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Podolsky’s Electromagnetic Theory on the Null Plane

1. Introduction

The generalized electromagnetic theory of Podolsky was developed in the 1940’s [1, 2] as a
generalization of Maxwell’s electromagnetism. Besides the fact that the quantum electrodynamics,
based on Maxwell’s theory, is the most successful theory of the modern physics, it suffers from
problems of divergences as the infinite self energy of the punctual electron and a divergent vacuum
polarization current, difficulties that come from the fact that the classical electrodynamics presents
a r−1 singularity in the electrostatic potential.

Podolsky’s theory adds a higher order derivative term in Maxwell’s Lagrangian, which main-
tains the most important features of the classical electromagnetism, such as the invariance under
U (1) and Poincaré, and also gives linear field equations. In fact, it is shown in [3] that Podolsky’s
Lagrangian density,

L =−1
4

FµνFµν +
a2

2
∂λ Fµλ

∂
γFµγ , Fµν ≡ ∂µAν −∂νAµ , (1.1)

with field equations (
1+a2�

)
�Aµ −∂µ

(
1+a2�

)
∂

νAν = 0, (1.2)

is the only possible generalization of the electromagnetic field that preserves these qualities. More-
over, the theory is free from the problem of electron’s infinite energy [4], since the electrostatic
potential becomes Yukawa’s type. If these features are not enough to credentiate Podolsky’s theory
as a viable effective theory, at least in the infrared sector, the theory also predicts massive photon
modes, whose mass is proportional to a−1, which allows experimentation.

In this paper we intend to analyze the canonical structure of Podolsky’s electromagnetic theory
on the null-plane. Dirac [5] was the first to notice that the usual quantization programme, which
requires the choice of the “time axis”, the t = x0 axis, as the evolution parameter of the theory,
also called the “instant-form” dynamics, was not the only way of Hamiltonian dynamics. The null-
plane dynamics is taken choosing x+ ≡ 1/

√
2
(
x0 + x3

)
as the evolution parameter, which implies

quantization over a hyper-surface of constant “time” x+, called the null-plane. Theories analyzed
on the null-plane always have second-class constraints, resulting in Dirac’s brackets defined on
these surfaces.

In the study of the Podolsky’s theory we will follow the procedure outlined in [6], which brings
a systematic analysis of the canonical structure of Podolsky’s field in instant-form, as well as the
references [7, 8, 9], in which we can find specific applications.

2. Podolsky’s canonical analysis on the null-plane

The coordinates of the light-cone are the best coordinate system to analyze the null-plane
dynamics. They are given by

x+ ≡ 1√
2

(
x0 + x3) , x− ≡ 1√

2

(
x0− x3) , x1 = x1, x2 = x2. (2.1)

This transformation implies the metric

ηµν =

 0 1 0
1 0 0
0 0 −I

 , (2.2)
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Podolsky’s Electromagnetic Theory on the Null Plane

where I is the 2×2 identity matrix. The coordinate x+ is chosen to be the “time” parameter of the
system. The dynamics is given by a set of kinematical generators, which generates infinitesimal
transformations on a given null-plane of constant x+, and a set of dynamical generators, which
results in transformations from a null-plane to another of “later” value of x+. Special care is needed
for the initial-boundary conditions of the system, since the surfaces of constant x+ are not Cauchy
surfaces. Null-planes are actually Characteristics surfaces and a systematic study of boundary
conditions can be found in refs. [10, 11, 12, 13, 14].

From the action built with the Lagrangian density (1.1), we are able to write the energy-
momentum tensor which is the conserved current due to Poincaré invariance [6]. In light-cone
coordinates the dynamical generator of x+ evolution is given by the Hamiltonian

Hc ≡
∫

d3xT+− (x) =
∫

d3x
[
pµ

∂+Aµ +π
µ

∂+∂+Aµ −L
]
, d3x≡ dx−d2x, (2.3)

where the conjugate momenta for the Podolsky’s field are

pµ = Fµ+−a2
(

η
µ−

∂−∂λ F+λ +η
µi

∂i∂λ F+λ −2∂−∂λ Fµλ

)
, (2.4)

