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Isoscalar Giant Monopole Resonance in 60Ni

1. Introduction

Systems excited by a small perturbation can present collective motions. In atomic nucleus
these perturbations can induce collective states involving all or most of the nucleons that make up
this system. This phenomenon is called Giant Resonance (GR), occurring throughout the table of
nuclides and lie in the range of 10-30 MeV of the energy spectrum of nuclear excitation.

The first evidence of such nuclear collective phenomenon was observed in an experiment in
1937 during the measurement of the radioactivity induced by bombarding several samples with
γ-rays by Bothe and Gentner[1]. Only after a decade, in 1947, the study of these resonances were
systematized by Baldwin and Klaiber [2], when they came to find out what would be called giant
dipole resonance. Other multipolarities were observed later as the giant quadrupole resonance in
1972 by Lewis and Bertrand[3], and giant monopole resonance 1977 by Youngblood et al.[4].

Studies of the characteristics of GR have been used in several areas of research, since these
resonances have an important role in nuclear reactions that occur in nature. An example can be
seen in the supernova star explosion. The capture rate of electrons that cools the core of the star
involved in the explosion and accelerates the process of gravitational collapse is associated with
the properties of Gamow-Teller giant resonance.

The intensity of the shock wave created by the collapse is directly related to the incompress-
ibility of nuclear matter used in the description of the neutron stars, and related to the energy
excitation of the GR electric monopole [5].

The beginning of activities of the Large Hadron Collider (LHC) will further boost the study
of giant resonances, since the experiments of heavy ion collisions will generate several artificial
nuclei and the creation of positron-electron pairs at the periphery of these collisions, along with the
magnetic excitation in both ions (Magnetic Dipole GR)[6].

One of the parameters adopted for the theoretical study of excitation and decay of the GR is the
width of the resonance. We can describe the GR through the superposition of coherent excitation
of particle-hole type. As the GR are located above the threshold of emission of particles it is also
necessary to take into account meta-stable resonant states that are a continuous part of the single
particle spectrum. The total width of the resonance (Γ) is composed of two pieces: the Escape width
(Γ↑), due to the coupling of excitations of the type of particle-hole continuum, and the Damping
width (Γ↓) associated with the coupling of more complex intrinsic nuclear configurations.

The study presented here aims to describe the decay of the Isoscalar Giant Monopole Reso-
nance (ISGMR) in the 60Ni nucleus.

2. Theoretical Fundamentation

According to the Statistical Multi-step Compound Nuclei theory of Feshbach, Kerman and
Koonin[7][8], the width (ΓnJ) of a given GR with excitation energy E, angular momentum J and in
the n-th stage chain is given by:

⟨ΓnJ⟩= ⟨Γ↓
nJ⟩+

n+1

∑
ν=n−1

∑
js

∫ E−B

0
⟨Γ jsν

nJ (U)ρsν(U)⟩dU (2.1)
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where ⟨Γ↓
nJ⟩ is the width of damping and the remaining terms of the right hand side of the equation

characterize the width of escape, with ν = n+ 1, ν = n and ν = n− 1 corresponding to emission
of a nucleon with the simultaneous creation of a particle-hole pair, no change in the number of
excitons or an annihilation of a particle-hole pair, respectively. B is the binding energy of the
emitted nucleon, U is the energy of the residual nucleus and ρ is the density of single particle
levels given by:

ρph(E,J) =
g(gE)N−1

p!h!(N −1)!
RN(J) (2.2)

where

RN(J) =
(2J+1)

π 1
2 N

3
2 σ 3

e−(J+1/2)2/Nσ2
(2.3)

is the distribution of spins of single-particle levels. The parameter cut-off of single-particle spin
(σ ) and the spacing between the levels (g) are functions that depend on the number of nucleons
(A)[7]:

g ∼ 3A
4π2 , σ =

[√
12

45π
A5/3

g

]1/2

. (2.4)

