1: Graphs forφ̇ versusφ , whereφ = ϕ −ϕ0. In all graphsA > 0 andµ = 1, while γ assumes three
values, 1/2, 1 and 3/2.

Finally, the Friedmann equation may be susbstituted in thislast result to give

dϕ = −da

[

p(a)+ ρ (a)
8π
3 ρ (a)a2−k

]
1
2

. (2.5)

The important fact to notice here is that one does not need to obtain an explicit solution fora= a(t)
in order to obtaina = a(ϕ). This means thatϕ may be seen as a surrogate quantity to be used in
the place of the cosmological timet.

For flat spaces,k = 0, and then one can use the substitution

a−3γ(1+µ) =
|A|cosh2u−A

2(B−A)
, (2.6)

valid for γ 6= 0 andµ 6= −1, to easily obtain

ϕ̇ = −(ργ)
1
2

{ |A|cosh2u−A
|A|cosh2u+A

}
1
2

(2.7)

and

V (ϕ) =
ρ
2

[

2− γ
|A|cosh2u−A
|A|cosh2u+A

]

, (2.8)

whereu≡ √
6πγ (1+ µ)(ϕ −ϕ0), with ϕ0 being a constant of integration. Graphs forφ̇ (φ) and

V (φ), whereφ ≡ ϕ −ϕ0, are presented in Figures 1 and 2.
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Figure 2: Graphs for the potentialV (φ), whereφ ≡ ϕ −ϕ0. In all graphsA> 0 andµ = 1, whileγ assumes
three values, 1/2, 1 and 3/2, and only for this last one the potential presents two minima.

For spaces with curvature (k 6= 0) the obtention of analytic solutions for the functionsa(ϕ)

andV (ϕ) seems to be feasible only for certain values ofµ andγ , such as the combinationγ = 4/3
andµ = 0, when

V (ϕ) = A+(B−A)
(

3a4)−1
. (2.9)

This potential may have two minimaϕm given by the conditions

exp
[√

8π (ϕm−ϕ0)
]

+
3k

16π
√

|A|(B−A)
= ±

√

A
|A| (2.10)

valid only if A > 0, and

exp
[

2
√

8π (ϕm−ϕ0)
]

=
9k2

256π2 |A|(B−A)
− A

|A| . (2.11)

valid only for k 6= 0 if A > 0. In the flat case only one of the above conditions may be obeyed, and
only in the presence of curvature the two may be valid simultaneously.

3. Density perturbations

The scalar field representation may also be of some utility, for example, in the mathematical
analysis of the evolution of perturbations [3], where the relevant quantity, the density contrastδ , is
usually seen as a function of the cosmological timet, the conformal timeη or the scale factora.
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To give an specific example, and without considering the “averaging problem” [4], one can rewrite
the equation for the perturbations (cf. equation 4.122 fromPadmanabhan [5]),

d2δ
da2 +

3−15ω +6v2

2a
dδ
da

+
k2v2δ
H2a4 =

3δ
2a2

(

1−6v2−3ω2 +8ω
)

, (3.1)

whereω = p/ρ , v2 = ∂ p
∂ρ andk is the wavenumber of the Fourier mode of the density perturbation

in consideration.
The scalar representation suggests the use of the variable

w =
1
2

(

1− |A|
A

cosh2u

)

= −
(

B−A
A

)

a−3γ(1+µ) , (3.2)

where, again,
u≡

√

6πγ (1+ µ)(ϕ −ϕ0) , (3.3)

and, by doing this, one can obtain, for example, a very general solution for the wavemodek = 0,

δ = c1
w

2x
γ

(1−w)x

+ c2
w1+ 4x

3γ

(1−w)x 2F1

[

1− 2x
3γ

,1+x;2− 2x
3γ

;w

]

, (3.4)

wherex≡ 1/ [2(1+ µ)], with c1 andc2 being arbitrary constants.
An analogous procedure, with a change of variable motivatedby the scalar field representation,

allows one to obtain, for the caseµ = 0 andγ = 2/3, the analytical solution [6]

δ = c′1δ+ +c′2δ− , (3.5)

wherec′1 andc′2 are arbitrary constants,

δ± =
1

sinht̄ cosh2 t̄

(

cosh̄t ∓1
sinht̄

)ν
, (3.6)

and whereν ≡
(

1+4k̃2
)1/2

andt̄ = (4πM)1/2 t.

4. Conclusion

The relations between the modified Chaplygin gas and a cosmological scalar field shown in
this work, with results which incorporate the possibility of having a negative value forA, indicate
that models using the modified Chaplygin gas as a single fluid may also be studied using a repre-
sentation in terms of a scalar field. For example, in cosmology one may be interested in solutions
for the scale factor when there is curvature. Since, for cosmologies with the modified Chaplygin
gas acting as a single fluid, few of such analytic solutions are known, the usage of a scalar field as
an auxiliary quantity offers, at least in principle, another way for the search of new solutions. Also,
the representation of the modified Chaplygin gas in terms of ascalar fieldϕ opens another road for
the study of the evolution of perturbations, and as such it may be seen as a mathematical tool of
some value.

5



P
o
S
(
I
S
F
T
G
)
0
6
9

Scalar fields, density perturbations and the Chaplygin gas

References

[1] U. Debnath, A. Banerjee and S. Chakraborty,Role of modified Chaplygin gas in accelerated universe,
Class. Quant. Grav.21 (2004) 5609 [gr-qc/0411015].

[2] A. Kamenshchik, U. Moschella and V. Pasquier,An alternative to quintessence, Phys. Lett.B511
(2001) 265.

[3] S. S. e Costa, M. Ujevic and A. F. dos Santos,A mathematical analysis of the evolution of
perturbations in a modified Chaplygin gas model, Gen. Rel. Grav.40 (2008) 1683
[arXiv:gr-qc/0703140v2].

[4] P. P. Avelino, L. M. G. Beça and C. J. A. P. Martins,Linear and nonlinear instabilities in unified dark
energy models, Phys. Rev.D77 (2008) 063515 [arXiv:0711.4288v2 [astro-ph]].

[5] T. Padmanabhan,Structure Formation in the Universe, Cambridge Universe Press, Cambridge 1993.

[6] S. S. e Costa,An entirely analytical cosmological model, Mod. Phys. Lett.A24 (2009) 531.

6