π
µ = a2

η
µ+

∂λ F+λ . (2.5)

The Hessian matrix of this system is just W µν =−a2ηµ+δ ν
−η++ = 0, so the system has con-

straints. Following Ostrogradski’s method [15] we consider Aµ and ∂+Aµ as independent variables.
Therefore, using the notation Āµ ≡ ∂+Aµ , being Aµ and Āµ independent fields, primary constraints
are given by

φ1 = π
+ ≈ 0, (2.6)

φ
i
2 = π

i ≈ 0, (2.7)

φ3 = p+−∂−π
− ≈ 0, (2.8)

φ
i
4 = pi−∂iπ

−+Fi−+2a2
∂−
[
∂iĀ−−2∂−Āi +∂i∂−A+−∂ jFi j

]
≈ 0. (2.9)

The canonical Hamiltonian density can be expressed by

Hc = pµ Āµ +π
− (

∂−Ā+−∂
iĀi +∂

i
∂iA+

)
− 1

2
(
Ā−−∂−A+

)2−
(
Āi−∂iA+

)
F−i

+
1
4

Fi jF i j +
a2

2
(
∂iĀ−−2∂−Āi +∂i∂−A+−∂ jFi j

)2
, (2.10)

which will be used to define the primary Hamiltonian

HP ≡ Hc +
∫

d3xua(x)φa(x) , {a}= {1,2,3,4} . (2.11)

To proceed with the calculus of the consistency conditions we use the primary Hamiltonian
as generator of the x+ evolution and define the fundamental equal x+ Poisson brackets with the
expressions {

Aµ(x), pν(y)
}

x+=y+ =
{

Āµ(x),πν(y)
}

x+=y+ = δ
ν
µ δ

3(x− y), (2.12)
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Podolsky’s Electromagnetic Theory on the Null Plane

where δ 3(x−y)≡ δ (x−−y−)δ 2(x−y). We verify that the condition φ̇1≈ 0 gives just the constraint
φ3 ≈ 0, which is already satisfied. The consistency for the remaining constraints gives equations
for some Lagrange multipliers. The conditions for φ i

2 and φ3,

φ̇
i
2 = −φ

i
4 +4a2

∂−∂−u4
i ≈ 0,

φ̇3 = ∂−p−+∂i pi +4a2
∂i∂−∂−u4

i ≈ 0,

give equations for the same parameters u4
i . These equations must be consistent to each other, which

result on a secondary constraint
χ ≡ ∂−p−+∂i pi ≈ 0. (2.13)

For this secondary constraint, χ̇ = 0, and no more constraints can be found.
It happens that χ and φ1 are first-class constraints, while φ i

2 , φ3 and φ i
4 are second-class ones.

However, constructing the matrix of the second-class constraints we found that it is singular of rank
four, which indicates that there must be a first-class constraint, and its construction is made from
the corresponding eigenvector which gives a linear combination of second-class constraints. The
combination happens to be just Σ2 ≡ φ3− ∂iφ

i
2 and it is independent of χ and φ1. Therefore, we

have the renamed set of first-class constraints

Σ1 ≡ π
+ ≈ 0, (2.14)

Σ2 ≡ p+−∂−π
−−∂kπ

k ≈ 0, (2.15)

Σ3 ≡ ∂−p−+∂i pi ≈ 0, (2.16)

and a set of irreducible second-class constraints

Φ
i
1 ≡ π

i ≈ 0, (2.17)

Φ
i
2 ≡ pi−∂iπ

−+Fi−+2a2
∂−
[
∂iĀ−−2∂−Āi +∂i∂−A+−∂ jFi j

]
≈ 0. (2.18)

The second-class constraints do not appear in the instant-form dynamics [6] for this theory: they
are a common effect of the null-plane dynamics.

Here we are in position to write the total Hamiltonian

HT ≡ Hc +
∫

d3xua(x)Σa(x)+
∫

d3xλ
I
i (x)Φ

i
I(x). (2.19)

We have the set of first-class constraints Σa ≈ 0, and Dirac’s conjecture states that they are gen-
erators of symmetries of the action. As a consequence of this fact we have that field equations
must be independent of the second-class constraints parameters, λ I

i , as they can be eliminated
by introduction of Dirac’s brackets, under appropriate initial-boundary conditions. The fact that
first-class constraints are generators of canonical transformations is a natural consequence of the
Hamilton-Jacobi formalism applied to constrained systems [16, 17, 18].