In this model we assume the excitons interaction is a force of the type δ :

V (r1,r2) =V0

(
4
3

πr3
0

)
δ (r1 − r2) (2.5)

where V0 is an overall strength and r0 = 1,25 f m is the nuclear radius constant.
The calculation of the widths is done assuming the factorization of the total width in energy

dependent and angular momentum dependent parts. In general the widths will take the form:

⟨ΓnJ⟩= XnJYn(E) (2.6)

Accordingly, the X functions contains the angular momentum structure included in the δ -
force and the distribution of spins of single-particle levels, while the Y functions contains all the
dependence originating in the final density of levels.

In this work we adopt that the decay of the GR occurs in the first stage of the chaining. All the
processes initiate with a configuration of 1p−1h and evolve to 1p−1h or 2p−2h, depending on
the considered case (see Figure 1). The total width of the GR is given by:

⟨ΓnJ⟩= ⟨Γ↓
nJ⟩+ ⟨Γ↑preeq

nJ ⟩+ ⟨Γ↑dir
nJ ⟩ (2.7)

The Y functions represented in the diagrams of Figure 1, for direct and preequilibrium escapes
widths are given by[9][10][11]:

Y ↑n
n (E) =

∫ E−B

0
ω(p−1,h,U)dU (2.8)

Y ↑n+1
n (E) =

∫ E−B

0

1
2

g3

ω(p,h,E)
ω(p,h−1,UN)

N (N −1)
dU (2.9)

and, for damping
Y ↓

n (E) = aY ↓
n + bY ↓

n (2.10)
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Figure 1: Schematic representation for the angular momentum structure of the GR decay.The up-going
(down-going) line represents particles (holes), the dashed horizontal line represents scattering interaction
process and the double line denotes a nucleon emitted in the escape processes. The three vertical lines
represent those nucleons not included in the interaction.

with:

aY ↓
n =

1
2

g4

ω(p,h,E)

[
ω(p−1,h,EN+1)−ω(p−1,h,(E −B)N+1)

(N −1)N (N +1)

− Bω(p−1,h,(E −B)N)

(N −1)
− B2ω(p−1,h,(E −B)N−1)

2(N −1)

]
(2.11)

and

bY ↓
n =

1
2

g4

ω(p,h,E)

[
ω(p,h−1,EN+1)−ω(p,h−1,(E −B)N+1)

(N −1)N (N +1)
+

Bω(p,h−1,(E −F)N)

N

+
ω(p,h−1,E2(E −F)N−1)−ω(p,h−1,(E −B)2(E −F)N−1)

2(N −1)

]
(2.12)

In these expressions, the density of particle-hole ω(p,h,E) is given by:

.ω(p,h,E) = gN

p!h!(N−1)!

p
∑

i=0

h
∑

k=0
(−1)i+k (p

i

)(h
k

)
Θ
(
E −αph − iB− kF

)(
E −Aph − iB− kF

)N−1

(2.13)
where B is the binding energy and F the Fermi energy,

αph =
1
2

(
p2 + p

g
+

h2 −h
g

)
and, Aph =

1
2

(
p2 + p

g
+

h2 −3h
g

)
(2.14)

The expressions for X function calculation [7][8][10][11] are:

XJ = 2π ∑
j j1 j2 j3

(2 j+1)(2 j3 +1)F (J)R1 ( j3)
R2 (J)

(
j j3 J
1
2 −1

2 0

)2

I2 ( j1, j2, j3, j)∆( j j3J) , (2.15)

X↑
J = 2π ∑

jQ j1 j2 j3 j4

(2 j+1)F( j3)(2 j3 +1)R1 (Q)RN−1 ( j4)
RN (J)

(
j Q j3
1
2 −1

2 0

)2

I2( j1, j2, j3,J)∆(QJ j4),

(2.16)
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X↓
nJ = 2π ∑

Q j j1 j2 j3 j4

R1 (Q)RN−1 ( j4)(2 j3 +1)F( j3)(2 j+1)R1 ( j)
RN (J)

(
j j3 Q
1
2 −1

2 0

)2

I2( j1, j2,Q, j)∆( j4QJ).

