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The Einstein’s equations can be solved in order to find which energy-momentum tensor corresponds 

to a given geometry of space-time. However, these solutions sometimes have not any physical meaning. 
To choose which solutions have physical meaning, we use the energy conditions. This work presents the 
explicit expressions of the energy conditions for the electromagnetic field in the vacuum and in the 
presence of the cosmological constant. The Analysis of these two cases produces some bounds for the 
value of cosmological constant, showing a relation between it and the electromagnetic field present in the 
space-time. In particular, it is shown that the cosmological constant need to have a value bigger than that 
one considered in cosmological models in order to characterize a dark energy fluid in the presence of 
electromagnetic fields. 
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1.Introduction 

The General Relativity Theory says that the matter and the energy are always related with 
the geometry of the space-time, by the Einstein’s Field Equations. 

 G kT gµν µν µν= + Λ , (1.1) 

where Gµν  is the Einstein tensor, which describe the space-time geometry, Tµν  is the energy-

momentum tensor, which describe the matter and the energy in this space time, and Λ is the 
cosmological constant. 
 Some solutions of the Einstein’s Equations do not have any physical meaning. To choose 
which solutions  have physical meaning we use the energy conditions. 
 Following are present the energy conditions for an anisotropic fluid , with energydensity 

and pressures given by ρ and ip , respectively. 

1.1. Weak Energy Condition (WEC) 

This condition imposes that the energy density measured for any observer need to be 
always positive. 
 0.ρ ≥  (1.2) 

         In terms of the energy-momentum tensor this equation can be represented by: 

 0
0T 0.≥  (1.3) 

  Also the energy density plus the pressure in any direction need to be positive too, 

 0ipρ + ≥  (1.4) 

or 

 0
0 0.i

iT T− ≥  (1.5) 

1.2. Dominant Energy Condition (DEC) 

This condition says that the local speed of any observable fluid is always less than the 
local speed of light. This is assured if the local pressure of the fluid do not exceed the energy 
density, 

 0.ipρ − ≥  (1.6) 

  In terms of the energy-momentum tensor: 

 0
0 0.i

iT T+ ≥   (1.7) 

  To obey the DEC a fluid need to obey also the WEC. 

1.3. Strong Energy Condition (SEC) 

  This condition guarantes that all physically “well behaved” matter exercises an effect of 
convergence in the time-like and null geodesics. This is assured if: 

 
3

1

0,i
i

pρ
=

+ ≥∑  (1.8) 

or in terms of the energy-momentum tensor: 
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 0
0 0.i

iT T+ ≥  (1.9) 

  To satisfy the SEC a fluid need to satisfy also the equation (1.4). 
  The SEC is particularly interesting because cosmological models recently provide that 
must to exist a type of energy, called Dark Energy, which exercises in all bodies just the 
counter effect of the “well behaved” energy exercises. The dark energy must repel matter.  

2.Energy-momentum tensor of electromagnetic field 

The electromagnetic energy-momentum tensor is defined by: 

 ( ) ( )1 1
,

4 4
T g F F g F Fλρ λρ

µν µλ νρ µν λρπ
 = − + 
 

 (2.1) 

where Fµν  is the electromagnetic tensor and it is defined by: 

 ; ; ,F A Aµν ν µ µ ν= −  (2.2) 

and Aµ is the electromagnetic four-potential.   

In order to simplify the calculations of the energy conditions we can rewrite the energy 
momentum tensor as: 

 
1 1

,
4 4

Tα α α
µ µ µδ

π
 = −Π + Π 
 

 (2.3) 

where: 

 , .F F F Fα αλ λρ µ
µ µλ λρ µΠ = Π = Π====  

3.Energy conditions for electromagnetic field in a space-time without rotation and 
with cosmological constant 

In a space-time without rotation, the electromagnetic field will be purely electric and 

0Λ = in equation (1.1). Once the electromagnetic energy-momentum is written as (2.3), the 

energy condition can be also written in function of the tensor α
µΠ . 

For diagonal energy-momentum tensor we have: 

 

0
0

0
0

1
,

4

0.i
i

Π ≤ Π

Π − Π ≥

 (3.1) 

 0
0

1
.

2
i
iΠ + Π ≤ Π  (3.2) 

 0
0

1
.

2
i
iΠ − Π ≥ Π∑  (3.3) 

In the case of the energy-momentum tensor to be non-diagonal, the tensor αµΠ  need to be 

made diagonal, so: 

 0.α α
µ µλδΠ − =  (3.4) 

(WEC) 

(DEC) 

(SEC) 
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Once the eigenvalues are found, the energy conditions can are written as. 