Now let us calculate the canonical equations of the system for the variables Aµ , Āµ , pµ and
πµ . For Aµ we have the equations

∂+Aµ = Āµ +δ
+
µ u2−δ

−
µ ∂−u3−δ

i
µ

[
∂iu3−λ

2
i
]
, (2.20)
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which just means that the canonical variable Āµ is defined as ∂+Aµ plus a linear combination of
the still arbitrary Lagrange multipliers. The equations for Āµ give

∂+Āµ ≈ δ
+
µ u1 +δ

−
µ

[
∂−Ā+ +∂iĀi−∂i∂iA+ +∂−u2 +∂iλ

2
i
]
+δ

i
µ

[
∂iu2 +λ

1
i
]
. (2.21)

The equation for Ā+ is just ∂+Ā+ ≈ u1, which is expected since Ā+ is a degenerate variable. The
expression for Ā− can be written, using (2.20), as

∂µF−µ ≈−
[
∂

i
∂i +∂

+
∂+
]

u3. (2.22)

The Hamiltonian equations for the momenta pµ are given, with (2.20) and π− = +a2∂λ F+λ ,
by

∂+p+ ≈ ∂λ Fλ+−a2
∂i∂−∂λ Fλ i−a2

∂i∂i∂λ Fλ+ +
(
1+a2

∂i∂i
)

∂−∂−u3,

∂+p− ≈ ∂iF i−+∂i∂iu3,

∂+p i ≈ ∂−F−i +∂ jF ji−a2
∂µ∂

µ
∂ jF i j−∂−∂iu3.

The equations for πµ are, using the fact that π+ and π i are weakly zero,

p+ ≈ a2
∂−∂λ F+λ ,

p− ≈ F−+ +a2
∂−∂λ F−λ +∂−u3−a2

∂−∂i∂iu3,

p i ≈ F i+−a2
(

∂
i
∂λ F+λ −2∂−∂λ F iλ

)
+2a2

∂−∂−∂iu3.

The last equations reproduce the definition of the canonical momenta p with some combination
of the Lagrange multipliers. If we use these equations on the earlier equations for ∂+pµ , and also
using (2.22), we have (

1+a2�
)

∂λ Fλ+ +
(
1+a2

∂i∂i
)

∂−∂−u3 ≈ 0, (2.23)(
1+a2�

)
∂λ Fλ−+a2

∂+∂−∂i∂iu3 ≈ 0, (2.24)(
1+a2�

)
∂λ Fλ i−

(
1+2a2

∂+∂−
)

∂−∂iu3 ≈ 0. (2.25)

These equations are compatible with the Lagrangian field equations (1.2) only if suitable gauge
conditions are chosen in order to eliminate the Lagrange multiplier u3.

3. Remarks

We have analyzed the canonical structure of Podolsky’s electrodynamics on the null-plane.
We have observed the appearance of a set of first-class constraints, as well as a set of second-class
ones. The first-class constraints are responsible for the U (1) invariance of the Action, in agreement
with the fact that gauge invariance is independent of the chosen dynamics. The form of this set is
analogous to the set found in instant-form [6], which is also expected. The appearance of second-
class constraints, however, is a common effect of the null-plane dynamics [10, 7, 8, 9]. Because of
them, we need less degrees of freedom to uniquely describe the system on the null-plane.

In a posterior, more complete work, we intend to analyze proper gauge conditions to fix the
first-class constraints, as done in ref. [6] in usual coordinates. To evaluate the physical degrees
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Podolsky’s Electromagnetic Theory on the Null Plane

of freedom it is necessary to choose proper gauge conditions for the theory, which is a subject
that needs closer inspection. We also intend to make a complete analysis of the initial-boundary
problem related to the Podolsky’s theory, since the construction of unique Dirac’s brackets due to
the second-class constraints is dependent of a proper choice of these conditions.
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