(2.17)

where:

F( jc) = (2 ja +1)R1 ( ja)(2 jb +1)R1 ( jb)

(
ja jb jc
1
2 −1

2 0

)2

∆( ja jb jc), (2.18)

The RN(J) functions are given by equation (2.3) and the triangular delta function, ∆( ja jb jc), en-
sures angular momentum conservation, (|ja − jb| ≤ jc ≤ |ja + jb|). The integrals that appear in the
equations above are defined by

I ( j1, j2,Q, j) =
(

4
3

πr3
o

)
Vo

1
4π

∫ ∞

0
R j1(r)R j2(r)RQ(r)R j(r)

dr
r2 (2.19)

where the R j(r) functions are the radial wave functions of harmonic oscillator.

3. Results and Discussions

In our calculations (Table 1)[11], we obtained a total width of 2,67 MeV for the ISGMR,
very close to the value 2,70± 0.30 MeV experimentally obtained [12]. The calculations for this
resonance show a predominant damping width of approximately ∼ 70% of the GR total width, and
∼ 50% of total width due to proton contribution.

Theoretical Results (MeV )
Γ↓ Γ↑preeq Γ↑direct Total

Proton 1.32 0.03 0.18 1.53

Neutron 0.54 0.55 0.05 1.14

Total 1.86 0.58 0.23 2.67

In order to find the energy spectrum of single particle (hole) and to simulate the coupling to
the continuous, in the case of the escape widths,it was used the BARRIER code [13]. The con-
figuration space for single hole states is the same as that found in usual calculations of the shell
model. For the single particle states we adopt the following levels: (2p1/2,1g9/2,1 f5/2,2d5/2)

and (2p3/2,2p1/2,1 f5/2) for neutrons and protons, respectively. For the single particle states lo-
cated above the threshold of reaction, the simulated spectra in the continuum of single particle
is (3s1/2,2d3/2) for the neutron preequilibrium process. For the direct escape the states of single-
particle in the continuum are (3s1/2,2d3/2,3p3/2,1h11/2,3p1/2,2 f7/2) and (1g9/2,2d5/2,3s1/2,2d3/2)

for neutrons and protons, respectively.
The ISGMR results show that the contribution of the preequilibrium process corresponds to ap-

proximately ∼ 20% of the total width of the resonance. We did not observe significant contribution
to escape preequilibrium proton channel. In the direct escape channel the levels (2d3/2) and (3s1/2)

contribute approximately ∼ 90% of direct escape widths of neutron and proton, respectively.
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According to Matsuo et al [14] the damping mechanism masks the real type of decay of GR.
This can be interpreted in our results in the appearance of large values of the damping widths,
and that the processes of escape may occur in later stages in the chaining. However, the method
used here provides a good estimate of the total width for the ISGMR. In this regard, note that we
are using an approach that carries the entire evolution of the system excited in the first degree of
complexity (first stage of the chaining) and a factorization of the widths in terms of energy and
angular momentum that takes into account the statistical decay process as a whole. The great
advantage of the method used here is that with relatively simple calculations, we have a good idea
about the fragmentation of ISGMR in the first stage of the decay chain. The good results found
here suggest that the choice was appropriate.

4. Final Remarks

Finally, in this work we present a calculation for the total width of isoscalar giant monopole
resonance in the 60Ni nucleus. The results of our research are really encouraging. The importance
of the use of this theory is the development of a useful tool for the understanding of giant resonances
that appear throughout the table of nuclides. Moreover, we intend to use this theory in the study of
artificial nuclei originating from the collision of nuclei of heavy ions in the LHC experiment and
to the understanding of giant resonances associated with the incompressibility of nuclear matter in
neutron stars.
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