 0

0

1
,

4
0.i

λ

λ λ

 ≤ Π

 − ≥

 (3.5) 

 0
1

.
2iλ λ+ ≤ Π  (3.6) 

 0
1

.
2iλ λ− ≥ Π∑  (3.7) 

The more general metric for the space-time without rotation can be given by: 

 ( ) ( )
3

2 2 2 2 2

1

, , .i i i i
i

ds t q dt t q dqα β
=

= −∑  (3.8) 

Considering the more general electric potential as: 

 ( )0 , ,iA t qφ=  (3.9) 

and using the equation (2.2), (3.8) and (3.9), the components of the electromagnetic 
tensor are given by: 

 0
0 2 2

1
, .i

i
i ii

F F
q q

φ φ
α β

∂ ∂= − =
∂ ∂

 (3.10) 

Using these components to find the components of the tensor α
µΠ  and then, applying this 

results in equation (3.4), the following eigenvalues are found: 

 1 2 0,λ λ= =  (3.11) 

 
23

3 0 2 2
1

1
.

ii i q

φλ λ
α β=

 ∂= = −  ∂ 
∑  (3.12) 

Applying these eigenvalues in equations (3.5), (3.6) and (3.7), all of the energy conditions 
are satisfied. So for a general metric without rotation in an universe without cosmological 
constant, always the electromagnetic field will be “well behaved”, as expected. 

4.Energy conditions for electromagnetic field in the presence of cosmological 
constant 

The equation (1.1) can be redefined by: 

 ( ) ,efG kTµν µν=  (4.1) 

where the effective energy-momentum tensor is given by: 

 ( )
( ) ,ef

kT T gµν µν µν= + Λ  (4.2)  

with ( ) .
4k kπ
ΛΛ =   

Writing the ( )efTµν  analogue to the equation (2.3), the following expression can be found: 

(WEC) 

(DEC) 

(SEC) 
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 ( ) 1 1
.

4 4
ef

kTα α α
µ µ µδ

π
  = −Π + Π + Λ  

  
 (4.3) 

Using the same metric given by (3.8) and the same potential (3.9), and considering that the 
cosmological constant is just added in the diagonal of electromagnetic energy-momentum 
tensor, the energy conditions can be analyzed for the eigenvalues given by equations (3.11) and 
(3.12) plus the cosmological constant, but it is more interesting to use this energy conditions to 
estimate intervals at values for the cosmological constant once the purely electric field always 
obey the energy conditions.  

The cosmological term will transform the expressions (3.5), (3.6) and (3.7) in to: 
  

 ( )0 ,

0

1

4
0.

k

i

λ

λ λ

 ≤ Π + Λ

 − ≥

 (4.4) 

 ( )0
1

2 .
2i kλ λ+ ≤ Π + Λ  (4.5) 

 ( )0
1

2 .
2i kλ λ− ≥ Π + Λ∑  (4.6) 

Analyzing these expressions, the following results are found. 

4.1. The intervals wich saisfy all energy conditions 

To satisfy all energy conditions, the following intervals are found: 

 
23

2 2
1

1
0

8 ii i

k

qA B

φ
π =

 ∂≤ Λ ≤  ∂ 
∑  (4.7) 

So, Λ needs to be positive, but limited for electromagnetic field. We can see that the 
presence of  the electromagnetic field imposes an inferior limit on the cosmological constant. 

4.2. The interval to brake the SEC 

Today is believed that Λ  is a candidate to represent a model for dark energy, for this the 
SEC needs to be violated, once the dark energy is an exotic fluid that exercises a repulsive 
gravitational force, so: 

 
23

2 2
1

1

8 c
ii i

k

qA B

φ
π =

 ∂Λ > = Λ ∂ 
∑  (4.8) 

Therefore, for Λ values higher than cΛ , that depends on the electromagnetic field, the 

combination f this one with the cosmological constant would exercise a repulsive gravitational 
force. 

(WEC) 

(DEC) 

(SEC) 
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5.Conclusion 

In this work we show how the limits for the Λ value can change, in order to represent a 
dark energy fluid, due to the presence of an electromagnetic field. Once this limits of Λ  
depends on the type of the matter that fulfill the space-time, it is reasonable to conclude that the 
limit for the parameter Λ , based on the energy conditions, depends on the age of the universe, 
since different ages of universe are dominated by different type of matter across the time. 

This work is only an example of the importance to consider all the fields of energy when 
the cosmological constant is taken as a candidate of dark energy. To study this more carefully it 
is necessary to take the energy-momentum tensor for all universe ages and to analyze each 
interval of Λ  where the energy conditions are violated. This can constitute a way to find the 
time when occurred transitions between the decelerated to the accelerated phase. 
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